
Python for Data Science
Release 24.1.0

Veit Schiele

May 07, 2024





CONTENTS

1 Introduction 3
1.1 Target groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of the Python for Data Science tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Follow us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Pull-Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Workspace 5
2.1 IPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Jupyter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Read, persist and provide data 157
3.1 Open data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.2 pandas IO tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.3 Serialisation formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.4 Intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.5 httpx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.7 Geodata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
3.8 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.9 NoSQL databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
3.10 Application Programming Interface (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
3.11 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

4 Data cleansing and validation 279
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

5 Visualise data 327

6 Performance 329
6.1 k-Means example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
6.2 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.3 Search for existing implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.4 Find anti-patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.5 Vectorisations with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
6.6 Special data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
6.7 Select compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
6.8 Task planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
6.9 Multithreading, Multiprocessing and Async . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

i



7 Create a product 369
7.1 Manage code with Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
7.2 Manage data with DVC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
7.3 Reproduce environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
7.4 Creating programme libraries and packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
7.5 Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
7.6 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
7.7 Citing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
7.8 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
7.9 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
7.10 Check and improve code quality and complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
7.11 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

8 Create web applications 573

9 Index 575

Index 577

ii



Python for Data Science, Release 24.1.0

This is a tutorial on Data Science with Python. This immediately raises the question: What is Data Science? The
term has become ubiquitous, but there is no single definition. Some even consider the term superfluous, because what
science does not have to do with data? Nevertheless, it seems to me that data science is more than just hype: scientific
data has become increasingly voluminous and often can no longer be adequately tapped with conventional mathematical
and statistical methods alone – additional hacking skills are needed. However, it is not a new field of knowledge that
you need to learn, but a set of skills that you can apply in your field. Whether you are analysing astronomical objects,
analysing machines, forecasting stock prices or working with data in other fields, the goal of this tutorial is to enable
you to solve tasks programmatically in your field.

This tutorial is not intended to be an introduction to Python or programming in general; for that there is the Python
basics tutorial. Instead, it is intended to show the Python data science stack – libraries such as IPython, NumPy, pandas,
Matplotlib and related tools – so that you can subsequently effectively analyse and visualise your data.

CONTENTS 1

https://python-basics-tutorial.readthedocs.io/en/latest/index.html
https://python-basics-tutorial.readthedocs.io/en/latest/index.html
https://pyviz-tutorial.readthedocs.io/de/latest/matplotlib/index.html


Python for Data Science, Release 24.1.0

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

1.1 Target groups

The target groups are diverse, from data scientists to data engineers and analysts to systems engineers. Their skills and
workflows are very different. However, one of the great strengths of Python for Data Science is that it allows these
different experts to work closely together in cross-functional teams.

Data scientists
explore data with different parameters and summarise the results.

Data engineers
check the quality of the code and make it more robust, efficient and scalable.

Data analysts
use the code provided by data engineers to systematically analyse the data.

System engineers
provide the research platform based on the JupyterHub on which the other roles can perform their work.

In this tutorial we address system engineers who want to build and run a platform based on Jupyter notebooks. We then
explain how this platform can be used effectively by data scientists, data engineers and analysts.

1.2 Structure of the Python for Data Science tutorial

From Chapter 2, the tutorial follows the prototype of a research project:

2. Workspace with the installation and configuration of IPython, Jupyter notebooks with nbextensions and ipywid-
gets.

3. Read, persist and provide data either through a REST API or directly from an HTML page.

4. Data cleansing and validation is a recurring task that involves removing or changing redundant, inconsistent or
incorrectly formatted data.

5. Visualise data has been moved to a separate tutorial with the many different possibilities.

6. Performance introduces ways to make your code run faster.

7. Create a product shows what is necessary to achieve reproducible results: not only reproducible environments
are needed, but also versioning of the source code and data. The source code should be packed into programme
libraries with documentation, licence(s), tests and logging. Finally, the chapter includes advice on improving
code quality and secure operation.

8. Create web applications can either generate dashboards from Jupyter notebooks or require more comprehensive
application logic, such as demonstrated in Bokeh-Plots in Flask einbinden, or provide data via a RESTful API.

3

https://jupyter-tutorial.readthedocs.io/en/latest/hub/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/nbextensions/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/ipywidgets/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/ipywidgets/index.html
https://pyviz-tutorial.readthedocs.io/de/latest/bokeh/embedding-export/flask.html
https://en.wikipedia.org/wiki/Representational_state_transfer


Python for Data Science, Release 24.1.0

:

1.3 Status

:

1.4 Follow us

• GitHub

• Mastodon

1.5 Pull-Requests

If you have suggestions for improvements and additions, I recommend that you create a Fork of my GitHub Repository
and make your changes there. . You are also welcome to make a pull request. If the changes contained therein are
small and atomic, I’ll be happy to look at your suggestions.

The following guidelines help us to maintain the German translation of the tutorial:

• Write commit messages in Englisch

• Start commit messages with a Gitmoji

• Stick to English names of files and folders.

4 Chapter 1. Introduction

https://github.com/veit/python4datascience/graphs/contributors
https://github.com/veit/python4datascience/blob/main/LICENSE
https://results.pre-commit.ci/latest/github/veit/python4datascience/main
https://python4datascience.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.10907725
https://mastodon.social/@Python4DataScience
https://github.com/veit/python4datascience
https://mastodon.social/@Python4DataScience
https://github.com/veit/python4datascience/fork
https://github.com/veit/python4datascience/
https://gitmoji.dev/


CHAPTER

TWO

WORKSPACE

Setting up the workspace includes installing and configuring IPython and Jupyter with nbextensions and ipywidgets,
and NumPy.

2.1 IPython

IPython, or Interactive Python, was initially an advanced Python interpreter that has now grown into an extensive project
designed to provide tools for the entire life cycle of research computing. Today, IPython is not only an interactive
interface to Python, but also offers a number of useful syntactic additions for the language. In addition, IPython is
closely related to the Jupyter project.

See also:
• Miki Tebeka - IPython: The Productivity Booster

2.1.1 Start the IPython shell

You can easily start IPython in a console:

$ pipenv run ipython
Python 3.7.0 (default, Aug 22 2018, 15:22:29)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.6.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Alternatively, you can use IPython in a Jupyter notebook. To do this, start the notebook server first:

$ pipenv run jupyter notebook
[I 17:35:02.419 NotebookApp] Serving notebooks from local directory: /Users/veit/cusy/
→˓trn/Python4DataScience
[I 17:35:02.419 NotebookApp] The Jupyter Notebook is running at:
[I 17:35:02.427 NotebookApp] http://localhost:8888/?
→˓token=72209334c2e325a68115902a63bd064db436c0c84aeced7f
[I 17:35:02.428 NotebookApp] Use Control-C to stop this server and shut down all kernels␣
→˓(twice to skip confirmation).
[C 17:35:02.497 NotebookApp]

The standard browser should then be opened with the specified URL. Often this is http://localhost:8888.

Now you can start a Python process in the browser by creating a new notebook.

5

https://jupyter-tutorial.readthedocs.io/en/latest/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/nbextensions/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/ipywidgets/index.html
https://ipython.org/
https://jupyter.org/
https://www.youtube.com/watch?v=Zmo2ZN1SJ_Q


Python for Data Science, Release 24.1.0

2.1.2 IPython examples

Running Python code

Show Python version

[1]: import sys

sys.version_info

[1]: sys.version_info(major=3, minor=11, micro=4, releaselevel='final', serial=0)

Show versions of Python packages

Most Python packages provide a __version__ method for this:

[2]: import pandas as pd

pd.__version__

[2]: '2.0.3'

Alternatively, you can use version from importlib_metadata:

[3]: from importlib_metadata import version

print(version("pandas"))

2.0.3

Information about the host operating system and the versions of installed Python packages

[4]: pd.show_versions()

/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/_
→˓distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")

INSTALLED VERSIONS
------------------
commit : 0f437949513225922d851e9581723d82120684a6
python : 3.11.4.final.0
python-bits : 64
OS : Darwin
OS-release : 22.5.0
Version : Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:23 PDT 2023; root:xnu-
→˓8796.121.3~7/RELEASE_ARM64_T6020
machine : arm64

(continues on next page)

6 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

processor : arm
byteorder : little
LC_ALL : None
LANG : de_DE.UTF-8
LOCALE : de_DE.UTF-8

pandas : 2.0.3
numpy : 1.23.5
pytz : 2023.3
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.1.2
Cython : None
pytest : 7.4.0
hypothesis : 6.81.1
sphinx : 7.0.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli : None
fastparquet : 2023.7.0
fsspec : 2023.6.0
gcsfs : 2023.6.0
matplotlib : 3.7.2
numba : 0.57.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 12.0.1
pyreadstat : None
pyxlsb : None
s3fs : 2023.6.0
scipy : 1.11.1
snappy : None
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : 2023.6.0
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None

(continues on next page)

2.1. IPython 7



Python for Data Science, Release 24.1.0

(continued from previous page)

pyqt5 : None

Only use Python versions 3.8

[5]: import sys

assert sys.version_info[:2] >= (3, 8)

Shell commands

[6]: !python3 -V

Python 3.11.4

[7]: !python3 -m pip --version

pip 23.1.2 from /Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/
→˓site-packages/pip (python 3.11)

Tab completion

. . . for objects with methods and attributes:

. . . and also for modules:

8 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Note:
As you may have noticed in surprise, the __version__ method used above is not offered in the selection. IPython
initially hides these private methods and attributes that begin with underscores. However, they can also be completed
with a tabulator if you first enter an underscore. Alternatively, you can change this setting in the IPython configuration.

. . . for almost everything:

Displaying information about an object

With a question mark (?) you can display information about an object if, for example, there is a method multiply with
the following docstring:

[8]: import numpy as np

[9]: np.mean?

Signature:
np.mean(

a,
axis=None,
dtype=None,
out=None,
keepdims=<no value>,
*,
where=<no value>,

)
Docstring:
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
`float64` intermediate and return values are used for integer inputs.

Parameters
----------
a : array_like

Array containing numbers whose mean is desired. If `a` is not an
array, a conversion is attempted.

axis : None or int or tuple of ints, optional
Axis or axes along which the means are computed. The default is to
compute the mean of the flattened array.

.. versionadded:: 1.7.0

(continues on next page)

2.1. IPython 9



Python for Data Science, Release 24.1.0

(continued from previous page)

If this is a tuple of ints, a mean is performed over multiple axes,
instead of a single axis or all the axes as before.

dtype : data-type, optional
Type to use in computing the mean. For integer inputs, the default
is `float64`; for floating point inputs, it is the same as the
input dtype.

out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
See :ref:`ufuncs-output-type` for more details.

keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.

If the default value is passed, then `keepdims` will not be
passed through to the `mean` method of sub-classes of
`ndarray`, however any non-default value will be. If the
sub-class' method does not implement `keepdims` any
exceptions will be raised.

where : array_like of bool, optional
Elements to include in the mean. See `~numpy.ufunc.reduce` for details.

.. versionadded:: 1.20.0

Returns
-------
m : ndarray, see dtype parameter above

If `out=None`, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

See Also
--------
average : Weighted average
std, var, nanmean, nanstd, nanvar

Notes
-----
The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.

Note that for floating-point input, the mean is computed using the
same precision the input has. Depending on the input data, this can
cause the results to be inaccurate, especially for `float32` (see
example below). Specifying a higher-precision accumulator using the
`dtype` keyword can alleviate this issue.

By default, `float16` results are computed using `float32` intermediates
for extra precision.

(continues on next page)

10 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, `mean` can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806 # may vary

Specifying a where argument:
>>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
>>> np.mean(a)
12.0
>>> np.mean(a, where=[[True], [False], [False]])
9.0
File: ~/spack/var/spack/environments/python-38/.spack-env/view/lib/python3.8/site-
→˓packages/numpy/core/fromnumeric.py
Type: function

By using ?? the source code of the function is also displayed, if this is possible:

[10]: np.mean??

Signature:
np.mean(

a,
axis=None,
dtype=None,
out=None,
keepdims=<no value>,
*,
where=<no value>,

)
Source:
@array_function_dispatch(_mean_dispatcher)
def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *,

where=np._NoValue):
(continues on next page)

2.1. IPython 11



Python for Data Science, Release 24.1.0

(continued from previous page)

"""
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
`float64` intermediate and return values are used for integer inputs.

Parameters
----------
a : array_like

Array containing numbers whose mean is desired. If `a` is not an
array, a conversion is attempted.

axis : None or int or tuple of ints, optional
Axis or axes along which the means are computed. The default is to
compute the mean of the flattened array.

.. versionadded:: 1.7.0

If this is a tuple of ints, a mean is performed over multiple axes,
instead of a single axis or all the axes as before.

dtype : data-type, optional
Type to use in computing the mean. For integer inputs, the default
is `float64`; for floating point inputs, it is the same as the
input dtype.

out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
See :ref:`ufuncs-output-type` for more details.

keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.

If the default value is passed, then `keepdims` will not be
passed through to the `mean` method of sub-classes of
`ndarray`, however any non-default value will be. If the
sub-class' method does not implement `keepdims` any
exceptions will be raised.

where : array_like of bool, optional
Elements to include in the mean. See `~numpy.ufunc.reduce` for details.

.. versionadded:: 1.20.0

Returns
-------
m : ndarray, see dtype parameter above

If `out=None`, returns a new array containing the mean values,
otherwise a reference to the output array is returned.

(continues on next page)

12 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

See Also
--------
average : Weighted average
std, var, nanmean, nanstd, nanvar

Notes
-----
The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.

Note that for floating-point input, the mean is computed using the
same precision the input has. Depending on the input data, this can
cause the results to be inaccurate, especially for `float32` (see
example below). Specifying a higher-precision accumulator using the
`dtype` keyword can alleviate this issue.

By default, `float16` results are computed using `float32` intermediates
for extra precision.

Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, `mean` can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806 # may vary

Specifying a where argument:
>>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
>>> np.mean(a)
12.0
>>> np.mean(a, where=[[True], [False], [False]])
9.0

"""
kwargs = {}
if keepdims is not np._NoValue:

(continues on next page)

2.1. IPython 13



Python for Data Science, Release 24.1.0

(continued from previous page)

kwargs['keepdims'] = keepdims
if where is not np._NoValue:

kwargs['where'] = where
if type(a) is not mu.ndarray:

try:
mean = a.mean

except AttributeError:
pass

else:
return mean(axis=axis, dtype=dtype, out=out, **kwargs)

return _methods._mean(a, axis=axis, dtype=dtype,
out=out, **kwargs)

File: ~/spack/var/spack/environments/python-38/.spack-env/view/lib/python3.8/site-
→˓packages/numpy/core/fromnumeric.py
Type: function

? can also be used to search in the IPython namespace. In doing so, a series of characters can be represented with the
wildcard (*). For example, to get a list of all functions in the top-level NumPy namespace that contain mean:

[11]: np.*mean*?

np.mean
np.nanmean

2.1.3 IPython magic

IPython not only enables Python to be used interactively, but also extends the Python syntax with so-called magic
commands, which are provided with the prefix %. They are designed to quickly and easily solve common data analysis
problems. A distinction is made between two different types of magic commands:

• line magics, denoted by a single % prefix, that run on a single input line

• cell magics which are preceded by a double symbol %% and which are executed within a notebook cell.

Execute external code: %run

If you start developing larger code, you will likely be working in both IPython for interactive exploration and a text
editor to save code that you want to reuse. With the %run magic you can execute this code directly in your IPython
session.

Imagine you created a myscript.py file with the following content:

def square(x):
return x**2

for N in range(1, 4):
print(N, "squared is", square(N))

[1]: %run myscript.py

14 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

1 squared is 1
2 squared is 4
3 squared is 9

Note that after running this script, all of the functions defined in it will be available for use in your IPython session:

[2]: square(4)

[2]: 16

There are several ways you can improve the way your code runs. As usual, you can display the documentation in
IPython with %run?.

