Subdividing and categorising data#
Continuous data is often divided into domains or otherwise grouped for analysis.
Suppose you have data on a group of people in a study that you want to divide into discrete age groups. For this, we generate a dataframe with 250 entries between 0
and 99
:
[1]:
import numpy as np
import pandas as pd
ages = np.random.randint(0, 99, 250)
df = pd.DataFrame({"Age": ages})
df
[1]:
Age | |
---|---|
0 | 22 |
1 | 82 |
2 | 6 |
3 | 3 |
4 | 28 |
... | ... |
245 | 15 |
246 | 86 |
247 | 91 |
248 | 55 |
249 | 15 |
250 rows × 1 columns
Afterwards, pandas offers us a simple way to divide the results into ten ranges with pandas.cut. To get only whole years, we additionally set precision=0
:
[2]:
cats = pd.cut(ages, 10, precision=0)
cats
[2]:
[(20.0, 29.0], (78.0, 88.0], (-0.1, 10.0], (-0.1, 10.0], (20.0, 29.0], ..., (10.0, 20.0], (78.0, 88.0], (88.0, 98.0], (49.0, 59.0], (10.0, 20.0]]
Length: 250
Categories (10, interval[float64, right]): [(-0.1, 10.0] < (10.0, 20.0] < (20.0, 29.0] < (29.0, 39.0] ... (59.0, 69.0] < (69.0, 78.0] < (78.0, 88.0] < (88.0, 98.0]]
With pandas.Categorical.categories you can display the categories:
[3]:
cats.categories
[3]:
IntervalIndex([(-0.1, 10.0], (10.0, 20.0], (20.0, 29.0], (29.0, 39.0], (39.0, 49.0], (49.0, 59.0], (59.0, 69.0], (69.0, 78.0], (78.0, 88.0], (88.0, 98.0]], dtype='interval[float64, right]')
… or even just a single category:
[4]:
cats.categories[0]
[4]:
Interval(-0.1, 10.0, closed='right')
With pandas.Categorical.codes you can display an array where for each value the corresponding category is shown:
[5]:
cats.codes
[5]:
array([2, 8, 0, 0, 2, 6, 3, 9, 2, 1, 7, 0, 5, 1, 3, 6, 6, 7, 1, 9, 1, 6,
3, 4, 3, 2, 6, 8, 5, 0, 5, 4, 0, 8, 5, 8, 3, 8, 7, 8, 6, 1, 1, 2,
3, 4, 7, 1, 5, 9, 4, 2, 8, 2, 9, 6, 0, 9, 0, 9, 5, 0, 1, 5, 6, 5,
3, 9, 0, 4, 2, 8, 9, 6, 5, 4, 4, 5, 6, 1, 7, 4, 1, 7, 0, 0, 1, 3,
3, 7, 5, 1, 9, 3, 0, 1, 7, 5, 9, 5, 3, 9, 3, 6, 7, 6, 9, 9, 6, 0,
1, 1, 3, 2, 9, 6, 0, 2, 9, 3, 8, 3, 1, 2, 7, 2, 6, 7, 9, 6, 1, 5,
3, 3, 1, 4, 6, 9, 8, 4, 0, 4, 8, 7, 5, 5, 4, 5, 1, 5, 2, 8, 2, 6,
0, 1, 8, 6, 7, 1, 3, 3, 3, 1, 3, 0, 6, 3, 9, 5, 9, 4, 3, 3, 0, 9,
7, 8, 2, 4, 1, 5, 7, 8, 6, 1, 3, 1, 4, 8, 3, 0, 0, 2, 2, 8, 9, 3,
4, 8, 4, 0, 1, 4, 9, 2, 5, 1, 1, 5, 0, 4, 7, 1, 9, 1, 7, 8, 5, 4,
1, 7, 0, 4, 5, 0, 1, 6, 8, 0, 8, 2, 6, 0, 7, 7, 0, 2, 3, 3, 2, 0,
4, 0, 5, 1, 8, 9, 5, 1], dtype=int8)
With value_counts
we can now look at how the number is distributed among the individual areas:
[6]:
pd.value_counts(cats)
[6]:
(10.0, 20.0] 34
(-0.1, 10.0] 29
(29.0, 39.0] 29
(49.0, 59.0] 26
(88.0, 98.0] 24
(59.0, 69.0] 23
(39.0, 49.0] 22
(78.0, 88.0] 22
(20.0, 29.0] 21
(69.0, 78.0] 20
Name: count, dtype: int64
It is striking that the age ranges do not contain an equal number of years, but with 20.0, 29.0
and 69.0, 78.0
two ranges contain only 9 years. This is due to the fact that the age range only extends from 0
to 98
:
[7]:
df.min()
[7]:
Age 0
dtype: int64
[8]:
df.max()
[8]:
Age 98
dtype: int64
With pandas.qcut, on the other hand, the set is divided into areas that are approximately the same size:
[9]:
cats = pd.qcut(ages, 10, precision=0)
[10]:
pd.value_counts(cats)
[10]:
(24.0, 36.0] 28
(9.0, 15.0] 26
(53.0, 65.0] 26
(65.0, 76.0] 26
(-1.0, 9.0] 25
(15.0, 24.0] 24
(36.0, 44.0] 24
(76.0, 88.0] 24
(88.0, 98.0] 24
(44.0, 53.0] 23
Name: count, dtype: int64
If we want to ensure that each age group actually includes exactly ten years, we can specify this directly with pandas.Categorical:
[11]:
age_groups = ["{0} - {1}".format(i, i + 9) for i in range(0, 99, 10)]
cats = pd.Categorical(age_groups)
cats.categories
[11]:
Index(['0 - 9', '10 - 19', '20 - 29', '30 - 39', '40 - 49', '50 - 59',
'60 - 69', '70 - 79', '80 - 89', '90 - 99'],
dtype='object')
For grouping we can now use pandas.cut. However, the number of labels must be one less than the number of edges:
[12]:
df["Age group"] = pd.cut(df.Age, range(0, 101, 10), right=False, labels=cats)
df
[12]:
Age | Age group | |
---|---|---|
0 | 22 | 20 - 29 |
1 | 82 | 80 - 89 |
2 | 6 | 0 - 9 |
3 | 3 | 0 - 9 |
4 | 28 | 20 - 29 |
... | ... | ... |
245 | 15 | 10 - 19 |
246 | 86 | 80 - 89 |
247 | 91 | 90 - 99 |
248 | 55 | 50 - 59 |
249 | 15 | 10 - 19 |
250 rows × 2 columns