Select and filter data#
Indexing series (obj[...])
works analogously to indexing NumPy arrays, except that you can use index values of the series instead of just integers. Here are some examples:
[1]:
import numpy as np
import pandas as pd
[2]:
idx = pd.date_range("2022-02-02", periods=7)
rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7), index=idx)
[3]:
s
[3]:
2022-02-02 0.002127
2022-02-03 1.655759
2022-02-04 -1.552128
2022-02-05 -1.581026
2022-02-06 -0.992316
2022-02-07 1.490786
2022-02-08 -1.542455
Freq: D, dtype: float64
[4]:
s["2022-02-03"]
[4]:
1.655759430268265
[5]:
s[1]
[5]:
1.655759430268265
[6]:
s[2:4]
[6]:
2022-02-04 -1.552128
2022-02-05 -1.581026
Freq: D, dtype: float64
[7]:
s[["2022-02-04", "2022-02-03", "2022-02-02"]]
[7]:
2022-02-04 -1.552128
2022-02-03 1.655759
2022-02-02 0.002127
dtype: float64
[8]:
s[[1, 3]]
[8]:
2022-02-03 1.655759
2022-02-05 -1.581026
Freq: 2D, dtype: float64
[9]:
s[s > 0]
[9]:
2022-02-02 0.002127
2022-02-03 1.655759
2022-02-07 1.490786
dtype: float64
While you can select data by label in this way, the preferred method for selecting index values is the loc
operator:
[10]:
s.loc[["2022-02-04", "2022-02-03", "2022-02-02"]]
[10]:
2022-02-04 -1.552128
2022-02-03 1.655759
2022-02-02 0.002127
dtype: float64
The reason for the preference for loc
is the different treatment of integers when indexing with []
. In regular []
-based indexing, integers are treated as labels if the index contains integers, so the behaviour varies depending on the data type of the index. In our example, the expression s.loc[[3, 2, 1]]
will fail because the index does not contain integers:
[11]:
s.loc[[3, 2, 1]]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[11], line 1
----> 1 s.loc[[3, 2, 1]]
File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1103, in _LocationIndexer.__getitem__(self, key)
1100 axis = self.axis or 0
1102 maybe_callable = com.apply_if_callable(key, self.obj)
-> 1103 return self._getitem_axis(maybe_callable, axis=axis)
File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1332, in _LocIndexer._getitem_axis(self, key, axis)
1329 if hasattr(key, "ndim") and key.ndim > 1:
1330 raise ValueError("Cannot index with multidimensional key")
-> 1332 return self._getitem_iterable(key, axis=axis)
1334 # nested tuple slicing
1335 if is_nested_tuple(key, labels):
File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1272, in _LocIndexer._getitem_iterable(self, key, axis)
1269 self._validate_key(key, axis)
1271 # A collection of keys
-> 1272 keyarr, indexer = self._get_listlike_indexer(key, axis)
1273 return self.obj._reindex_with_indexers(
1274 {axis: [keyarr, indexer]}, copy=True, allow_dups=True
1275 )
File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1462, in _LocIndexer._get_listlike_indexer(self, key, axis)
1459 ax = self.obj._get_axis(axis)
1460 axis_name = self.obj._get_axis_name(axis)
-> 1462 keyarr, indexer = ax._get_indexer_strict(key, axis_name)
1464 return keyarr, indexer
File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexes/base.py:5877, in Index._get_indexer_strict(self, key, axis_name)
5874 else:
5875 keyarr, indexer, new_indexer = self._reindex_non_unique(keyarr)
-> 5877 self._raise_if_missing(keyarr, indexer, axis_name)
5879 keyarr = self.take(indexer)
5880 if isinstance(key, Index):
5881 # GH 42790 - Preserve name from an Index
File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexes/base.py:5938, in Index._raise_if_missing(self, key, indexer, axis_name)
5936 if use_interval_msg:
5937 key = list(key)
-> 5938 raise KeyError(f"None of [{key}] are in the [{axis_name}]")
5940 not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique())
5941 raise KeyError(f"{not_found} not in index")
KeyError: "None of [Index([3, 2, 1], dtype='int64')] are in the [index]"
While the loc
operator exclusively indexes labels, the iloc
operator exclusively indexes with integers:
[12]:
s.iloc[[3, 2, 1]]
[12]:
2022-02-05 -1.581026
2022-02-04 -1.552128
2022-02-03 1.655759
Freq: -1D, dtype: float64