Run timing code: %timeit

Another example of a Magic function is %timeit, which automatically determines the execution time of the following
one-line Python statement. So we can e.g. output the performance of a list comprehension with:

[3]: %timeit L = [n ** 2 for n in range(1000)]

27.6 µs ± 290 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

The advantage of %timeit is that short commands automatically run multiple runs to get more robust results. For multi-
line instructions, adding a second % character creates cell magic that can process multiple input lines. For example,
here is the equivalent construction using a for loop:

[4]: %%timeit
L = []
for n in range(1000):

L.append(n ** 2)

29.7 µs ± 207 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

We can immediately see that the list comprehension is about 10% faster than its equivalent with a for loop. We then
describe performance measurements and optimisations in more detail in Profiling.

Execute code from other interpreters

IPython has a %%script script magic with which you can execute a cell in a subprocess of an interpreter on your
system, e.g. bash, ruby, perl, zsh, R etc. This can also be its own script that expects input in stdin. To do this,
simply pass a path or a shell command to the program that is specified in the %%script line. The rest of the cell is
executed by this script, capturing stdout or err from the subprocess and displaying it.

[5]: %%script python2
import sys

print("Python: %s" % sys.version)

Python 2.7.15 (default, Oct 22 2018, 19:33:46)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)]

2.1. IPython 15



Python for Data Science, Release 24.1.0

[6]: %%script python3
import sys

print("Python: %s" % sys.version)

Python: 3.11.4 (main, Jun 15 2023, 07:55:38) [Clang 14.0.3 (clang-1403.0.22.14.1)]

[7]: %%ruby
puts "Ruby #{RUBY_VERSION}"

Ruby 2.6.10

[8]: %%bash
echo "$BASH"

/bin/bash

You can capture stdout and err from these sub-processes in Python variables:

[9]: %%bash --out output --err error
echo "stdout"
echo "stderr" >&2

[10]: print(error)
print(output)

stderr

stdout

Configure standard script magic

The list of aliases for the scriptmagic is configurable. By default, some common interpreters can be used if necessary.
However, you can also specify your own interpreter in ipython_config.py:

c.ScriptMagics.scripts = ["R", "pypy", "myprogram"]
c.ScriptMagics.script_paths = {"myprogram": "/path/to/myprogram"}

Help functions: ?, %magic and %lsmagic

Like normal Python functions, the IPython magic functions have docstrings that can be easily accessed. E.g. to read
the documentation of the %timeit magic, just type:

[11]: %timeit?

Documentation for other functions can be accessed in a similar manner. To access a general description of the %magic
functions available, including some examples, you can type:

[12]: %magic

For a quick list of all available magic functions, type:

16 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[13]: %lsmagic

[13]: Available line magics:
%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cat %cd␣
→˓ %clear %colors %conda %config %connect_info %cp %debug %dhist %dirs %doctest_
→˓mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk
→˓%ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls
→˓%lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page␣
→˓ %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint
→˓%precision %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole
→˓%quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm␣
→˓ %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit
→˓%unalias %unload_ext %who %who_ls %whos %xdel %xmode

Available cell magics:
%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %%javascript %%js %
→˓%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %
→˓%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

You can also simply define your own magic functions. For more information, see Defining custom magics.

2.1.4 Shell commands in IPython

The IPython Notebook allows simple UNIX/Linux commands to be executed in a single input cell. There are no limits
but when using, please keep in mind that in contrast to a regular UNIX/Linux shell, start each shell command with a !,
for example !ls for the command ls (see below for further explanations about the command). Furthermore, each shell
command is executed in its own subshell. For this reason, the results of previous shell commands are not available to
you.

To begin with, the command ls lists the files in the current working directory. The output is shown below the input
cell, and lists the single file shell.ipynb:

[1]: !ls

debugging.ipynb myscript.py
display.ipynb shell.ipynb
examples.ipynb start.rst
extensions.rst tab-completion-for-anything.png
importing.ipynb tab-completion-for-modules.png
index.rst tab-completion-for-objects.png
magics.ipynb unix-shell
mypackage

The command !pwd displays the path to working directory:

[2]: !pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython

The command !echo outputs text given as parameter to the echo command. The example below demonstrates how to
print Hello world:

2.1. IPython 17

https://ipython.readthedocs.io/en/stable/config/custommagics.html


Python for Data Science, Release 24.1.0

[3]: !echo "Hello world!"

Hello world!

Passing values to and from the shell

There is a clever way through which you can access the output of a UNIX/Linux command as a variable in Python.
Assign the output of a UNIX/Linux command to a variable as follows:

[4]: contents = !ls

Here the Python variable contents has been assigned the output of the command ls. As a result, contents is a list,
where each list element corresponds to a line in the output. With the print command you output the list contents:

[5]: print(contents)

['debugging.ipynb', 'display.ipynb', 'examples.ipynb', 'extensions.rst', 'importing.ipynb
→˓', 'index.rst', 'magics.ipynb', '\x1b[34mmypackage\x1b[m\x1b[m', 'myscript.py', 'shell.
→˓ipynb', 'start.rst', '\x1b[31mtab-completion-for-anything.png\x1b[m\x1b[m', '\
→˓x1b[31mtab-completion-for-modules.png\x1b[m\x1b[m', '\x1b[31mtab-completion-for-
→˓objects.png\x1b[m\x1b[m', '\x1b[34munix-shell\x1b[m\x1b[m']

You will see the same result below when executing the pwd command. The current directory is stored in the variable
directory:

[6]: directory = !pwd

[7]: print(directory)

['/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython']

2.1.5 Unix shell

Any command on the command line will also work in Jupyter Notebooks if prefixed with !. The results can then
interact with the Jupyter namespace, see Passing values to and from the shell.

Navigate through files and directories

First let us find out where we are by running a command called pwd:

[1]: !pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/unix-shell

Here, the response is the iPython chapter of the Jupyter tutorial in my home directory /Users/veit.

On Windows the home directory will look like C:\Documents and Settings\veit or C:\Users\veit and on
Linux like /home/veit.

To see the contents of our directory, we can use ls:

[2]: !ls

18 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

create-delete.ipynb grep-find.ipynb pipes-filters.ipynb
file-system.ipynb index.rst shell-variables.ipynb

• a trailing / indicates a directory

• @ indicates a link

• * indicates an executable

Depending on your default options, the shell might also use colors to indicate whether an entry is a file or a directory.

ls options and arguments

[3]: !ls -F ../

debugging.ipynb myscript.py
display.ipynb shell.ipynb
examples.ipynb start.rst
extensions.rst tab-completion-for-anything.png*
importing.ipynb tab-completion-for-modules.png*
index.rst tab-completion-for-objects.png*
magics.ipynb unix-shell/
mypackage/

ls is the command, with the option -F and the argument ../.

• Options either start with a single dash (-) or two dashes (--), and they change the behavior of a command.

• Arguments tell the command what to operate on.

• Options and arguments are sometimes also referred as parameters.

• Each part is separated by spaces.

• Also, capitalisation is important, for example

– ls -s will display the size of files and directories alongside the names,

– while ls -S will sort the files and directories by size.

[4]: !ls -s

total 184
24 create-delete.ipynb 24 grep-find.ipynb 16 pipes-filters.ipynb
96 file-system.ipynb 8 index.rst 16 shell-variables.ipynb

[5]: !ls -S

file-system.ipynb create-delete.ipynb shell-variables.ipynb
grep-find.ipynb pipes-filters.ipynb index.rst

2.1. IPython 19



Python for Data Science, Release 24.1.0

Show all options and arguments

ls comes with a lot of other useful options. Using man you can print out the built-in manual page for the desired
UNIX/Linux-command:

[6]: !man ls

LS(1) General Commands Manual LS(1)

NAME
ls – list directory contents

SYNOPSIS
ls [-@ABCFGHILOPRSTUWabcdefghiklmnopqrstuvwxy1%,] [--color=____]

[-D ______] [____ ___]

DESCRIPTION
For each operand that names a ____ of a type other than directory, ls
displays its name as well as any requested, associated information. For
each operand that names a ____ of type directory, ls displays the names
of files contained within that directory, as well as any requested,
associated information.

If no operands are given, the contents of the current directory are
displayed. If more than one operand is given, non-directory operands are
displayed first; directory and non-directory operands are sorted
separately and in lexicographical order.

The following options are available:

-@ Display extended attribute keys and sizes in long (-l) output.

...

macOS 13.4 August 31, 2020 macOS 13.4

Illegal options

If you try to use an option that isn’t supported, the commands will usually print an error message, for example for:

[7]: !ls -z

ls: invalid option -- z
usage: ls [-@ABCFGHILOPRSTUWabcdefghiklmnopqrstuvwxy1%,] [--color=when] [-D format]␣
→˓[file ...]

20 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Hidden Files

With the -a option you can display all files:

[8]: !ls -a

. create-delete.ipynb index.rst

.. file-system.ipynb pipes-filters.ipynb

.ipynb_checkpoints grep-find.ipynb shell-variables.ipynb

In addition to the hidden directories .. and ., you may also see a directory called .ipynb_checkpoints. This file
usually contains snapshots of the Jupyter notebooks.

Show directory treeThe command tree lists contents of directories in a tree-like format.

[9]: !tree

.
create-delete.ipynb
file-system.ipynb
grep-find.ipynb
index.rst
pipes-filters.ipynb
shell-variables.ipynb

1 directory, 6 files

Change directory

At first it may seem irritating to some that they cannot use !cd to change to another directory.

[10]: !pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/unix-shell

[11]: !cd ..

[12]: !pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/unix-shell

The reason for this is that Jupyter uses a temporary subshell. If you want to change to another directory permanently,
you have to use the magic command %cd.

[13]: %cd ..

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython

[14]: !pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython

With the %automagic function, these can also be used without the preceding % character:

2.1. IPython 21



Python for Data Science, Release 24.1.0

[16]: %automagic

Automagic is ON, % prefix IS NOT needed for line magics.

[17]: cd ..

/Users/veit/cusy/trn/Python4DataScience/docs/workspace

Absolute and relative Paths

[18]: cd .

/Users/veit/cusy/trn/Python4DataScience/docs/workspace

[19]: cd ../..

/Users/veit/cusy/trn/Python4DataScience

[20]: cd ..

/Users/veit/cusy/trn

[21]: cd /

/

[22]: cd

/Users/veit

[23]: cd ~

/Users/veit

[24]: cd /Users/veit

/Users/veit

Create, update and delete files and directories

Creates a new directory test and then checks this with ls:

[1]: !mkdir tests

[2]: !ls

create-delete.ipynb index.rst tests
file-system.ipynb pipes-filters.ipynb
grep-find.ipynb shell-variables.ipynb

Then we create the file test_file.txt in this directory.

22 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[3]: !touch tests/test_file.txt

[4]: !ls tests

test_file.txt

Now we change the suffix of the file:

[5]: !mv tests/test_file.txt tests/test_file.py

[6]: !ls tests

test_file.py

Now we make a copy of this file:

[7]: !cp tests/test_file.py tests/test_file2.py

[8]: !ls tests

test_file.py test_file2.py

A directory with all the files it contains is also possible recursively with the -r option:

[9]: !cp -r tests tests.bak

[10]: !ls tests.bak

test_file.py test_file2.py

Finally, we delete the directories tests and tests.bak again:

[11]: !rm -r tests tests.bak

[12]: !ls

create-delete.ipynb grep-find.ipynb pipes-filters.ipynb
file-system.ipynb index.rst shell-variables.ipynb

Transfering files

wget

[13]: !wget https://dvc.org/deb/dvc.list

--2023-07-19 17:00:21-- https://dvc.org/deb/dvc.list
Auflösen des Hostnamens dvc.org (dvc.org)... 2606:4700:3036::6815:51cd, 2606:4700:3033::
→˓ac43:a44c, 172.67.164.76, ...
Verbindungsaufbau zu dvc.org (dvc.org)|2606:4700:3036::6815:51cd|:443 ... verbunden.
HTTP-Anforderung gesendet, auf Antwort wird gewartet ... 303 See Other
Platz: https://s3-us-east-2.amazonaws.com/dvc-s3-repo/deb/dvc.list [folgend]
--2023-07-19 17:00:21-- https://s3-us-east-2.amazonaws.com/dvc-s3-repo/deb/dvc.list
Auflösen des Hostnamens s3-us-east-2.amazonaws.com (s3-us-east-2.amazonaws.com)... 52.

(continues on next page)

2.1. IPython 23



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓219.100.82
Verbindungsaufbau zu s3-us-east-2.amazonaws.com (s3-us-east-2.amazonaws.com)|52.219.100.
→˓82|:443 ... verbunden.
HTTP-Anforderung gesendet, auf Antwort wird gewartet ... 200 OK
Länge: 51 [binary/octet-stream]
Wird in »dvc.list« gespeichert.

dvc.list 100%[===================>] 51 --.-KB/s in 0s

2023-07-19 17:00:22 (1,13 MB/s) - »dvc.list« gespeichert [51/51]

• -r recursively crawls other files and directories

• -np avoids crawling to parent directories

• -D targets only the following domain name

• -nH avoids creating a subdirectory for the websites content

• -mmirrors with time stamping, time stamping, infinite recursion depth, and preservation of FTP directory settings

• -q supresses the output to the screen

cURL

Alternatively, you can use cURL, which supports a much larger range of protocols.

[14]: !curl -o dvc.list https://dvc.org/deb/dvc.list

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 85 100 85 0 0 251 0 --:--:-- --:--:-- --:--:-- 254

Pipes and filters

ls shows all files and directories at this point.

[1]: !ls

create-delete.ipynb grep-find.ipynb shell-variables.ipynb
dvc.list index.rst
file-system.ipynb pipes-filters.ipynb

With *.rst we restrict the results to all files with the suffix .rst:

[2]: !ls *.rst

index.rst

We can also output only the number of lines, words and characters in these documents:

[3]: !wc *.rst

18 48 450 index.rst

24 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Now we write the number of characters in the file length.txt and then output the text with cat:

[4]: !wc -m *.rst > length.txt

[5]: !cat length.txt

450 index.rst

We can also have the files sorted by the number of characters:

[6]: !sort -n length.txt

450 index.rst

[7]: !sort -n length.txt > sorted-length.txt

We can also overwrite the existing file:

[8]: !sort -n length.txt > length.txt

If we only want to know the total number of characters, i.e. only output the last line, we can do this with tail:

[9]: !tail -n 1 length.txt

> is used to overwrite a file while >> is used to append to a file.

[10]: !echo amount of characters >> length.txt

[11]: !cat length.txt

amount of characters

Pipe |

You can connect commands with a pipe (|). In the following one-liner, we want to display the number of characters
for the shortest file:

[12]: !wc -l *.rst | sort -n | head

18 index.rst

If we want to display the first lines of the main text (without the first three lines for the title):

[13]: !cat index.rst | head -n 5 | tail -n 2

Any command on the command line will also work in Jupyter Notebooks if prefixed
with ``!``. The results can then interact with the Jupyter namespace, see

2.1. IPython 25



Python for Data Science, Release 24.1.0

grep and find

grep

grep finds and prints lines in files that match a regular expression. In the following example, we search for the string
Python:

[1]: !grep Python ../index.rst

IPython
`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
advanced Python interpreter that has now grown into an extensive project
Today, IPython is not only an interactive interface to Python, but also offers a
number of useful syntactic additions for the language. In addition, IPython is

* `Miki Tebeka - IPython: The Productivity Booster

The option -w limits the matches to the word boundaries so that IPython is ignored:

[2]: !grep -w Python ../index.rst

`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
advanced Python interpreter that has now grown into an extensive project
Today, IPython is not only an interactive interface to Python, but also offers a

-n shows the line numbers that match:

[3]: !grep -n -w Python ../index.rst

4:`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
5:advanced Python interpreter that has now grown into an extensive project
7:Today, IPython is not only an interactive interface to Python, but also offers a

-v inverts our search

[4]: !grep -n -v "^ " ../index.rst

1:IPython
2:=======
3:
4:`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
5:advanced Python interpreter that has now grown into an extensive project
6:designed to provide tools for the entire life cycle of research computing.
7:Today, IPython is not only an interactive interface to Python, but also offers a
8:number of useful syntactic additions for the language. In addition, IPython is
9:closely related to the `Jupyter project <https://jupyter.org/>`_.
10:
11:.. seealso::
14:
15:.. toctree::
19:

grep has lots of other options. To find out what they are, you can type:

[5]: !grep --help

26 Chapter 2. Workspace

https://python-basics-tutorial.readthedocs.io/en/latest/appendix/regex.html


Python for Data Science, Release 24.1.0

usage: grep [-abcdDEFGHhIiJLlMmnOopqRSsUVvwXxZz] [-A num] [-B num] [-C[num]]
[-e pattern] [-f file] [--binary-files=value] [--color=when]
[--context[=num]] [--directories=action] [--label] [--line-buffered]
[--null] [pattern] [file ...]

