Trial metrics¶
With the dvc metrics command, DVC is also a framework for recording and comparing the performance of experiments.
evaluate.py
calculates the AUC. It uses the test data
set, reads the features from the file features/test.pkl
and creates the
metrics file auc.metric
. It can be identified as a DVC metric with the
-M
option of dvc run,
in our example with:
$ dvc run -n evaluate -d src/evaluate.py -d model.pkl -d data/features \
-M auc.json python src/evaluate.py model.pkl data/features auc.json
evaluate:
cmd: python src/evaluate.py model.pkl data/features auc.json
deps:
- data/features
- model.pkl
- src/evaluate.py
metrics:
- auc.json:
cache: false
With dvc metrics show
experiments can be compared then through various
branches and tags:
$ dvc metrics show
auc.json: 0.514172
Now to complete our first version of the DVC pipeline, let’s add the files and a tag to the Git repository:
$ git add dvc.yaml dvc.lock auc.json
$ git commit -m 'Add stage ‹evaluate›'
$ git tag -a 0.1.0 -m "Initial pipeline version 0.1.0"