You can also slice with labels, but this works differently from normal Python slicing because the endpoint is included:
[13]:
s.loc["2022-02-03":"2022-02-04"]
[13]:
2022-02-03 1.655759
2022-02-04 -1.552128
Freq: D, dtype: float64
Setting with these methods changes the corresponding section of the row:
[14]:
s.loc["2022-02-03":"2022-02-04"] = 0
s
[14]:
2022-02-02 0.002127
2022-02-03 0.000000
2022-02-04 0.000000
2022-02-05 -1.581026
2022-02-06 -0.992316
2022-02-07 1.490786
2022-02-08 -1.542455
Freq: D, dtype: float64
Indexing in a DataFrame is used to retrieve one or more columns with either a single value or a sequence:
[15]:
data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],
}
df = pd.DataFrame(data)
df = pd.DataFrame(data, columns=["Decimal", "Octal", "Key"], index=df["Code"])
df
[15]:
Decimal | Octal | Key | |
---|---|---|---|
Code | |||
U+0000 | 0 | 001 | NUL |
U+0001 | 1 | 002 | Ctrl-A |
U+0002 | 2 | 003 | Ctrl-B |
U+0003 | 3 | 004 | Ctrl-C |
U+0004 | 4 | 004 | Ctrl-D |
U+0005 | 5 | 005 | Ctrl-E |
[16]:
df["Key"]
[16]:
Code
U+0000 NUL
U+0001 Ctrl-A
U+0002 Ctrl-B
U+0003 Ctrl-C
U+0004 Ctrl-D
U+0005 Ctrl-E
Name: Key, dtype: object
[17]:
df[["Decimal", "Key"]]
[17]:
Decimal | Key | |
---|---|---|
Code | ||
U+0000 | 0 | NUL |
U+0001 | 1 | Ctrl-A |
U+0002 | 2 | Ctrl-B |
U+0003 | 3 | Ctrl-C |
U+0004 | 4 | Ctrl-D |
U+0005 | 5 | Ctrl-E |
[18]:
df[:2]
[18]:
Decimal | Octal | Key | |
---|---|---|---|
Code | |||
U+0000 | 0 | 001 | NUL |
U+0001 | 1 | 002 | Ctrl-A |
[19]:
df[df["Decimal"] > 2]
[19]:
Decimal | Octal | Key | |
---|---|---|---|
Code | |||
U+0003 | 3 | 004 | Ctrl-C |
U+0004 | 4 | 004 | Ctrl-D |
U+0005 | 5 | 005 | Ctrl-E |
The line selection syntax df[:2]
is provided for convenience. Passing a single item or a list to the []
operator selects columns.
Another use case is indexing with a Boolean DataFrame, which is generated by a scalar comparison, for example:
[19]:
df["Decimal"] > 2
[19]:
Code
U+0000 False
U+0001 False
U+0002 False
U+0003 True
U+0004 True
U+0005 True
Name: Decimal, dtype: bool
[20]:
df[df["Decimal"] > 2] = "NA"
df
[20]:
Decimal | Octal | Key | |
---|---|---|---|
Code | |||
U+0000 | 0 | 001 | NUL |
U+0001 | 1 | 002 | Ctrl-A |
U+0002 | 2 | 003 | Ctrl-B |
U+0003 | NA | NA | NA |
U+0004 | NA | NA | NA |
U+0005 | NA | NA | NA |
Like Series, DataFrame has special operators loc
and iloc
for label-based and integer indexing respectively. Since DataFrame is two-dimensional, you can select a subset of the rows and columns with NumPy-like notation using either axis labels (loc
) or integers (iloc
).
[21]:
df.loc["U+0002", ["Decimal", "Key"]]
[21]:
Decimal 2
Key Ctrl-B
Name: U+0002, dtype: object
[22]:
df.iloc[[2], [1, 2]]
[22]:
Octal | Key | |
---|---|---|
Code | ||
U+0002 | 003 | Ctrl-B |
[23]:
df.iloc[[0, 1], [1, 2]]
[23]:
Octal | Key | |
---|---|---|
Code | ||
U+0000 | 001 | NUL |
U+0001 | 002 | Ctrl-A |
Both indexing functions work with slices in addition to individual labels or lists of labels:
[24]:
df.loc[:"U+0003", "Key"]
[24]:
Code
U+0000 NUL
U+0001 Ctrl-A
U+0002 Ctrl-B
U+0003 NA
Name: Key, dtype: object
[25]:
df.iloc[:3, :3]
[25]:
Decimal | Octal | Key | |
---|---|---|---|
Code | |||
U+0000 | 0 | 001 | NUL |
U+0001 | 1 | 002 | Ctrl-A |
U+0002 | 2 | 003 | Ctrl-B |
So there are many ways to select and rearrange the data contained in a pandas object. In the following, I put together a brief summary of most of these possibilities for DataFrames:
Type |
Note |
---|---|
|
selects a single column or a sequence of columns from the DataFrame |
|
selects a single row or a subset of rows from the DataFrame by label |
|
selects a single column or a subset of columns from the DataFrame by Label |
|
selects both rows and columns by label |
|
selects a single row or a subset of rows from the DataFrame by integer position |
|
selects a single column or a subset of columns by integer position |
|
selects a single value by row and column label |
|
selects a scalar value by row and column position (integers) |
|
selects rows or columns by label |
|
deprecated since version 0.21.0: use |