In the following example we use the -E option and put the pattern in quotes to prevent the shell from trying to interpret
it. The ^ in the pattern anchors the match to the start of the line and the . matches a single character.

[6]: !grep -n -E "^.Python" ../index.rst

1:IPython

find

find . searches in this directory whereby the search is restricted to directories with -type d.

[7]: !find .. -type d

..

../mypackage

../unix-shell

../unix-shell/.ipynb_checkpoints

../.ipynb_checkpoints

With -type f the search ist restricted to files.

[8]: !find . -type f

./index.rst

./sorted-length.txt

./create-delete.ipynb

./length.txt

./dvc.list

./file-system.ipynb

./pipes-filters.ipynb

./shell-variables.ipynb

./.ipynb_checkpoints/create-delete-checkpoint.ipynb

./.ipynb_checkpoints/grep-find-checkpoint.ipynb

./.ipynb_checkpoints/pipes-filters-checkpoint.ipynb

./.ipynb_checkpoints/file-system-checkpoint.ipynb

./grep-find.ipynb

With -mtime the search is limited to the last X days, in our example to the last day:

[9]: !find . -mtime -1

.

./sorted-length.txt

./create-delete.ipynb

./length.txt

./dvc.list

./file-system.ipynb

./pipes-filters.ipynb

./.ipynb_checkpoints
(continues on next page)

2.1. IPython 27



Python for Data Science, Release 24.1.0

(continued from previous page)

./.ipynb_checkpoints/create-delete-checkpoint.ipynb

./.ipynb_checkpoints/grep-find-checkpoint.ipynb

./.ipynb_checkpoints/pipes-filters-checkpoint.ipynb

./.ipynb_checkpoints/file-system-checkpoint.ipynb

./grep-find.ipynb

With -name you can filter the search by name.

[10]: !find .. -name "*.rst"

../index.rst

../unix-shell/index.rst

../extensions.rst

../start.rst

Now we count the characters in the files with the suffix .rst:

[11]: !wc -c $(find .. -name "*.rst")

833 ../index.rst
450 ../unix-shell/index.rst

2097 ../extensions.rst
1145 ../start.rst
4525 total

It is also possible to search for a regular expression in these files:

[12]: !grep "ipython.org" $(find .. -name "*.rst")

../index.rst:`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an

Finally, we filter out all results whose path contains ipynb_checkpoints:

[13]: !find . -name "*.ipynb" | grep -v ipynb_checkpoints

./create-delete.ipynb

./file-system.ipynb

./pipes-filters.ipynb

./shell-variables.ipynb

./grep-find.ipynb

Shell variables

Display of all shell variables

[1]: !set

...
HOME=/Users/veit
...
PATH=/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/bin:/opt/homebrew/Cellar/
→˓pipenv/2023.6.18/libexec/tools:/Users/veit/spack/bin:/opt/homebrew/bin:/opt/homebrew/
→˓sbin:/usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/

(continues on next page)

28 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓Library/TeX/texbin:/usr/local/MacGPG2/bin:/Library/Apple/usr/bin:/var/run/com.apple.
→˓security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.
→˓cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.
→˓system/bootstrap/usr/appleinternal/bin
...

Showing the value of a variable

[2]: !echo $HOME

/Users/veit

The path variable

It defines the shell’s search path, i.e., the list of directories that the shell looks in for runnable programs.

[3]: !echo $PATH

/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/bin:/opt/homebrew/Cellar/pipenv/
→˓2023.6.18/libexec/tools:/Users/veit/spack/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/
→˓usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/TeX/
→˓texbin:/usr/local/MacGPG2/bin:/Library/Apple/usr/bin:/var/run/com.apple.security.
→˓cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/
→˓codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/
→˓bootstrap/usr/appleinternal/bin

Creating and changing variables

Creating or overwriting variables

[4]: !export SPACK_ROOT=~/spack

Append additional specifications

[5]: !export PATH=/usr/local/opt/python@3.7/bin:$PATH

2.1.6 Show objects with display

IPython can display objects such as HTML, JSON, PNG, JPEG, SVG and Latex

2.1. IPython 29



Python for Data Science, Release 24.1.0

Images

To display images (JPEG, PNG) in IPython and notebooks, you can use the Image class:

[1]: from IPython.display import Image
Image('https://www.python.org/images/python-logo.gif')

[1]: <IPython.core.display.Image object>

[2]: from IPython.display import SVG
SVG('https://upload.wikimedia.org/wikipedia/commons/c/c3/Python-logo-notext.svg')

[2]:

Non-embedded images

• By default, image data is embedded:

Image ('img_url')

• However, if the url is given as kwarg, this is interpreted as a soft link:

Image (url='img_url')

• embed can also be specified explicitly:

Image (url='img_url', embed = True)

HTML

Python objects can declare HTML representations to be displayed in a notebook:

[3]: from IPython.display import HTML

[4]: %%html
<ul>

<li>foo</li>
<li>bar</li>

</ul>

<IPython.core.display.HTML object>

Javascript

With notebooks, objects can also declare a JavaScript representation. This enables for example data visualisations with
Javascript libraries like d3.js.

[5]: from IPython.display import Javascript

welcome = Javascript(
'alert("Dies ist ein Beispiel für eine durch IPython angezeigte Javascript-Warnung.")

(continues on next page)

30 Chapter 2. Workspace

https://d3js.org/


Python for Data Science, Release 24.1.0

(continued from previous page)

→˓'
)
display(welcome)

<IPython.core.display.Javascript object>

For more extensive Javascript you can also use the %%javascript syntax.

LaTeX

IPython.display also has built-in support for displaying mathematical expressions set in LaTeX and rendered in the
browser with MathJax:

[6]: from IPython.display import Math

Math(r"F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx")

[6]:
𝐹 (𝑘) =

∫︁ ∞

−∞
𝑓(𝑥)𝑒2𝜋𝑖𝑘𝑑𝑥

With the Latex class you have to specify the limits yourself. In this way, however, you can also use other LaTeX modes,
such as eqnarray:

[7]: from IPython.display import Latex

Latex(
r"""\begin{eqnarray}

\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}␣
→˓& = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\end{eqnarray}"""
)

[7]:

∇× B⃗− 1

𝑐

𝜕E⃗

𝜕𝑡
= 4𝜋

𝑐 j⃗ (2.1)

(2.2)

Audio

IPython also enables interactive work with sounds. With the display.Audio class you can create an audio control
that is embedded in the notebook. The interface is analogous to that of the Image class. All audio formats supported
by the browser can be used.

[8]: from IPython.display import Audio

In the following we will output the sine function of a NumPy array as an audio signal. The Audio class normalises and
codes the data and embeds the resulting audio in the notebook.

2.1. IPython 31

https://www.mathjax.org/


Python for Data Science, Release 24.1.0

[9]: import numpy as np

f = 500.0
rate = 8000
L = 3
times = np.linspace(0, L, rate * L)
signal = np.sin(f * times)

Audio(data=signal, rate=rate)

[9]: <IPython.lib.display.Audio object>

Links to local files

IPython has built-in classes for generating links to local files. To do this, create a link to a single file with the FileLink
object:

[10]: from IPython.display import FileLink, FileLinks

FileLink("magics.ipynb")

[10]: /Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/magics.ipynb

Alternatively, you can generate a list with links to all files in a directory, e.g .:

[11]: FileLinks(".")

[11]: ./
index.rst
tab-completion-for-modules.png
tab-completion-for-objects.png
tab-completion-for-anything.png
debugging.ipynb
magics.ipynb
shell.ipynb
display.ipynb
examples.ipynb
myscript.py
importing.ipynb
extensions.rst
start.rst

./.ipynb_checkpoints/
display-checkpoint.ipynb

./mypackage/
__init__.py
foo.ipynb

./unix-shell/
index.rst
create-delete.ipynb
file-system.ipynb
pipes-filters.ipynb

(continues on next page)

32 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

shell-variables.ipynb
grep-find.ipynb

Display notebooks

[12]: import os
import sys
import types

import nbformat

from IPython.display import HTML, display
from pygments import highlight
from pygments.formatters import HtmlFormatter
from pygments.lexers import PythonLexer

formatter = HtmlFormatter()
lexer = PythonLexer()

# publish the CSS for pygments highlighting
display(

HTML(
"""

<style type='text/css'>
%s
</style>
"""

% formatter.get_style_defs()
)

)

<IPython.core.display.HTML object>

[13]: def show_notebook(fname):
"""display a short summary of the cells of a notebook"""
nb = nbformat.read(fname, as_version=4)
html = []
for cell in nb.cells:

html.append("<h4>%s cell</h4>" % cell.cell_type)
if cell.cell_type == "code":

html.append(highlight(cell.source, lexer, formatter))
else:

html.append("<pre>%s</pre>" % cell.source)
display(HTML("\n".join(html)))

show_notebook(os.path.join("mypackage/foo.ipynb"))

<IPython.core.display.HTML object>

2.1. IPython 33



Python for Data Science, Release 24.1.0

2.1.7 foo.ipynb

[1]: def bar():
return "bar"

[2]: def dirlist():
listing = !ls
return listing

[3]: def whatsmyname():
return __name__

2.1.8 Import notebooks

To be able to develop more modularly, the import of notebooks is necessary. However, since notebooks are not Python
files, they are not easy to import. Fortunately, Python provides some hooks for the import so that IPython notebooks
can eventually be imported.

[1]: import os
import sys
import types

[2]: import nbformat

from IPython import get_ipython
from IPython.core.interactiveshell import InteractiveShell

Import hooks usually have two objects:

• Module Loader that takes a module name (e.g. IPython.display) and returns a module

• Module Finder, which finds out if a module is present and tells Python which loader to use

But first, let’s write a method that a notebook will find using the fully qualified name and the optional path. E.g.
mypackage.foo becomes mypackage/foo.ipynb and replaces Foo_Bar with Foo Bar if Foo_Bar doesn’t exist.

[3]: def find_notebook(fullname, path=None):
name = fullname.rsplit(".", 1)[-1]
if not path:

path = [""]
for d in path:

nb_path = os.path.join(d, name + ".ipynb")
if os.path.isfile(nb_path):

return nb_path
# let import Foo_Bar find "Foo Bar.ipynb"
nb_path = nb_path.replace("_", " ")
if os.path.isfile(nb_path):

return nb_path

34 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Notebook Loader

The Notebook Loader does the following three steps:

1. Load the notebook document into memory

2. Create an empty module

3. Execute every cell in the module namespace

Because IPython cells can have an extended syntax, transform_cell converts each cell to pure Python code
before executing it.

[4]: class NotebookLoader(object):
"""Module Loader for IPython Notebooks"""

def __init__(self, path=None):
self.shell = InteractiveShell.instance()
self.path = path

def load_module(self, fullname):
"""import a notebook as a module"""
path = find_notebook(fullname, self.path)

print("importing notebook from %s" % path)

# load the notebook object
nb = nbformat.read(path, as_version=4)

# create the module and add it to sys.modules
# if name in sys.modules:
# return sys.modules[name]
mod = types.ModuleType(fullname)
mod.__file__ = path
mod.__loader__ = self
mod.__dict__["get_ipython"] = get_ipython
sys.modules[fullname] = mod

# extra work to ensure that magics that would affect the user_ns
# magics that would affect the user_ns actually affect the
# notebook module’s ns
save_user_ns = self.shell.user_ns
self.shell.user_ns = mod.__dict__

try:
for cell in nb.cells:

if cell.cell_type == "code":
# transform the input to executable Python
code = self.shell.input_transformer_manager.transform_cell(

cell.source
)
# run the code in the module
exec(code, mod.__dict__)

finally:
self.shell.user_ns = save_user_ns

return mod

2.1. IPython 35



Python for Data Science, Release 24.1.0

Notebook Finder

The Finder is a simple object that indicates whether a notebook can be imported based on its file name and that returns
the appropriate loader.

[5]: class NotebookFinder(object):
"""Module Finder finds the transformed IPython Notebook"""

def __init__(self):
self.loaders = {}

def find_module(self, fullname, path=None):
nb_path = find_notebook(fullname, path)
if not nb_path:

return

key = path
if path:

# lists aren’t hashable
key = os.path.sep.join(path)

if key not in self.loaders:
self.loaders[key] = NotebookLoader(path)

return self.loaders[key]

Register hook

Now we register NotebookFinder with sys.meta_path:

[6]: sys.meta_path.append(NotebookFinder())

Check

Now our notebook mypackage/foo.ipynb should be importable with:

[7]: from mypackage import foo

importing notebook from /Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/
→˓mypackage/foo.ipynb

Is the Python method bar being executed?

[8]: foo.bar()

[8]: 'bar'

. . . and the IPython syntax?

[9]: foo.dirlist()

[9]: ['debugging.ipynb',
'display.ipynb',
'examples.ipynb',

(continues on next page)

36 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

'extensions.rst',
'importing.ipynb',
'index.rst',
'magics.ipynb',
'\x1b[34mmypackage\x1b[m\x1b[m',
'myscript.py',
'shell.ipynb',
'start.rst',
'\x1b[31mtab-completion-for-anything.png\x1b[m\x1b[m',
'\x1b[31mtab-completion-for-modules.png\x1b[m\x1b[m',
'\x1b[31mtab-completion-for-objects.png\x1b[m\x1b[m',
'\x1b[34munix-shell\x1b[m\x1b[m']

Reusable import hook

The import hook can also easily be executed in other notebooks with

[10]: %run display.ipynb

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

2.1.9 IPython extensions

IPython extensions are Python modules that change the behavior of the shell. They are identified by an importable
module name and are usually located in .ipython/extensions/.

Some important extensions are already included in IPython: autoreload and storemagic. You can find other ex-
tensions in the Extensions Index or on PyPI with the IPython tag.

See also:
• IPython extensions docs

Use extensions

The %load_ext magic can be used to load extensions while IPython is running.

%load_ext myextension

Alternatively, an extension can also be loaded each time IPython is started by listing it in the IPython configuration file:

c.InteractiveShellApp.extensions = [
'myextension'

]

If you haven’t created an IPython configuration file yet, you can do this with:

2.1. IPython 37

https://ipython.readthedocs.io/en/latest/config/extensions/autoreload.html#extensions-autoreload
https://ipython.readthedocs.io/en/latest/config/extensions/storemagic.html#extensions-storemagic
https://github.com/ipython/ipython/wiki/Extensions-Index
https://pypi.org/search/?c=Framework+%3A%3A+IPython
https://ipython.readthedocs.io/en/stable/config/extensions/index.html


Python for Data Science, Release 24.1.0

$ ipython profile create [profilename]

If no profile name is given, default is used. The file is usually created in ~/.ipython/profile_default/
and named depending on the purpose: ipython_config.py is used for all IPython commands, while
ipython_notebook_config.py is only used for commands in IPython notebooks.

