dtype#

ndarray is a container for homogeneous data, i.e. all elements must be of the same type. Each array has a dtype, an object that describes the data type of the array:

[1]:
import numpy as np


data = np.random.randn(7, 3)
dt = data.dtype
dt
[1]:
dtype('float64')

NumPy data types:

Type

Type code

Description

int8, uint8

i1, u1

Signed and unsigned 8-bit (1-byte) integer types

int16, uint16

i2, u2

Signed and unsigned 16-Bit (2 Byte) integer types

int32, uint32

i4, u4

Signed and unsigned 32-Bit (4 Byte) integer types

int64, uint64

i8, u8

Signed and unsigned 64-Bit (8 Byte) integer types

float16

f2

Standard floating point with half precision

float32

f4 or f

Standard floating point with single precision; compatible with C float

float64

f8 or d

Standard floating point with double precision; compatible with C double and Python float object

complex64, complex128, complex256

c8, c16, c32

Complex numbers represented by two 32, 64 or 128 floating point numbers respectively

bool

?

Boolean type that stores the values True and False

object

O

Python object type; a value can be any Python object

string_

S

ASCII string type with fixed length (1 byte per character); to create a string type with length 7, for example, use S7; longer inputs are truncated without warning

unicode_

U

Unicode type with fixed length where the number of bytes is platform-specific; uses the same specification semantics as string_, e.g. U7

Determine the number of elements with itemsize:

[2]:
dt.itemsize
[2]:
8

Determine the name of the data type:

[3]:
dt.name
[3]:
'float64'

Check data type:

[4]:
dt.type is np.float64
[4]:
True

Change data type with astype:

[5]:
data_float32 = data.astype(np.float32)
data_float32
[5]:
array([[ 0.12408408,  0.28413823,  1.6867595 ],
       [-0.4144261 , -0.5990565 ,  0.61371785],
       [ 0.16093737,  0.12486719, -0.16383053],
       [ 1.0395902 , -1.4354634 ,  0.35893318],
       [ 0.82148165, -2.134709  ,  0.12962751],
       [-1.0212289 ,  0.72899795, -1.7471288 ],
       [-1.8143699 , -1.0880227 , -1.1238078 ]], dtype=float32)