Conditional logic as array operations – where
#
The numpy.where function is a vectorised version of if
and else
.
In the following example, we first create a Boolean array and two arrays with values:
[1]:
import numpy as np
[2]:
cond = ([False, True, False, True, False, False, False])
data1 = np.random.randn(1, 7)
data2 = np.random.randn(1, 7)
Now we want to take the values from data1
if the corresponding value in cond
is True
and otherwise take the value from data2
. With Python’s if-else
, this could look like this:
[3]:
result = [(x if c else y) for x, y, c in zip(data1, data2, cond)]
result
[3]:
[array([ 0.0753595 , 0.70598847, 1.36375888, 0.52613878, 1.58394917,
-0.67041886, -1.30890145])]
However, this has the following two problems:
with large arrays the function will not be very fast
this will not work with multidimensional arrays
With np.where
you can work around these problems in a single function call:
[4]:
result = np.where(cond, data1, data2)
result
[4]:
array([[ 0.0753595 , -0.97727968, 1.36375888, 1.5042741 , 1.58394917,
-0.67041886, -1.30890145]])
The second and third arguments of np.where
do not have to be arrays; one or both can also be scalars. A typical use of where
in data analysis is to create a new array of values based on another array. Suppose you have a matrix of randomly generated data and you want to make all the negative values positive values:
[5]:
data = np.random.randn(4, 4)
data
[5]:
array([[-2.13569944, 0.21406577, -0.44948598, 0.07841356],
[ 0.94045485, -0.47748714, -0.70057099, -1.92553004],
[-1.65814642, 0.44475682, -1.16289192, 0.96023582],
[ 0.45396769, 0.64944133, -0.08936879, -1.20179191]])
[6]:
data < 0
[6]:
array([[ True, False, True, False],
[False, True, True, True],
[ True, False, True, False],
[False, False, True, True]])
[7]:
np.where(data < 0, data * -1, data)
[7]:
array([[2.13569944, 0.21406577, 0.44948598, 0.07841356],
[0.94045485, 0.47748714, 0.70057099, 1.92553004],
[1.65814642, 0.44475682, 1.16289192, 0.96023582],
[0.45396769, 0.64944133, 0.08936879, 1.20179191]])