Writing IPython extensions

An IPython extension is an importable Python module that has special functions for loading and unloading:

def load_ipython_extension(ipython):
# The `ipython` argument is the currently active `InteractiveShell`
# instance, which can be used in any way. This allows you to register
# new magics or aliases, for example.

def unload_ipython_extension(ipython):
# If you want your extension to be unloadable, put that logic here.

See also:
• Defining custom magics

2.1.10 Debugging

IPython contains various tools to analyse faulty code, essentially the exception reporting and the debugger.

Check exceptions with %xmode

If the execution of a Python script fails, an exception is usually thrown and relevant information about the cause of
the error is written to a traceback. With the %xmode magic function you can control the amount of information that is
displayed in IPython. Let’s look at the following code for this:

[1]: def func1(a, b):
return a / b

def func2(x):
a = x
b = x - 1
return func1(a, b)

[2]: func2(1)

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In[2], line 1
----> 1 func2(1)

Cell In[1], line 8, in func2(x)
6 a = x
7 b = x - 1

(continues on next page)

38 Chapter 2. Workspace

https://ipython.readthedocs.io/en/latest/config/custommagics.html#defining-magics


Python for Data Science, Release 24.1.0

(continued from previous page)

----> 8 return func1(a, b)

Cell In[1], line 2, in func1(a, b)
1 def func1(a, b):

----> 2 return a / b

ZeroDivisionError: division by zero

Calling func2 leads to an error and the traceback shows exactly what happened: each line shows the context of each
step that ultimately led to the error. With the %xmode magic function (short for exception mode) we can control which
information should be displayed to us.

%xmode takes a single argument, the mode, and there are three options: * Plain * Context * Verbose

The default setting is Context and outputs something like the one above. Plain is more compact and provides less
information:

[3]: %xmode Plain
func2(1)

Exception reporting mode: Plain

Traceback (most recent call last):

Cell In[3], line 2
func2(1)

Cell In[1], line 8 in func2
return func1(a, b)

Cell In[1], line 2 in func1
return a / b

ZeroDivisionError: division by zero

The Verbose mode shows some additional information, including the arguments for any functions being called:

[4]: %xmode Verbose
func2(1)

Exception reporting mode: Verbose

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
Cell In[4], line 2

1 get_ipython().run_line_magic('xmode', 'Verbose')
----> 2 func2(1)

Cell In[1], line 8, in func2(x=1)
6 a = x
7 b = x - 1
a = 1

----> 8 return func1(a, b)
b = 0

Cell In[1], line 2, in func1(a=1, b=0)
(continues on next page)

2.1. IPython 39



Python for Data Science, Release 24.1.0

(continued from previous page)

1 def func1(a, b):
a = 1

----> 2 return a / b
b = 0

ZeroDivisionError: division by zero

This additional information can help narrow down the reason for the exception. Conversely, however, the Verbose
mode can lead to extremely long tracebacks in the case of complex code, in which the essential points can hardly be
recognized.

Debugging with %debug

Debugging can help if an error cannot be found by reading a traceback. The Python standard for interactive debugging
is the Python debugger pdb. You can use it to navigate your way through the code line by line to see what is possibly
causing an error. The extended version for IPython is ipdb.

In IPython, the %debug-magic command is perhaps the most convenient way to debug. If you call it after an exception
has been thrown, an interactive debug prompt will automatically open during the exception. Using the ipdb prompt,
you can examine the current status of the stack, examine the available variables and even run Python commands.

Let’s look at the last exception, then do some basic tasks:

[5]: %debug

> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21353/3792871231.
→˓py(2)func1()

1 def func1(a, b):
----> 2 return a / b

3
4
5 def func2(x):

ipdb> print(a)
1
ipdb> print(b)
0
ipdb> quit

However, the interactive debugger does a lot more – we can also go up and down the stack and examine the values of
variables:

[6]: %debug

> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/3792871231.
→˓py(2)func1()

1 def func1(a, b):
----> 2 return a / b

3
4
5 def func2(x):

ipdb> u
> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/3792871231.

(continues on next page)

40 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓py(8)func2()
4
5 def func2(x):
6 a = x
7 b = x - 1

----> 8 return func1(a, b)

ipdb> u
> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/1541833627.py(2)
→˓<module>()

1 get_ipython().run_line_magic('xmode', 'Verbose')
----> 2 func2(1)

ipdb> d
> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/3792871231.
→˓py(8)func2()

4
5 def func2(x):
6 a = x
7 b = x - 1

----> 8 return func1(a, b)

ipdb> print(x)
1
ipdb> list

3
4
5 def func2(x):
6 a = x
7 b = x - 1

----> 8 return func1(a, b)

ipdb> q

This greatly simplifies the search for the function calls that led to the error.

If you want the debugger to start automatically when an exception is thrown, you can use the %pdb-magic function to
enable this behavior:

[7]: %xmode Plain
%pdb on
func2(1)

Exception reporting mode: Plain
Automatic pdb calling has been turned ON

Traceback (most recent call last):

Cell In[7], line 3
func2(1)

Cell In[1], line 8 in func2
return func1(a, b)

Cell In[1], line 2 in func1
(continues on next page)

2.1. IPython 41



Python for Data Science, Release 24.1.0

(continued from previous page)
return a / b

ZeroDivisionError: division by zero

> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21437/3792871231.
→˓py(2)func1()

1 def func1(a, b):
----> 2 return a / b

3
4
5 def func2(x):

ipdb> p(b)
0
ipdb> q

If you have a script that you want to run in interactive mode from the start, you can do so with the command %run -d.

Essential commands of the ipdb

Command Description
list Show the current location in the file
h(elp) Display a list of commands or find help on a specific command
q(uit) Terminates the debugger and the program
c(ontinue) Exit the debugger, continue in the program
n(ext) Go to the next step in the program
<enter> Repeat the previous command
p(rint) Print variables
s(tep) Step into a subroutine
r(eturn) Return from a subroutine

Further information on the IPython debugger can be found at ipdb.

2.2 Jupyter

We have moved the Jupyter chapter to its own tutorial: Jupyter Tutorial.

2.3 NumPy

NumPy is the abbreviation for numeric Python. Many Python packages that provide scientific functions use NumPy’s
array objects as one of the standard interfaces for data exchange. In the following, I will give a brief overview of the
main functionality of NumPy:

• ndarray, an efficient multidimensional array that provides fast array-based operations, such as shuffling and
cleaning data, subgrouping and filtering, transformation and all other kinds of computations. There are also
flexible functions for broadcasting, i.e. evaluations of arrays of different sizes.

42 Chapter 2. Workspace

https://github.com/gotcha/ipdb
https://jupyter-tutorial.readthedocs.io/en/latest/index.html
https://numpy.org/


Python for Data Science, Release 24.1.0

• Mathematical functions for fast operations on whole arrays of data, such as sorting, uniqueness and set operations.
Instead of loops with if-elif-else branches, the expressions are written in conditional logic.

• Tools for reading and writing array data to disk and working with memory mapped files.

• Functions for linear algebra, random number generation and Fourier transform.

• A C API for connecting NumPy to libraries written in C, C++ or FORTRAN.

Note: This section introduces you to the basics of using NumPy arrays and should be sufficient to follow the rest of the
tutorial. For many data analytic applications, it is not necessary to have a deep understanding of NumPy, but mastering
array-oriented programming and thinking is an important step on the way to becoming a data scientist.

See also:
• Home

• Docs

• GitHub

• Tutorials

2.3.1 Introduction to NumPy

NumPy operations perform complex calculations on entire arrays without the need for Python for loops, which can be
slow for large sequences. NumPy’s speed is explained by its C-based algorithms, which avoid the overhead of Python
code. To give you an idea of the performance difference, we measure the difference between a NumPy array and a
Python list with a hundred thousand integers:

[1]: import numpy as np

[2]: myarray = np.arange(100000)
mylist = list(range(100000))

[3]: %time for _ in range(10): myarray2 = myarray ** 2

CPU times: user 2.67 ms, sys: 11.3 ms, total: 14 ms
Wall time: 1.49 ms

[4]: %time for _ in range(10): mylist2 = [x ** 2 for x in mylist]

CPU times: user 73.9 ms, sys: 320 ms, total: 394 ms
Wall time: 35.5 ms

2.3.2 ndarray – an N-dimensional array object

ndarray allows mathematical operations on whole blocks of data, using a similar syntax to similar operations between
scalar elements. In NumPy, there are many different types for describing scalars, mostly based on types from the C
language and those compatible with Python.

See also:
• Array Scalars

2.3. NumPy 43

https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://numpy.org/
https://numpy.org/doc/stable/
https://github.com/numpy/numpy
https://numpy.org/numpy-tutorials/
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://numpy.org/devdocs/reference/arrays.scalars.html


Python for Data Science, Release 24.1.0

Note:
Whenever this tutorial talks about array or ndarray, in most cases it refers to the ndarray object.

[1]: import numpy as np

[2]: py_list = [2020, 2021, 20222]
array_1d = np.array(py_list)

[3]: array_1d

[3]: array([ 2020, 2021, 20222])

Nested sequences, such as a list of lists of equal length, can be converted into a multidimensional array:

[4]: list_of_lists = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
array_2d = np.array(list_of_lists)

[5]: array_2d

[5]: array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])

Since list_of_lists was a list with three lists, the NumPy array array_2d has two dimensions whose shape is
derived from the data. With the attributes ndim and shape we can output the number of dimensions and the outline of
array_2d:

[6]: array_2d.ndim

[6]: 2

[7]: array_2d.shape

[7]: (3, 4)

To give you an idea of the syntax, I first create an array of random numbers with five columns and seven slices:

[8]: data = np.random.randn(7, 3)
data

[8]: array([[-1.48040214, 0.60483587, -0.2437932 ],
[-0.42025594, -1.75075057, 0.19677647],
[ 0.98816551, 0.35657111, -0.223424 ],
[ 1.10143461, 0.25189838, -1.11756074],
[ 0.57691653, 0.26666378, 0.68076501],
[ 1.40382396, -0.21795603, -0.20410514],
[ 0.64489473, 0.18392548, -0.01361532]])

ndarray is a generic multidimensional container. Each array has a shape, a tuple, which indicates the size of the
individual dimensions. With shape, I can output the number of rows and columns in an array:

In addition to np.array, there are a number of other functions for creating new arrays. zeros and ones, for example,
create arrays of zeros and ones, respectively, with a specific length or shape. empty creates an array without initialising
its values to a specific value. To create a higher dimensional array using these methods, pass a tuple for the shape:

44 Chapter 2. Workspace

https://numpy.org/devdocs/reference/generated/numpy.ndarray.ndim.html
https://numpy.org/devdocs/reference/generated/numpy.ndarray.shape.html
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
https://numpy.org/doc/stable/reference/generated/numpy.ones.html
https://numpy.org/doc/stable/reference/generated/numpy.empty.html


Python for Data Science, Release 24.1.0

[9]: np.zeros(4)

[9]: array([0., 0., 0., 0.])

[10]: np.ones((3,4))

[10]: array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

[11]: np.empty((2,3,4))

[11]: array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])

Note:
You may not safely assume that the np.empty function returns an array of zeros, as it returns uninitialised memory
and may therefore contain garbage values.

arange is an array-valued version of the Built-in Python range function:

[12]: np.arange(4)

[12]: array([0, 1, 2, 3])

Other NumPy standard functions for creating arrays are:

Function Description
array converts input data (list, tuple, array or other sequence types) into an ndarray by either deriving a

dtype or explicitly specifying a dtype; by default, copies the input data into the array
asarray converts the input to an ndarray, but does not copy if the input is already an ndarray
arange like Python built-in range, but returns an ndarray instead of a list
ones,
ones_like

ones creates an array of 1s in the given form and dtype; ones_like takes another array and creates
an ones array in the same form and dtype

zeros,
zeros_like

like ones and ones_like, but creates arrays with 0s instead

empty,
empty_like

creates new arrays by allocating new memory, but does not fill them with values like ones and zeros

full,
full_like

creates an array of the given shape and dtype, setting all values to the given fill value; full_like
takes another array and creates a filled array with the same shape and dtype

eye,
identity

creates a square N × N identity matrix (1s on the diagonal and 0s elsewhere)

2.3. NumPy 45

https://numpy.org/doc/stable/reference/generated/numpy.arange.html
https://docs.python.org/3/library/functions.html#func-range


Python for Data Science, Release 24.1.0

2.3.3 dtype

ndarray is a container for homogeneous data, i.e. all elements must be of the same type. Each array has a dtype, an
object that describes the data type of the array:

[1]: import numpy as np

data = np.random.randn(7, 3)
dt = data.dtype
dt

[1]: dtype('float64')

NumPy data types:

Type Type
code

Description

int8, uint8 i1, u1 Signed and unsigned 8-bit (1-byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-Bit (2 Byte) integer types
int32, uint32 i4, u4 Signed and unsigned 32-Bit (4 Byte) integer types
int64, uint64 i8, u8 Signed and unsigned 64-Bit (8 Byte) integer types
float16 f2 Standard floating point with half precision
float32 f4 or

f
Standard floating point with single precision; compatible with C float

float64 f8 or
d

Standard floating point with double precision; compatible with C double and
Python float object

complex64,
complex128,
complex256

c8,
c16,
c32

Complex numbers represented by two 32, 64 or 128 floating point numbers respec-
tively

bool ? Boolean type that stores the values True and False
object O Python object type; a value can be any Python object
string_ S ASCII string type with fixed length (1 byte per character); to create a string type

with length 7, for example, use S7; longer inputs are truncated without warning
unicode_ U Unicode type with fixed length where the number of bytes is platform-specific;

uses the same specification semantics as string_, e.g. U7

Determine the number of elements with itemsize:

[2]: dt.itemsize

[2]: 8

Determine the name of the data type:

[3]: dt.name

[3]: 'float64'

Check data type:

[4]: dt.type is np.float64

[4]: True

46 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Change data type with astype:

[5]: data_float32 = data.astype(np.float32)
data_float32

[5]: array([[ 0.12408408, 0.28413823, 1.6867595 ],
[-0.4144261 , -0.5990565 , 0.61371785],
[ 0.16093737, 0.12486719, -0.16383053],
[ 1.0395902 , -1.4354634 , 0.35893318],
[ 0.82148165, -2.134709 , 0.12962751],
[-1.0212289 , 0.72899795, -1.7471288 ],
[-1.8143699 , -1.0880227 , -1.1238078 ]], dtype=float32)

2.3.4 Arithmetic

Arrays allow you to perform stack operations on data without having to use for loops. This is called vectorisation in
NumPy. For all arithmetic operations between arrays of the same size, the operation is applied element by element:

[1]: import numpy as np

data = np.random.randn(7, 3)
data

[1]: array([[-0.52169857, -0.06638825, -1.70235417],
[ 0.3540172 , -1.30560063, -1.0368024 ],
[-0.4163764 , -1.24874081, -1.85063163],
[-0.63982944, -0.47325691, 1.42545299],
[ 1.11960638, 1.49821503, -0.11843174],
[-0.59220784, 0.63391355, 1.21890647],
[-0.57770878, 1.05719525, 2.54019148]])

[2]: 1 / data

[2]: array([[ -1.91681569, -15.06290747, -0.58742183],
[ 2.82472155, -0.765931 , -0.96450394],
[ -2.40167311, -0.8008067 , -0.54035605],
[ -1.56291653, -2.11301722, 0.70153138],
[ 0.89317104, 0.66746093, -8.44368223],
[ -1.68859637, 1.57750217, 0.82040749],
[ -1.73097595, 0.94589907, 0.39367111]])

