Add, change and delete data#
For many data sets, you may want to perform a transformation based on the values in an array, series or column in a DataFrame. For this, we look at the first Unicode characters:
[1]:
import numpy as np
import pandas as pd
[2]:
df = pd.DataFrame(
{
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],
}
)
df
[2]:
Code | Decimal | Octal | Key | |
---|---|---|---|---|
0 | U+0000 | 0 | 001 | NUL |
1 | U+0001 | 1 | 002 | Ctrl-A |
2 | U+0002 | 2 | 003 | Ctrl-B |
3 | U+0003 | 3 | 004 | Ctrl-C |
4 | U+0004 | 4 | 004 | Ctrl-D |
5 | U+0005 | 5 | 005 | Ctrl-E |
Add data#
Suppose you want to add a column where the characters are assigned to the C0
or C1
control code:
[3]:
control_code = {
"u+0000": "C0",
"u+0001": "C0",
"u+0002": "C0",
"u+0003": "C0",
"u+0004": "C0",
"u+0005": "C0",
}
The map
method for a series accepts a function or dict-like object that contains an assignment, but here we have a small problem because some of the codes in control_code
are lower case, but not in our DataFrame. Therefore, we need to convert each value to lower case using the str.lower method
:
[4]:
lowercased = df["Code"].str.lower()
lowercased
[4]:
0 u+0000
1 u+0001
2 u+0002
3 u+0003
4 u+0004
5 u+0005
Name: Code, dtype: object
[5]:
df["Control code"] = lowercased.map(control_code)
df
[5]:
Code | Decimal | Octal | Key | Control code | |
---|---|---|---|---|---|
0 | U+0000 | 0 | 001 | NUL | C0 |
1 | U+0001 | 1 | 002 | Ctrl-A | C0 |
2 | U+0002 | 2 | 003 | Ctrl-B | C0 |
3 | U+0003 | 3 | 004 | Ctrl-C | C0 |
4 | U+0004 | 4 | 004 | Ctrl-D | C0 |
5 | U+0005 | 5 | 005 | Ctrl-E | C0 |
We could also have passed a function that does all the work:
[6]:
df["Code"].map(lambda x: control_code[x.lower()])
[6]:
0 C0
1 C0
2 C0
3 C0
4 C0
5 C0
Name: Code, dtype: object
Using map
is a convenient way to perform element-wise transformations and other data cleaning operations.
Change data#
Note:
Replacing missing values is described in Managing missing data with pandas.
[7]:
pd.Series(["Manpower", "man-made"]).str.replace("Man", "Personal", regex=False)
[7]:
0 Personalpower
1 man-made
dtype: object
[8]:
pd.Series(["Man-Power", "man-made"]).str.replace("[Mm]an", "Personal", regex=True)
[8]:
0 Personal-Power
1 Personal-made
dtype: object
Note:
The replace method differs from str.replace in that it replaces strings element by element.
Delete data#
Deleting one or more entries from an axis is easy if you already have an index array or a list without these entries.
To delete duplicates, see Deduplicating data.
Since this may require a bit of set theory, we return the drop method as a new object without the deleted values:
[9]:
rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))
s
[9]:
0 -0.800629
1 -1.018902
2 -0.183417
3 -0.789888
4 -1.898217
5 -0.774574
6 -0.370043
dtype: float64
[10]:
new = s.drop(2)
new
[10]:
0 -0.800629
1 -1.018902
3 -0.789888
4 -1.898217
5 -0.774574
6 -0.370043
dtype: float64
[11]:
new = s.drop([2, 3])
new
[11]:
0 -0.800629
1 -1.018902
4 -1.898217
5 -0.774574
6 -0.370043
dtype: float64
With DataFrames, index values can be deleted on both axes. To illustrate this, we first create an example DataFrame:
[12]:
data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],
}
df = pd.DataFrame(data)
df
[12]:
Code | Decimal | Octal | Key | |
---|---|---|---|---|
0 | U+0000 | 0 | 001 | NUL |
1 | U+0001 | 1 | 002 | Ctrl-A |
2 | U+0002 | 2 | 003 | Ctrl-B |
3 | U+0003 | 3 | 004 | Ctrl-C |
4 | U+0004 | 4 | 004 | Ctrl-D |
5 | U+0005 | 5 | 005 | Ctrl-E |
[13]:
df.drop([0, 1])
[13]:
Code | Decimal | Octal | Key | |
---|---|---|---|---|
2 | U+0002 | 2 | 003 | Ctrl-B |
3 | U+0003 | 3 | 004 | Ctrl-C |
4 | U+0004 | 4 | 004 | Ctrl-D |
5 | U+0005 | 5 | 005 | Ctrl-E |
You can also remove values from the columns by passing axis=1
or axis='columns'
:
[14]:
df.drop("Decimal", axis=1)
[14]:
Code | Octal | Key | |
---|---|---|---|
0 | U+0000 | 001 | NUL |
1 | U+0001 | 002 | Ctrl-A |
2 | U+0002 | 003 | Ctrl-B |
3 | U+0003 | 004 | Ctrl-C |
4 | U+0004 | 004 | Ctrl-D |
5 | U+0005 | 005 | Ctrl-E |
Many functions such as drop
that change the size or shape of a row or DataFrame can manipulate an object in place without returning a new object:
[15]:
df.drop(0, inplace=True)
df
[15]:
Code | Decimal | Octal | Key | |
---|---|---|---|---|
1 | U+0001 | 1 | 002 | Ctrl-A |
2 | U+0002 | 2 | 003 | Ctrl-B |
3 | U+0003 | 3 | 004 | Ctrl-C |
4 | U+0004 | 4 | 004 | Ctrl-D |
5 | U+0005 | 5 | 005 | Ctrl-E |
Warning:
Be careful with the inplace
function, as the data will be irretrievably deleted.