[3]: data**2

[3]: array([[2.72169395e-01, 4.40739915e-03, 2.89800972e+00],
[1.25328175e-01, 1.70459301e+00, 1.07495921e+00],
[1.73369306e-01, 1.55935360e+00, 3.42483742e+00],
[4.09381707e-01, 2.23972103e-01, 2.03191622e+00],
[1.25351846e+00, 2.24464828e+00, 1.40260776e-02],
[3.50710120e-01, 4.01846387e-01, 1.48573298e+00],
[3.33747430e-01, 1.11766179e+00, 6.45257275e+00]])

Comparison of two arrays:

2.3. NumPy 47



Python for Data Science, Release 24.1.0

[4]: data2 = np.random.randn(7, 3)
data > data2

[4]: array([[False, False, False],
[False, False, False],
[False, False, False],
[ True, True, True],
[ True, True, False],
[False, True, True],
[False, True, True]])

2.3.5 Indexing and slicing

Indexing is the selection of a subset of your data or individual elements. This is very easy in one-dimensional arrays;
they behave similarly to Python lists:

[1]: import numpy as np

[2]: rng = np.random.default_rng()
data = rng.normal(size=(10, 3))
data

[2]: array([[-0.1781624 , -0.8381147 , 1.40248986],
[-1.48367758, 0.70035394, 0.60506565],
[ 2.24316514, 0.38021158, 0.95148769],
[-0.37414371, 1.03258406, -1.51360252],
[-1.6251526 , 0.34516475, 0.6205052 ],
[ 0.96867556, 0.13047506, -1.80399701],
[-0.20605706, -1.04783043, 0.69553167],
[ 1.14186171, -1.01894781, -1.44487713],
[ 0.29214215, 1.60380789, -1.82980606],
[-1.87650688, -0.5427789 , 1.6327612 ]])

[3]: data[4]

[3]: array([-1.6251526 , 0.34516475, 0.6205052 ])

[4]: data[2:4]

[4]: array([[ 2.24316514, 0.38021158, 0.95148769],
[-0.37414371, 1.03258406, -1.51360252]])

[5]: data[2:4] = rng.normal(size=(2, 3))

[6]: data

[6]: array([[-0.1781624 , -0.8381147 , 1.40248986],
[-1.48367758, 0.70035394, 0.60506565],
[-0.07210875, -0.4775101 , -1.09241001],
[ 2.45845089, -0.26972796, -2.0442523 ],
[-1.6251526 , 0.34516475, 0.6205052 ],
[ 0.96867556, 0.13047506, -1.80399701],

(continues on next page)

48 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

[-0.20605706, -1.04783043, 0.69553167],
[ 1.14186171, -1.01894781, -1.44487713],
[ 0.29214215, 1.60380789, -1.82980606],
[-1.87650688, -0.5427789 , 1.6327612 ]])

Note:
Array slices differ from Python lists in that they are views of the original array. This means that the data is not copied
and that any changes to the view are reflected in the original array.

If you want to make a copy of a part of an ndarray, you can copy the array explicitly – for example with data[2:5].
copy().

Slicing in this way always results in array views with the same number of dimensions. However, if you mix integer
indices and slices, you get slices with lower dimensions. For example, we can select the second row but only the first
two columns as follows:

[7]: data[1, :2]

[7]: array([-1.48367758, 0.70035394])

A colon means that the whole axis is taken, so you can also select higher dimensional axes:

[8]: data[:, :1]

[8]: array([[-0.1781624 ],
[-1.48367758],
[-0.07210875],
[ 2.45845089],
[-1.6251526 ],
[ 0.96867556],
[-0.20605706],
[ 1.14186171],
[ 0.29214215],
[-1.87650688]])

Boolean indexing

Let’s consider an example where we have some data in an array and an array of names with duplicates. I will use the
normal function in numpy.random.default_rng here to generate some random normally distributed data:

[9]: names = np.array(
[

"Liam",
"Olivia",
"Noah",
"Liam",
"Noah",
"Olivia",
"Liam",
"Emma",
"Oliver",
"Ava",

(continues on next page)

2.3. NumPy 49



Python for Data Science, Release 24.1.0

(continued from previous page)

]
)

[10]: names

[10]: array(['Liam', 'Olivia', 'Noah', 'Liam', 'Noah', 'Olivia', 'Liam', 'Emma',
'Oliver', 'Ava'], dtype='<U6')

[11]: data

[11]: array([[-0.1781624 , -0.8381147 , 1.40248986],
[-1.48367758, 0.70035394, 0.60506565],
[-0.07210875, -0.4775101 , -1.09241001],
[ 2.45845089, -0.26972796, -2.0442523 ],
[-1.6251526 , 0.34516475, 0.6205052 ],
[ 0.96867556, 0.13047506, -1.80399701],
[-0.20605706, -1.04783043, 0.69553167],
[ 1.14186171, -1.01894781, -1.44487713],
[ 0.29214215, 1.60380789, -1.82980606],
[-1.87650688, -0.5427789 , 1.6327612 ]])

Suppose each name corresponds to a row in the data array and we want to select all rows with the corresponding name
Liam. Like arithmetic operations, comparisons like == are vectorised with arrays. So comparing names with the string
Liam results in a Boolean array:

[12]: names == "Liam"

[12]: array([ True, False, False, True, False, False, True, False, False,
False])

This Boolean array can be passed when indexing the array:

[13]: data[names == "Liam"]

[13]: array([[-0.1781624 , -0.8381147 , 1.40248986],
[ 2.45845089, -0.26972796, -2.0442523 ],
[-0.20605706, -1.04783043, 0.69553167]])

Here, the Boolean array must have the same length as the array axis it indexes.

Note:
Selecting data from an array by Boolean indexing and assigning the result to a new variable always creates a copy of
the data, even if the returned array is unchanged.

In the following example, I select the rows where names == 'Liam' and also index the columns:

[14]: data[names == "Liam", 2:]

[14]: array([[ 1.40248986],
[-2.0442523 ],
[ 0.69553167]])

To select everything except Liam, you can either use != or negate the condition with ~:

[15]: names != "Liam"

50 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[15]: array([False, True, True, False, True, True, False, True, True,
True])

[16]: cond = names == "Liam"
data[~cond]

[16]: array([[-1.48367758, 0.70035394, 0.60506565],
[-0.07210875, -0.4775101 , -1.09241001],
[-1.6251526 , 0.34516475, 0.6205052 ],
[ 0.96867556, 0.13047506, -1.80399701],
[ 1.14186171, -1.01894781, -1.44487713],
[ 0.29214215, 1.60380789, -1.82980606],
[-1.87650688, -0.5427789 , 1.6327612 ]])

If you select two of the three names to combine several Boolean conditions, you can use the Boolean arithmetic operators
& (and) and | (or).

Warning:
The Python keywords and and or do not work with Boolean arrays.

[17]: mask = (names == "Liam") | (names == "Olivia")

[18]: mask

[18]: array([ True, True, False, True, False, True, True, False, False,
False])

[19]: data[mask]

[19]: array([[-0.1781624 , -0.8381147 , 1.40248986],
[-1.48367758, 0.70035394, 0.60506565],
[ 2.45845089, -0.26972796, -2.0442523 ],
[ 0.96867556, 0.13047506, -1.80399701],
[-0.20605706, -1.04783043, 0.69553167]])

Integer Array Indexing

Integer array indexing allows you to select any elements in the array based on your N-dimensional index. Each integer
array represents a number of indices in that dimension.

See also:
• Integer array indexing

2.3. NumPy 51

https://numpy.org/doc/stable/user/basics.indexing.html#integer-array-indexing


Python for Data Science, Release 24.1.0

2.3.6 Transpose arrays and swap axes

Transpose is a special form of reshaping that also provides a view of the underlying data without copying anything.
Arrays have the Transpose method and also the special T attribute:

[1]: import numpy as np

[2]: data = np.arange(16)

[3]: data

[3]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

[4]: reshaped_data = data.reshape((4, 4))

[5]: reshaped_data

[5]: array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])

[6]: reshaped_data.T

[6]: array([[ 0, 4, 8, 12],
[ 1, 5, 9, 13],
[ 2, 6, 10, 14],
[ 3, 7, 11, 15]])

numpy.dot returns the scalar product of two arrays, for example:

[7]: np.dot(reshaped_data.T, reshaped_data)

[7]: array([[224, 248, 272, 296],
[248, 276, 304, 332],
[272, 304, 336, 368],
[296, 332, 368, 404]])

The @ infix operator is another way to perform matrix multiplication. It implements the semantics of the @ operator
introduced in Python 3.5 with PEP 465 and is an abbreviation of np.matmul.

[8]: data.T @ data

[8]: 1240

For higher dimensional arrays, transpose accepts a tuple of axis numbers to swap the axes:

[9]: array_3d = np.arange(16).reshape((2, 2, 4))

[10]: array_3d

[10]: array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],

[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])

52 Chapter 2. Workspace

https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html
https://numpy.org/doc/stable/reference/generated/numpy.dot.html
https://www.python.org/dev/peps/pep-0465/
https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html


Python for Data Science, Release 24.1.0

[11]: array_3d.transpose((1, 0, 2))

[11]: array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],

[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])

Here the axes have been reordered with the second axis in first place, the first axis in second place and the last axis
unchanged.

ndarray also has a swapaxes method that takes a pair of axis numbers and swaps the specified axes to rearrange the
data:

[12]: array_3d.swapaxes(1, 2)

[12]: array([[[ 0, 4],
[ 1, 5],
[ 2, 6],
[ 3, 7]],

[[ 8, 12],
[ 9, 13],
[10, 14],
[11, 15]]])

2.3.7 Universal functions (ufunc)

A universal function, or ufunc, is a function that performs element-wise operations on data in ndarrays. They can
be thought of as fast vectorised wrappers for simple functions that take one or more scalar values and produce one or
more scalar results.

Many ufuncs are simple element-wise transformations, such as sqrt or exp:

[1]: import numpy as np

data = np.arange(10)

[2]: data

[2]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

[3]: np.sqrt(data)

[3]: array([0. , 1. , 1.41421356, 1.73205081, 2. ,
2.23606798, 2.44948974, 2.64575131, 2.82842712, 3. ])

[4]: np.exp(data)

[4]: array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,
2.98095799e+03, 8.10308393e+03])

2.3. NumPy 53

https://numpy.org/doc/stable/reference/generated/numpy.swapaxes.html
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
https://numpy.org/doc/stable/reference/generated/numpy.exp.html


Python for Data Science, Release 24.1.0

These are called single-digit ufuncs. Others, such as add or maximum, take two arrays (i.e. binary ufuncs) and return
a single array as the result:

[5]: x = np.random.randn(8)

[6]: y = np.random.randn(8)

[7]: x

[7]: array([-1.23545026, -2.97614783, 1.81553171, 1.01874633, 0.08063104,
-0.4605132 , 2.26014706, 1.88403856])

[8]: y

[8]: array([ 0.70506547, -0.64166724, 2.10440297, 0.09330584, -1.47706135,
-0.99220346, 0.54688573, 0.06453598])

[9]: np.maximum(x, y)

[9]: array([ 0.70506547, -0.64166724, 2.10440297, 1.01874633, 0.08063104,
-0.4605132 , 2.26014706, 1.88403856])

Here numpy.maximum calculated the element-wise maximum of the elements in x and y.

Some ufunc, such as modf, a vectorised version of the built-in Python divmod, return multiple arrays: the fractional
and integral parts of a floating-point array:

[10]: data = x * 5

[11]: data

[11]: array([ -6.1772513 , -14.88073913, 9.07765855, 5.09373163,
0.40315522, -2.30256598, 11.3007353 , 9.42019279])

[12]: remainder, whole_part = np.modf(x)

[13]: remainder

[13]: array([-0.23545026, -0.97614783, 0.81553171, 0.01874633, 0.08063104,
-0.4605132 , 0.26014706, 0.88403856])

[14]: whole_part

[14]: array([-1., -2., 1., 1., 0., -0., 2., 1.])

Ufuncs accept an optional out argument that allows you to transfer your results to an existing array instead of creating
a new one:

[15]: out = np.zeros_like(data)

[16]: np.add(data, 1)

[16]: array([ -5.1772513 , -13.88073913, 10.07765855, 6.09373163,
1.40315522, -1.30256598, 12.3007353 , 10.42019279])

54 Chapter 2. Workspace

https://numpy.org/doc/stable/reference/generated/numpy.add.html
https://numpy.org/doc/stable/reference/generated/numpy.maximum.html
https://numpy.org/doc/stable/reference/generated/numpy.modf.html
https://docs.python.org/3/library/functions.html#divmod


Python for Data Science, Release 24.1.0

[17]: np.add(data, 1, out=out)

[17]: array([ -5.1772513 , -13.88073913, 10.07765855, 6.09373163,
1.40315522, -1.30256598, 12.3007353 , 10.42019279])

[18]: out

[18]: array([ -5.1772513 , -13.88073913, 10.07765855, 6.09373163,
1.40315522, -1.30256598, 12.3007353 , 10.42019279])

Some single-digit ufuncs:

Function Description
abs, fabs calculates the absolute value element by element for integer, floating point

or complex values
sqrt calculates the square root of each element (corresponds to data ** 0,5)
square calculates the square of each element (corresponds to data ** 2)
exp calculates the exponent ex of each element
log, log10, log2, log1p Natural logarithm (base e), log base 10, log base 2 and log(1 + x) respec-

tively
sign calculates the sign of each element: 1 (positive), 0 (zero), or -1 (negative)
ceil calculates the upper limit of each element (i.e. the smallest integer greater

than or equal to this number)
floor calculates the lower limit of each element (i.e. the largest integer less than

or equal to each element)
rint rounds elements to the nearest integer, preserving the dtype
modf returns the fractional and integer parts of the array as separate arrays
isnan returns a boolean array indicating whether each value is NaN (Not a Num-

ber)
isfinite, isinf returns a boolean array indicating whether each element is finite (not-inf,

not-NaN) or infinite, respectively
cos, cosh, sin, sinh, tan, tanh regular and hyperbolic trigonometric functions
arccos, arccosh, arcsin, arcsinh,
arctan, arctanh

Inverse trigonometric functions

logical_not calculates the truth value of not x element by element (corresponds to
~data)

Some binary universal functions:

2.3. NumPy 55



Python for Data Science, Release 24.1.0

Function Description
add add corresponding elements in arrays
subtract subtracts elements in the second array from the first array
multiply multiply array elements
divide, floor_divide divide or truncate the remainder
power increases elements in the first array to the powers specified in the second

array
maximum, fmax element-wise maximum; fmax ignores NaN
minimum, fmin element-wise minimum; fmin ignores NaN
mod element-wise modulus (remainder of the division)
copysign copies the sign of the values in the second argument to the values in the

first argument
greater, greater_equal, less,
less_equal, equal, not_equal

perform element-wise comparisons that result in a Boolean array (cor-
responds to the infix operators >, >=, <, <=, ==, !=)

logical_and calculates the element-wise truth value of the logical operation AND
(&)

logical_or calculates the element-wise truth value of the logical operation OR (|)
logical_xor calculates the element-wise truth value of the logical operation XOR (^)

Note:
A complete overview of binary universal functions can be found in Universal functions (ufunc).

2.3.8 Array-oriented programming – vectorisation

Using NumPy arrays allows you to express many types of data processing tasks as concise array expressions that would
otherwise require writing for-loops. This practice of replacing loops with array expressions is also called vectorisation.
In general, vectorised array operations are significantly faster than their pure Python equivalents.

[1]: import numpy as np

First we create a NumPy array with one hundred thousand integers:

[2]: myarray = np.arange(100000)

Then we square all the elements in this array with numpy.square:

[3]: %time np.square(myarray)

CPU times: user 559 µs, sys: 2.55 ms, total: 3.11 ms
Wall time: 269 µs

[3]: array([ 0, 1, 4, ..., 9999400009, 9999600004,
9999800001])

For comparison, we now measure the time of Python’s quadratic function:

[4]: %time for _ in range(10): myarray2 = myarray ** 2

CPU times: user 807 µs, sys: 4.07 ms, total: 4.87 ms
Wall time: 440 µs

And finally, we compare the time with the calculation of the quadratic function of all values of a Python list:

56 Chapter 2. Workspace

https://numpy.org/doc/stable/reference/ufuncs.html
https://numpy.org/doc/stable/reference/generated/numpy.square.html


Python for Data Science, Release 24.1.0

[5]: mylist = list(range(100000))
%time for _ in range(10): mylist2 = [x ** 2 for x in mylist]

CPU times: user 115 ms, sys: 390 ms, total: 505 ms
Wall time: 46.7 ms

2.3.9 Conditional logic as array operations – where

The numpy.where function is a vectorised version of if and else.

In the following example, we first create a Boolean array and two arrays with values:

[1]: import numpy as np

[2]: cond = ([False, True, False, True, False, False, False])
data1 = np.random.randn(1, 7)
data2 = np.random.randn(1, 7)

Now we want to take the values from data1 if the corresponding value in cond is True and otherwise take the value
from data2. With Python’s if-else, this could look like this:

[3]: result = [(x if c else y) for x, y, c in zip(data1, data2, cond)]

result

[3]: [array([ 0.0753595 , 0.70598847, 1.36375888, 0.52613878, 1.58394917,
-0.67041886, -1.30890145])]

However, this has the following two problems:

• with large arrays the function will not be very fast

• this will not work with multidimensional arrays

With np.where you can work around these problems in a single function call:

[4]: result = np.where(cond, data1, data2)

result

[4]: array([[ 0.0753595 , -0.97727968, 1.36375888, 1.5042741 , 1.58394917,
-0.67041886, -1.30890145]])

The second and third arguments of np.where do not have to be arrays; one or both can also be scalars. A typical
use of where in data analysis is to create a new array of values based on another array. Suppose you have a matrix of
randomly generated data and you want to make all the negative values positive values:

[5]: data = np.random.randn(4, 4)

data

[5]: array([[-2.13569944, 0.21406577, -0.44948598, 0.07841356],
[ 0.94045485, -0.47748714, -0.70057099, -1.92553004],
[-1.65814642, 0.44475682, -1.16289192, 0.96023582],
[ 0.45396769, 0.64944133, -0.08936879, -1.20179191]])

2.3. NumPy 57

https://numpy.org/doc/stable/reference/generated/numpy.where.html


Python for Data Science, Release 24.1.0

[6]: data < 0

[6]: array([[ True, False, True, False],
[False, True, True, True],
[ True, False, True, False],
[False, False, True, True]])

[7]: np.where(data < 0, data * -1, data)

[7]: array([[2.13569944, 0.21406577, 0.44948598, 0.07841356],
[0.94045485, 0.47748714, 0.70057099, 1.92553004],
[1.65814642, 0.44475682, 1.16289192, 0.96023582],
[0.45396769, 0.64944133, 0.08936879, 1.20179191]])

2.3.10 Mathematical and statistical methods

A number of mathematical functions that calculate statistics over an entire array or over the data along an axis are
accessible as methods of the array class. So you can use aggregations such as sum, mean and standard deviation by
either calling the array instance method or using the top-level NumPy function.

Below I generate some random data and calculate some aggregated statistics:

[1]: import numpy as np

data = np.random.randn(7, 3)

data

[1]: array([[ 0.52892401, -0.82705139, -0.13426779],
[-0.43476595, 0.15431376, -0.15927356],
[ 0.5437757 , -0.27273503, -0.74511308],
[ 0.41921053, 0.78804831, -1.39898524],
[-0.08745354, 0.24346498, 0.5995653 ],
[ 2.18987033, 0.07709088, 0.81486999],
[ 0.42570339, 1.23702332, 1.12807273]])

[2]: data.mean()

[2]: 0.24239465071821545

[3]: np.mean(data)

[3]: 0.24239465071821545

[4]: data.sum()

[4]: 5.090287665082524

Functions like mean and sum require an optional axis argument that calculates the statistic over the specified axis,
resulting in an array with one less dimension:

[5]: data.mean(axis=0)

58 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[5]: array([0.51218064, 0.20002212, 0.01498119])

[6]: data.sum(axis=0)

[6]: array([3.58526448, 1.40015484, 0.10486835])

With data.mean(0), which is the same as data.mean(axis=0), the mean is calculated over the rows, while data.
sum(0) calculates the sum over the rows.

Other methods like cumsum and cumprod, however, do not aggregate but create a new array with the intermediate
results.

In multidimensional arrays, accumulation functions such as cumsum and cumprod return an array of the same size but
with the partial aggregates calculated along the specified axis:

[7]: data.cumsum()

[7]: array([ 0.52892401, -0.29812737, -0.43239516, -0.86716111, -0.71284735,
-0.87212091, -0.32834522, -0.60108025, -1.34619332, -0.92698279,
-0.13893449, -1.53791972, -1.62537326, -1.38190829, -0.78234299,
1.40752735, 1.48461823, 2.29948822, 2.72519162, 3.96221494,
5.09028767])

[8]: data.cumprod()

[8]: array([ 5.28924012e-01, -4.37447338e-01, 5.87350864e-02, -2.55360156e-02,
-3.94055863e-03, 6.27626816e-04, 3.41288209e-04, -9.30812494e-05,
6.93560562e-05, 2.90747892e-05, 2.29123384e-05, -3.20540232e-05,
2.80323775e-06, 6.82490215e-07, 4.09197451e-07, 8.96089358e-07,
6.90803200e-08, 5.62914796e-08, 2.39634740e-08, 2.96433762e-08,
3.34398842e-08])

Basic statistical methods for arrays are:

Method Description
sum Sum of all elements in the array or along an axis.
mean Arithmetic mean; for arrays with length zero, NaN is returned.
std, var Standard deviation and variance respectively
min, max Minimum and maximum
argmin, argmax Indices of the minimum and maximum elements respectively
cumsum Cumulative sum of the elements, starting with 0
cumprod Cumulative product of the elements, starting with 1

2.3.11 Methods for Boolean arrays

Boolean values have been converted to 1 (True) and 0 (False) in the previous methods. Therefore, sum is often used
to count the True values in a Boolean array:

[1]: import numpy as np

[2]: data = np.random.randn(7, 3)

Number of positive values:

2.3. NumPy 59



Python for Data Science, Release 24.1.0

[3]: (data > 0).sum()

[3]: 12

Number of negative values:

[4]: (data < 0).sum()

[4]: 9

There are two additional methods, any and all, which are particularly useful for Boolean arrays:

• any checks whether one or more values in an array are true

• all checks whether each value is true

[5]: data2 = np.random.randn(7, 3)

bools = data > data2

bools

[5]: array([[ True, True, True],
[ True, True, False],
[ True, False, False],
[ True, False, True],
[ True, True, False],
[False, False, True],
[False, False, False]])

[6]: bools.any()

[6]: True

[7]: bools.all()

[7]: False

2.3.12 Sort

As in Python’s list, NumPy arrays can be sorted in-place using the numpy.sort method. You can sort any one-
dimensional section of values in a multidimensional array in place along an axis by passing the axis number to sort:

[1]: import numpy as np

data = np.random.randn(7, 3)

data

[1]: array([[-0.50687148, -0.92123541, -1.33470444],
[-0.47316782, -0.05354427, 0.3144167 ],
[-0.51270165, -1.30401598, -0.9362869 ],
[-0.19429791, 1.12032183, 0.19184738],
[ 0.07609175, 1.75052865, -1.27389361],

(continues on next page)

60 Chapter 2. Workspace

https://numpy.org/doc/stable/reference/generated/numpy.sort.html


Python for Data Science, Release 24.1.0

(continued from previous page)

[ 1.03374626, -0.29737004, 0.0944219 ],
[ 0.82837672, -0.29511481, -0.25849806]])

[2]: data.sort(0)

data

[2]: array([[-0.51270165, -1.30401598, -1.33470444],
[-0.50687148, -0.92123541, -1.27389361],
[-0.47316782, -0.29737004, -0.9362869 ],
[-0.19429791, -0.29511481, -0.25849806],
[ 0.07609175, -0.05354427, 0.0944219 ],
[ 0.82837672, 1.12032183, 0.19184738],
[ 1.03374626, 1.75052865, 0.3144167 ]])

np.sort, on the other hand, returns a sorted copy of an array instead of changing the array in place:

[3]: np.sort(data, axis=1)

[3]: array([[-1.33470444, -1.30401598, -0.51270165],
[-1.27389361, -0.92123541, -0.50687148],
[-0.9362869 , -0.47316782, -0.29737004],
[-0.29511481, -0.25849806, -0.19429791],
[-0.05354427, 0.07609175, 0.0944219 ],
[ 0.19184738, 0.82837672, 1.12032183],
[ 0.3144167 , 1.03374626, 1.75052865]])

[4]: data

[4]: array([[-0.51270165, -1.30401598, -1.33470444],
[-0.50687148, -0.92123541, -1.27389361],
[-0.47316782, -0.29737004, -0.9362869 ],
[-0.19429791, -0.29511481, -0.25849806],
[ 0.07609175, -0.05354427, 0.0944219 ],
[ 0.82837672, 1.12032183, 0.19184738],
[ 1.03374626, 1.75052865, 0.3144167 ]])

2.3.13 unique and other set logic

NumPy has some basic set operations for one-dimensional ndarray. A commonly used one is numpy.unique, which
returns the sorted unique values in an array:

[1]: import numpy as np

names = np.array(
[

"Liam",
"Olivia",
"Noah",
"Liam",
"Noah",

(continues on next page)

2.3. NumPy 61

https://numpy.org/doc/stable/reference/generated/numpy.unique.html


Python for Data Science, Release 24.1.0

(continued from previous page)

"Olivia",
"Liam",
"Emma",
"Oliver",
"Ava",

]
)

[2]: np.unique(names)

[2]: array(['Ava', 'Emma', 'Liam', 'Noah', 'Oliver', 'Olivia'], dtype='<U6')

With numpy.in1d you can check the membership of the values in a one-dimensional array to another array and a boolean
array is returned:

[3]: np.in1d(names, ["Emma", "Ava", "Charlotte"])

[3]: array([False, False, False, False, False, False, False, True, False,
True])

Array set operations:

Method Description
unique(x) calculates the sorted, unique elements in x
intersect1d(x, y) calculates the sorted common elements x and y
union1d(x, y) calculates the sorted union of elements
in1d(x, y) computes a boolean array indicating whether each element of x is contained in y
setdiff1d(x, y) sets the difference of the elements in x that are not contained in y
setxor1d(x, y) sets symmetric differences; elements contained in one of the arrays but not in both

2.3.14 File input and output with arrays

NumPy is able to store data in some text or binary formats on disk and load it from there. However, in this section I
only discuss NumPy’s own binary format, as mostly pandas or other tools are used to load text or table data (see Read,
persist and provide data.

np.save and np.load are the two most important functions for efficiently saving and loading array data to disk. Arrays
are saved by default in an uncompressed raw binary format with the file extension .npy:

[1]: import numpy as np

data = np.random.randn(7, 3)

np.save("my_data", data)

If the file path does not already end in .npy, the extension is appended. The array on the hard disk can then be loaded
with np.load:

[2]: np.load("my_data.npy")

62 Chapter 2. Workspace

https://numpy.org/doc/stable/reference/generated/numpy.in1d.html


Python for Data Science, Release 24.1.0

[2]: array([[ 1.71143962, 1.06249012, 0.40089528],
[-1.93836029, 0.60398033, -0.6708609 ],
[ 0.24042536, -0.86181626, 0.33594052],
[-1.41716277, 2.11203343, -0.09469748],
[-0.36027506, 0.53376748, 1.302226 ],
[ 0.24560584, 1.29705793, 0.49696571],
[ 0.04375581, 0.88412494, -2.22439157]])

You can save multiple arrays in an uncompressed archive by using np.savez and passing the arrays as keyword argu-
ments:

[3]: np.savez("data_archive.npz", a=data, b=np.square(data))

[4]: archive = np.load("data_archive.npz")

archive["b"]

[4]: array([[2.92902558e+00, 1.12888526e+00, 1.60717029e-01],
[3.75724062e+00, 3.64792237e-01, 4.50054349e-01],
[5.78043555e-02, 7.42727271e-01, 1.12856032e-01],
[2.00835032e+00, 4.46068522e+00, 8.96761189e-03],
[1.29798116e-01, 2.84907727e-01, 1.69579255e+00],
[6.03222306e-02, 1.68235927e+00, 2.46974919e-01],
[1.91457098e-03, 7.81676918e-01, 4.94791787e+00]])

2.4 pandas

pandas is a Python library for data analysis that has become very popular in recent years. On the website, pandas is
described thus:

„pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built
on top of the Python programming language.“

More specifically, pandas is an in-memory analysis tool that offers SQL-like constructs, as well as statistical and ana-
lytical tools. In doing so, pandas builds on Cython and NumPy, making it less memory intensive and faster than pure
Python code. Mostly pandas is used to

• replace Excel and Power BI

• implement an ETL process

• process CSV or JSON data

• prepare machine learning

See also:
• Home

• User guide

• API reference

• GitHub

2.4. pandas 63

https://pandas.pydata.org/
https://powerbi.microsoft.com/en-us/
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://pandas.pydata.org/
https://pandas.pydata.org/docs/user_guide/index.html
https://pandas.pydata.org/docs/reference/index.html
https://github.com/pandas-dev/pandas/


Python for Data Science, Release 24.1.0

2.4.1 Introduction to the data structures of pandas

To get started with pandas, you should first familiarise yourself with the two most important data structures Series and
DataFrame.

Series

A series is a one-dimensional array-like object containing a sequence of values (of similar types to the NumPy types)
and an associated array of data labels called an index. The simplest series is formed from just an array of data:

[1]: import numpy as np
import pandas as pd

[2]: rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))
s

[2]: 0 0.415497
1 3.102087
2 -0.332863
3 -0.135429
4 0.471112
5 0.173483
6 -0.487151
dtype: float64

The string representation of an interactively displayed series shows the index on the left and the values on the right.
Since we have not specified an index for the data, a default index is created consisting of the integers 0 to N - 1
(where N is the length of the data). You can get the array representation and the index object of the series via their
pandas.Series.array and pandas.Series.index attributes respectively:

[3]: s.array

[3]: <PandasArray>
[ 0.4154969051865909, 3.102087203833539, -0.3328632996406089,
-0.13542859429409687, 0.4711123318607415, 0.1734826179409076,
-0.48715121240065956]
Length: 7, dtype: float64

[4]: s.index

[4]: RangeIndex(start=0, stop=7, step=1)

Often you will want to create an index that identifies each data point with a label:

[5]: idx = pd.date_range("2022-01-31", periods=7)

s2 = pd.Series(rng.normal(size=7), index=idx)

[6]: s2

[6]: 2022-01-31 0.434474
2022-02-01 -1.696645
2022-02-02 -1.180240

(continues on next page)

64 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.Series.array.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.index.html


Python for Data Science, Release 24.1.0

(continued from previous page)

2022-02-03 -0.205702
2022-02-04 -0.426140
2022-02-05 -0.123695
2022-02-06 1.071786
Freq: D, dtype: float64

See also:
• Time series / date functionality

Compared to NumPy arrays, you can use labels in the index if you want to select individual values or a group of values:

[7]: s2["2022-02-02"]

[7]: -1.1802398819304771

[8]: s2[["2022-02-02", "2022-02-03", "2022-02-04"]]

[8]: 2022-02-02 -1.180240
2022-02-03 -0.205702
2022-02-04 -0.426140
dtype: float64

Here ['2022-02-02', '2022-02-03', '2022-02-04'] is interpreted as a list of indices, even if it contains strings
instead of integers.

When using NumPy functions or NumPy-like operations, such as filtering with a Boolean array, scalar multiplication
or applying mathematical functions, the link between index and value is preserved:

[9]: s2[s2 > 0]

[9]: 2022-01-31 0.434474
2022-02-06 1.071786
dtype: float64

[10]: s2**2

[10]: 2022-01-31 0.188768
2022-02-01 2.878604
2022-02-02 1.392966
2022-02-03 0.042313
2022-02-04 0.181595
2022-02-05 0.015301
2022-02-06 1.148725
Freq: D, dtype: float64

[11]: np.exp(s2)

[11]: 2022-01-31 1.544151
2022-02-01 0.183297
2022-02-02 0.307205
2022-02-03 0.814076
2022-02-04 0.653025
2022-02-05 0.883649
2022-02-06 2.920591
Freq: D, dtype: float64

2.4. pandas 65

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html


Python for Data Science, Release 24.1.0

You can also think of a series as a fixed-length ordered dict, since it is an assignment of index values to data values. It
can be used in many contexts where you could use a dict:

[12]: "2022-02-02" in s2

[12]: True

[13]: "2022-02-09" in s2

[13]: False

Missing data

I will use NA and null synonymously to indicate missing data. The functions isna and notna in pandas should be
used to identify missing data:

[14]: pd.isna(s2)

[14]: 2022-01-31 False
2022-02-01 False
2022-02-02 False
2022-02-03 False
2022-02-04 False
2022-02-05 False
2022-02-06 False
Freq: D, dtype: bool

[15]: pd.notna(s2)

[15]: 2022-01-31 True
2022-02-01 True
2022-02-02 True
2022-02-03 True
2022-02-04 True
2022-02-05 True
2022-02-06 True
Freq: D, dtype: bool

Series also has these as instance methods:

[16]: s2.isna()

[16]: 2022-01-31 False
2022-02-01 False
2022-02-02 False
2022-02-03 False
2022-02-04 False
2022-02-05 False
2022-02-06 False
Freq: D, dtype: bool

Dealing with missing data is discussed in more detail in the section Managing missing data with pandas.

A useful feature of Series for many applications is the automatic alignment by index labels in arithmetic operations:

66 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[17]: idx = pd.date_range("2022-02-01", periods=7)

s3 = pd.Series(rng.normal(size=7), index=idx)

[18]: s2, s3

[18]: (2022-01-31 0.434474
2022-02-01 -1.696645
2022-02-02 -1.180240
2022-02-03 -0.205702
2022-02-04 -0.426140
2022-02-05 -0.123695
2022-02-06 1.071786
Freq: D, dtype: float64,
2022-02-01 -0.105019
2022-02-02 0.156524
2022-02-03 0.191187
2022-02-04 0.002915
2022-02-05 0.274354
2022-02-06 -0.991969
2022-02-07 -0.087003
Freq: D, dtype: float64)

[19]: s2 + s3

[19]: 2022-01-31 NaN
2022-02-01 -1.801664
2022-02-02 -1.023716
2022-02-03 -0.014515
2022-02-04 -0.423225
2022-02-05 0.150659
2022-02-06 0.079817
2022-02-07 NaN
Freq: D, dtype: float64

If you have experience with SQL, this is similar to a JOIN operation.

Both the Series object itself and its index have a name attribute that can be integrated into other areas of the pandas
functionality:

[20]: s3.name = "floats"
s3.index.name = "date"

s3

[20]: date
2022-02-01 -0.105019
2022-02-02 0.156524
2022-02-03 0.191187
2022-02-04 0.002915
2022-02-05 0.274354
2022-02-06 -0.991969
2022-02-07 -0.087003
Freq: D, Name: floats, dtype: float64

2.4. pandas 67

https://en.wikipedia.org/wiki/Join_(SQL)


Python for Data Science, Release 24.1.0

DataFrame

A DataFrame represents a rectangular data table and contains an ordered, named collection of columns, each of which
can have a different value type. The DataFrame has both a row index and a column index.

Note:
Although a DataFrame is two-dimensional, you can also use it to represent higher-dimensional data in a table format
with hierarchical indexing using join, combine and Reshaping.

[21]: data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],

}

df = pd.DataFrame(data)

df

[21]: Code Decimal Octal Key
0 U+0000 0 001 NUL
1 U+0001 1 002 Ctrl-A
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E

For large DataFrames, the head method selects only the first five rows:

[22]: df.head()

[22]: Code Decimal Octal Key
0 U+0000 0 001 NUL
1 U+0001 1 002 Ctrl-A
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D

You can also specify columns and their order:

[23]: pd.DataFrame(data, columns=["Code", "Key"])

[23]: Code Key
0 U+0000 NUL
1 U+0001 Ctrl-A
2 U+0002 Ctrl-B
3 U+0003 Ctrl-C
4 U+0004 Ctrl-D
5 U+0005 Ctrl-E

If you want to pass a column that is not contained in the dict, it will appear without values in the result:

[24]: df2 = pd.DataFrame(
data, columns=["Code", "Decimal", "Octal", "Description", "Key"]

(continues on next page)

68 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.combine.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html


Python for Data Science, Release 24.1.0

(continued from previous page)

)

df2

[24]: Code Decimal Octal Description Key
0 U+0000 0 001 NaN NUL
1 U+0001 1 002 NaN Ctrl-A
2 U+0002 2 003 NaN Ctrl-B
3 U+0003 3 004 NaN Ctrl-C
4 U+0004 4 004 NaN Ctrl-D
5 U+0005 5 005 NaN Ctrl-E

You can retrieve a column in a DataFrame with a dict-like notation:

[25]: df["Code"]

[25]: 0 U+0000
1 U+0001
2 U+0002
3 U+0003
4 U+0004
5 U+0005
Name: Code, dtype: object

This way you can also make a column the index:

[26]: df2 = pd.DataFrame(
data, columns=["Decimal", "Octal", "Description", "Key"], index=df["Code"]

)

df2

[26]: Decimal Octal Description Key
Code
U+0000 0 001 NaN NUL
U+0001 1 002 NaN Ctrl-A
U+0002 2 003 NaN Ctrl-B
U+0003 3 004 NaN Ctrl-C
U+0004 4 004 NaN Ctrl-D
U+0005 5 005 NaN Ctrl-E

Rows can be retrieved by position or name with the pandas.DataFrame.loc attribute:

[27]: df2.loc["U+0001"]

[27]: Decimal 1
Octal 002
Description NaN
Key Ctrl-A
Name: U+0001, dtype: object

Column values can be changed by assignment. For example, a scalar value or an array of values could be assigned to
the empty Description column:

2.4. pandas 69

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html


Python for Data Science, Release 24.1.0

[28]: df2["Description"] = [
"Null character",
"Start of Heading",
"Start of Text",
"End-of-text character",
"End-of-transmission character",
"Enquiry character",

]

df2

[28]: Decimal Octal Description Key
Code
U+0000 0 001 Null character NUL
U+0001 1 002 Start of Heading Ctrl-A
U+0002 2 003 Start of Text Ctrl-B
U+0003 3 004 End-of-text character Ctrl-C
U+0004 4 004 End-of-transmission character Ctrl-D
U+0005 5 005 Enquiry character Ctrl-E

Assigning a non-existing column creates a new column.

Columns can be removed with pandas.DataFrame.drop and displayed with pandas.DataFrame.columns:

[29]: df3 = df2.drop(columns=["Decimal", "Octal"])

[30]: df2.columns

[30]: Index(['Decimal', 'Octal', 'Description', 'Key'], dtype='object')

[31]: df3.columns

[31]: Index(['Description', 'Key'], dtype='object')

Another common form of data is nested dict of dicts:

[32]: u = {
"U+0006": {

"Decimal": "6",
"Octal": "006",
"Description": "Acknowledge character",
"Key": "Ctrl-F",

},
"U+0007": {

"Decimal": "7",
"Octal": "007",
"Description": "Bell character",
"Key": "Ctrl-G",

},
}

df4 = pd.DataFrame(u)

df4

70 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html


Python for Data Science, Release 24.1.0

[32]: U+0006 U+0007
Decimal 6 7
Octal 006 007
Description Acknowledge character Bell character
Key Ctrl-F Ctrl-G

You can transpose the DataFrame, i.e. swap the rows and columns, with a similar syntax to a NumPy array:

[33]: df4.T

[33]: Decimal Octal Description Key
U+0006 6 006 Acknowledge character Ctrl-F
U+0007 7 007 Bell character Ctrl-G

Warning:
Note that when transposing, the data types of the columns are discarded if the columns do not all have the same data
type, so when transposing and then transposing back, the previous type information may be lost. In this case, the
columns become arrays of pure Python objects.

The keys in the inner dicts are combined to form the index in the result. This is not the case when an explicit index is
specified:

[34]: df5 = pd.DataFrame(u, index=["Decimal", "Octal", "Key"])
df5

[34]: U+0006 U+0007
Decimal 6 7
Octal 006 007
Key Ctrl-F Ctrl-G

2.4.2 Converting Python data structures into pandas

Python data structures such as lists and arrays can be converted into pandas Series or DataFrames.

[1]: import numpy as np
import pandas as pd

Series

Python lists can easily be converted into pandas Series:

[2]: list1 = [-0.751442, 0.816935, -0.272546, -0.268295, -0.296728, 0.176255, -0.322612]

pd.Series(list1)

[2]: 0 -0.751442
1 0.816935
2 -0.272546
3 -0.268295
4 -0.296728
5 0.176255
6 -0.322612
dtype: float64

2.4. pandas 71

https://docs.python.org/3/tutorial/introduction.html#lists


Python for Data Science, Release 24.1.0

Multiple lists can also be easily converted into one pandas Series:

[3]: list2 = [-0.029608, -0.277982, 2.693057, -0.850817, 0.783868, -1.137835, -0.617132]

pd.Series(list1 + list2)

[3]: 0 -0.751442
1 0.816935
2 -0.272546
3 -0.268295
4 -0.296728
5 0.176255
6 -0.322612
7 -0.029608
8 -0.277982
9 2.693057
10 -0.850817
11 0.783868
12 -1.137835
13 -0.617132
dtype: float64

A list can also be passed as an index:

[4]: date = [
"2022-01-31",
"2022-02-01",
"2022-02-02",
"2022-02-03",
"2022-02-04",
"2022-02-05",
"2022-02-06",

]

pd.Series(list1, index=date)

[4]: 2022-01-31 -0.751442
2022-02-01 0.816935
2022-02-02 -0.272546
2022-02-03 -0.268295
2022-02-04 -0.296728
2022-02-05 0.176255
2022-02-06 -0.322612
dtype: float64

With Python dictionaries you can pass not only values but also the corresponding keys to a pandas series:

[5]: dict1 = {
"2022-01-31": -0.751442,
"2022-02-01": 0.816935,
"2022-02-02": -0.272546,
"2022-02-03": -0.268295,
"2022-02-04": -0.296728,
"2022-02-05": 0.176255,
"2022-02-06": -0.322612,

(continues on next page)

72 Chapter 2. Workspace

https://docs.python.org/3/tutorial/datastructures.html#dictionaries


Python for Data Science, Release 24.1.0

(continued from previous page)

}

pd.Series(dict1)

[5]: 2022-01-31 -0.751442
2022-02-01 0.816935
2022-02-02 -0.272546
2022-02-03 -0.268295
2022-02-04 -0.296728
2022-02-05 0.176255
2022-02-06 -0.322612
dtype: float64

When you pass a dict, the index in the resulting pandas series takes into account the order of the keys in the dict.

With collections.ChainMap you can also turn several dicts into one pandas.Series.

First we define a second dict:

[6]: dict2 = {
"2022-02-07": -0.029608,
"2022-02-08": -0.277982,
"2022-02-09": 2.693057,
"2022-02-10": -0.850817,
"2022-02-11": 0.783868,
"2022-02-12": -1.137835,
"2022-02-13": -0.617132,

}

[7]: from collections import ChainMap

pd.Series(ChainMap(dict1, dict2))

[7]: 2022-02-07 -0.029608
2022-02-08 -0.277982
2022-02-09 2.693057
2022-02-10 -0.850817
2022-02-11 0.783868
2022-02-12 -1.137835
2022-02-13 -0.617132
2022-01-31 -0.751442
2022-02-01 0.816935
2022-02-02 -0.272546
2022-02-03 -0.268295
2022-02-04 -0.296728
2022-02-05 0.176255
2022-02-06 -0.322612
dtype: float64

2.4. pandas 73

https://docs.python.org/3/library/collections.html#collections.ChainMap


Python for Data Science, Release 24.1.0

DataFrame

Lists of lists can be loaded into a pandas DataFrame with:

[8]: df = pd.DataFrame([list1, list2])
df

[8]: 0 1 2 3 4 5 6
0 -0.751442 0.816935 -0.272546 -0.268295 -0.296728 0.176255 -0.322612
1 -0.029608 -0.277982 2.693057 -0.850817 0.783868 -1.137835 -0.617132

You can also transfer a list into a DataFrame index:

[9]: pd.DataFrame([list1, list2], index=["2022-01-31", "2022-02-01"])

[9]: 0 1 2 3 4 5 \
2022-01-31 -0.751442 0.816935 -0.272546 -0.268295 -0.296728 0.176255
2022-02-01 -0.029608 -0.277982 2.693057 -0.850817 0.783868 -1.137835

6
2022-01-31 -0.322612
2022-02-01 -0.617132

A pandas DataFrame can be created from a dict with values in lists:

[10]: data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],

}

[11]: pd.DataFrame(data)

[11]: Code Decimal Octal Key
0 U+0000 0 001 NUL
1 U+0001 1 002 Ctrl-A
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E

Another common form of data is nested dict of dicts:

[12]: data2 = {
"U+0006": {"Decimal": "6", "Octal": "006", "Key": "Ctrl-F"},
"U+0007": {"Decimal": "7", "Octal": "007", "Key": "Ctrl-G"},

}

df2 = pd.DataFrame(data2)

df2

[12]: U+0006 U+0007
Decimal 6 7

(continues on next page)

74 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

Octal 006 007
Key Ctrl-F Ctrl-G

Dicts of Series are treated in a similar way:

[13]: data3 = {"U+0006": df2["U+0006"][2:], "U+0007": df2["U+0007"][2:]}

pd.DataFrame(data3)

[13]: U+0006 U+0007
Key Ctrl-F Ctrl-G

2.4.3 Indexing

Index objects

The index objects of pandas are responsible for the axis labels and other metadata, such as the axis name. Any array
or other sequence of labels you use when constructing a series or DataFrame is internally converted into an index:

[1]: import pandas as pd

obj = pd.Series(range(7), index=pd.date_range("2022-02-02", periods=7))

[2]: obj.index

[2]: DatetimeIndex(['2022-02-02', '2022-02-03', '2022-02-04', '2022-02-05',
'2022-02-06', '2022-02-07', '2022-02-08'],

dtype='datetime64[ns]', freq='D')

[3]: obj.index[3:]

[3]: DatetimeIndex(['2022-02-05', '2022-02-06', '2022-02-07', '2022-02-08'], dtype=
→˓'datetime64[ns]', freq='D')

Index objects are immutable and therefore cannot be changed by the user:

[4]: obj.index[1] = "2022-02-03"

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[4], line 1
----> 1 obj.index[1] = "2022-02-03"

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
→˓core/indexes/base.py:5157, in Index.__setitem__(self, key, value)
5155 @final
5156 def __setitem__(self, key, value):

-> 5157 raise TypeError("Index does not support mutable operations")

TypeError: Index does not support mutable operations

Immutability makes the sharing of index objects in data structures more secure:

2.4. pandas 75



Python for Data Science, Release 24.1.0

[5]: import numpy as np

labels = pd.Index(np.arange(3))

labels

[5]: Index([0, 1, 2], dtype='int64')

[6]: rng = np.random.default_rng()
obj2 = pd.Series(rng.normal(size=3),index=labels)

[7]: obj2

[7]: 0 0.515353
1 1.153708
2 -1.776476
dtype: float64

[8]: obj2.index is labels

[8]: True

To be similar to an array, an index also behaves like a fixed-size set:

[9]: data1 = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],

}
df1 = pd.DataFrame(data1)

[10]: df1

[10]: Code Decimal Octal
0 U+0000 0 001
1 U+0001 1 002
2 U+0002 2 003
3 U+0003 3 004
4 U+0004 4 004
5 U+0005 5 005

[11]: df1.columns

[11]: Index(['Code', 'Decimal', 'Octal'], dtype='object')

[12]: "Code" in df1.columns

[12]: True

[13]: "Key" in df1.columns

[13]: False

76 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Axis indices with double labels

Unlike Python sets, a pandas index can contain duplicate labels:

[14]: data2 = {
"Code": ["U+0006", "U+0007"],
"Decimal": [6, 7],
"Octal": ["006", "007"],

}
df2 = pd.DataFrame(data2)
df12 = pd.concat([df1, df2])

df12

[14]: Code Decimal Octal
0 U+0000 0 001
1 U+0001 1 002
2 U+0002 2 003
3 U+0003 3 004
4 U+0004 4 004
5 U+0005 5 005
0 U+0006 6 006
1 U+0007 7 007

When selecting duplicate labels, all occurrences of the label in question are selected:

[15]: df12.loc[1]

[15]: Code Decimal Octal
1 U+0001 1 002
1 U+0007 7 007

[16]: df12.loc[2]

[16]: Code U+0002
Decimal 2
Octal 003
Name: 2, dtype: object

Data selection is one of the main points that behaves differently with duplicates. Indexing a label with multiple entries
results in a series, while single entries result in a scalar value. This can complicate your code because the output type
of indexing can vary depending on whether a label is repeated or not. In addition, many pandas functions, such as
reindex, require labels to be unique. You can use the is_unique property of the index to determine whether its
labels are unique or not:

[17]: df12.index.is_unique

[17]: False

To avoid duplicate labels, you can use ignore_index=True, for example:

[18]: df12 = pd.concat([df1, df2], ignore_index=True)

df12

2.4. pandas 77



Python for Data Science, Release 24.1.0

[18]: Code Decimal Octal
0 U+0000 0 001
1 U+0001 1 002
2 U+0002 2 003
3 U+0003 3 004
4 U+0004 4 004
5 U+0005 5 005
6 U+0006 6 006
7 U+0007 7 007

Some index methods and properties

Each index has a number of set logic methods and properties that answer other general questions about the data it
contains. The following are some useful methods and properties:

Method Description
concat concatenates additional index objects, creating a new index
Index.difference calculates the difference of two sets as an index
Index.intersection calculates the intersection
Index.union calculates the union set
Index.isin computes a boolean array indicating whether each value is contained in the passed

collection
Index.delete computes a new index by deleting the element in index i
Index.drop computes a new index by deleting the passed values
Index.insert insert computes new index by inserting the element in index i
In-
dex.is_monotonic_increasing

is_monotonic returns True if each element is greater than or equal to the previous
element

Index.is_unique is_unique returns True if the index does not contain duplicate values
Index.unique calculates the array of unique values in the index

Re-indexing with Index.reindex

An important method for Pandas objects is Index.reindex, which can be used to create a new object with rearranged
values that match the new index. Consider, for example:

[19]: obj = pd.Series(range(7), index=pd.date_range("2022-02-02", periods=7))

[20]: obj

[20]: 2022-02-02 0
2022-02-03 1
2022-02-04 2
2022-02-05 3
2022-02-06 4
2022-02-07 5
2022-02-08 6
Freq: D, dtype: int64

[21]: new_index = pd.date_range("2022-02-03", periods=7)

78 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.difference.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.intersection.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.union.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.isin.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.delete.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.drop.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.insert.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.is_monotonic_increasing.html#pandas.Index.is_monotonic_increasing
https://pandas.pydata.org/docs/reference/api/pandas.Index.is_monotonic_increasing.html#pandas.Index.is_monotonic_increasing
https://pandas.pydata.org/docs/reference/api/pandas.Index.is_unique.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.unique.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.reindex.html


Python for Data Science, Release 24.1.0

[22]: obj.reindex(new_index)

[22]: 2022-02-03 1.0
2022-02-04 2.0
2022-02-05 3.0
2022-02-06 4.0
2022-02-07 5.0
2022-02-08 6.0
2022-02-09 NaN
Freq: D, dtype: float64

Index.reindex creates a new index and re-indexes the DataFrame. By default, values in the new index for which
there are no corresponding records in the DataFrame become NaN.

For ordered data such as time series, it may be desirable to interpolate or fill values during reindexing. The method
option allows this with a method like ffill that fills the values forward:

[23]: obj.reindex(new_index, method="ffill")

[23]: 2022-02-03 1
2022-02-04 2
2022-02-05 3
2022-02-06 4
2022-02-07 5
2022-02-08 6
2022-02-09 6
Freq: D, dtype: int64

For a DataFrame, reindex can change either the (row) index, the columns or both. If only a sequence is passed, the
rows in the result are re-indexed:

[24]: df1.reindex(range(7))

[24]: Code Decimal Octal
0 U+0000 0.0 001
1 U+0001 1.0 002
2 U+0002 2.0 003
3 U+0003 3.0 004
4 U+0004 4.0 004
5 U+0005 5.0 005
6 NaN NaN NaN

The columns can be re-indexed with the keyword columns:

[25]: encoding = ["Octal", "Code", "Description"]

df1.reindex(columns=encoding)

[25]: Octal Code Description
0 001 U+0000 NaN
1 002 U+0001 NaN
2 003 U+0002 NaN
3 004 U+0003 NaN
4 004 U+0004 NaN
5 005 U+0005 NaN

2.4. pandas 79



Python for Data Science, Release 24.1.0

Arguments of the function Index.reindex

Argu-
ment

Description

labels New sequence to be used as index. Can be an index instance or another sequence-like Python data struc-
ture. An index is used exactly as it is, without being copied.

axis The new axis to index, either index (rows) or columns. The default is index. You can alternatively use
reindex(index=new_labels) or reindex(columns=new_labels).

method Interpolation method; ffill fills forwards, while bfill fills backwards.
fill_valueSubstitute value to be used when missing data is inserted by re-indexing. Uses fill_value='missing'

(the default behaviour) if the missing labels in the result are to have zero values.
limit When filling forward or backward, the maximum number of elements to fill.
toleranceWhen filling forward or backward, the maximum size of the gap to be filled for inexact matches.
level Match single index at MultiIndex level; otherwise select subset.
copy If True, the underlying data is always copied, even if the new index matches the old index; if False, the

data is not copied if the indices are equivalent.

Rename axis indices

The axis labels can be converted by a function or mapping to create new, differently labelled objects. You can also
change the axes in place without creating a new data structure. Here is a simple example:

[26]: df3 = pd.DataFrame(
np.arange(12).reshape((3, 4)),
index=["Deutsch", "English", "Français"],
columns=[1, 2, 3, 4],

)

df3

[26]: 1 2 3 4
Deutsch 0 1 2 3
English 4 5 6 7
Français 8 9 10 11

Rename axis indices with Index.map

The axis labels can be converted by a function or Index.map to create new, differently labeled objects. You can also
change the axes in place without creating a new data structure. Here is a simple example:

[27]: transform = lambda x: x[:2].upper()

df3.index.map(transform)

[27]: Index(['DE', 'EN', 'FR'], dtype='object')

You can assign the index and change the DataFrame on the spot:

[28]: df3.index = df3.index.map(transform)

df3

80 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.Index.map.html


Python for Data Science, Release 24.1.0

[28]: 1 2 3 4
DE 0 1 2 3
EN 4 5 6 7
FR 8 9 10 11

Rename axis indices with Index.rename

If you want to create a converted version of your dataset without changing the original, you can use Index.rename:

[29]: df3.rename(index=str.lower)

[29]: 1 2 3 4
de 0 1 2 3
en 4 5 6 7
fr 8 9 10 11

In particular, Index.rename can be used in conjunction with a dict-like object that provides new values for a subset
of the axis labels:

[30]: df3.rename(
index={"DE": "BE", "EN": "DE", "FR": "EN"},
columns={1: 0, 2: 1, 3: 2, 4: 3},
inplace=True,

)

df3

[30]: 0 1 2 3
BE 0 1 2 3
DE 4 5 6 7
EN 8 9 10 11

Index.rename saves you from manually copying the DataFrame and assigning its index and column attributes. If you
want to change a data set on the spot, also pass inplace=True:

[31]: df3.rename(
index={"DE": "BE", "EN": "DE", "FR": "EN"},
columns={1: 0, 2: 1, 3: 2, 4: 3},
inplace=True,

)

df3

[31]: 0 0 1 2
BE 0 1 2 3
BE 4 5 6 7
DE 8 9 10 11

2.4. pandas 81

https://pandas.pydata.org/docs/reference/api/pandas.Index.rename.html


Python for Data Science, Release 24.1.0

Hierarchical Indexing

Hierarchical indexing is an important feature of pandas that allows you to have multiple index levels on one axis. This
gives you the opportunity to work with higher dimensional data in a lower dimensional form.

Let’s start with a simple example: Let’s create a series of lists as an index:

[32]: hits = pd.Series(
[83080, 20336, 11376, 1228, 468],
index=[

[
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
"Python Basics",
"Python Basics",

],
["de", "en", "de", "de", "en"],

],
)

hits

[32]: Jupyter Tutorial de 83080
en 20336

PyViz Tutorial de 11376
Python Basics de 1228

en 468
dtype: int64

What you see is a graphical view of a series with a pandas.MultiIndex. The gaps in the index display mean that the
label above it is to be used.

[33]: hits.index

[33]: MultiIndex([('Jupyter Tutorial', 'de'),
('Jupyter Tutorial', 'en'),
( 'PyViz Tutorial', 'de'),
( 'Python Basics', 'de'),
( 'Python Basics', 'en')],
)

With a hierarchically indexed object, so-called partial indexing is possible, with which you can select subsets of the
data:

[34]: hits["Jupyter Tutorial"]

[34]: de 83080
en 20336
dtype: int64

[35]: hits["Jupyter Tutorial":"Python Basics"]

[35]: Jupyter Tutorial de 83080
en 20336

PyViz Tutorial de 11376
(continues on next page)

82 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.html


Python for Data Science, Release 24.1.0

(continued from previous page)

Python Basics de 1228
en 468

dtype: int64

[36]: hits.loc[["Jupyter Tutorial", "Python Basics"]]

[36]: Jupyter Tutorial de 83080
en 20336

Python Basics de 1228
en 468

dtype: int64

The selection is even possible from an inner level. In the following I select all values with the value 1 from the second
index level:

[37]: hits.loc[:, "de"]

[37]: Jupyter Tutorial 83080
PyViz Tutorial 11376
Python Basics 1228
dtype: int64

View vs. copy

In Pandas, whether you get a view or not depends on the structure and data types of the original DataFrame – and
whether changes made to a view are propagated back to the original DataFrame.

stack and unstack

Hierarchical indexing plays an important role in data reshaping and group-based operations such as forming a pivot
table. For example, you can reorder this data into a DataFrame using the pandas.Series.unstack method:

[38]: hits.unstack()

[38]: de en
Jupyter Tutorial 83080.0 20336.0
PyViz Tutorial 11376.0 NaN
Python Basics 1228.0 468.0

The reverse operation of unstack is stack:

[39]: hits.unstack().stack()

[39]: Jupyter Tutorial de 83080.0
en 20336.0

PyViz Tutorial de 11376.0
Python Basics de 1228.0

en 468.0
dtype: float64

In a DataFrame, each axis can have a hierarchical index:

2.4. pandas 83

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.unstack.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.stack.html


Python for Data Science, Release 24.1.0

[40]: version_hits = [
[19651, 0, 30134, 0, 33295, 0],
[4722, 1825, 3497, 2576, 4009, 3707],
[2573, 0, 4873, 0, 3930, 0],
[525, 0, 427, 0, 276, 0],
[157, 0, 85, 0, 226, 0],

]

df = pd.DataFrame(
version_hits,
index=[

[
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
"Python Basics",
"Python Basics",

],
["de", "en", "de", "de", "en"],

],
columns=[

["12/2021", "12/2021", "01/2022", "01/2022", "02/2022", "02/2022"],
["latest", "stable", "latest", "stable", "latest", "stable"],

],
)

df

[40]: 12/2021 01/2022 02/2022
latest stable latest stable latest stable

Jupyter Tutorial de 19651 0 30134 0 33295 0
en 4722 1825 3497 2576 4009 3707

PyViz Tutorial de 2573 0 4873 0 3930 0
Python Basics de 525 0 427 0 276 0

en 157 0 85 0 226 0

The hierarchy levels can have names (as strings or any Python objects). If this is the case, they are displayed in the
console output:

[41]: df.index.names = ["Title", "Language"]
df.columns.names = ["Month", "Version"]

df

[41]: Month 12/2021 01/2022 02/2022
Version latest stable latest stable latest stable
Title Language
Jupyter Tutorial de 19651 0 30134 0 33295 0

en 4722 1825 3497 2576 4009 3707
PyViz Tutorial de 2573 0 4873 0 3930 0
Python Basics de 525 0 427 0 276 0

en 157 0 85 0 226 0

Warning:

84 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Make sure that the index names Month and Version are not part of the row names (of the df.index values).

With the partial column indexing you can select column groups in a similar way:

[42]: df["12/2021"]

[42]: Version latest stable
Title Language
Jupyter Tutorial de 19651 0

en 4722 1825
PyViz Tutorial de 2573 0
Python Basics de 525 0

en 157 0

With MultiIndex.from_arrays, a MultiIndex can be created itself and then reused; the columns in the preceding
DataFrame with level names could be created in this way:

[43]: pd.MultiIndex.from_arrays(
[

[
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
"Python Basics",
"Python Basics",

],
["de", "en", "de", "de", "en"],

],
names=["Title", "Language"],

)

[43]: MultiIndex([('Jupyter Tutorial', 'de'),
('Jupyter Tutorial', 'en'),
( 'PyViz Tutorial', 'de'),
( 'Python Basics', 'de'),
( 'Python Basics', 'en')],
names=['Title', 'Language'])

Rearranging and Sorting Levels

There may be times when you want to rearrange the order of the levels on an axis or sort the data by the values in
a particular level. The function DataFrame.swaplevel takes two level numbers or names and returns a new object in
which the levels are swapped (but the data remains unchanged):

[44]: df.swaplevel("Language", "Title")

[44]: Month 12/2021 01/2022 02/2022
Version latest stable latest stable latest stable
Language Title
de Jupyter Tutorial 19651 0 30134 0 33295 0
en Jupyter Tutorial 4722 1825 3497 2576 4009 3707
de PyViz Tutorial 2573 0 4873 0 3930 0

Python Basics 525 0 427 0 276 0
en Python Basics 157 0 85 0 226 0

2.4. pandas 85

https://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.from_arrays.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.swaplevel.html


Python for Data Science, Release 24.1.0

DataFrame.sort_index, on the other hand, sorts the data only by the values in a single level. When swapping levels, it
is not uncommon to also use sort_index so that the result is lexicographically sorted by the specified level:

[45]: df.sort_index(level=0)

[45]: Month 12/2021 01/2022 02/2022
Version latest stable latest stable latest stable
Title Language
Jupyter Tutorial de 19651 0 30134 0 33295 0

en 4722 1825 3497 2576 4009 3707
PyViz Tutorial de 2573 0 4873 0 3930 0
Python Basics de 525 0 427 0 276 0

en 157 0 85 0 226 0

However, the PyViz Tutorial will now be sorted before the Python Basics, as all upper case letters appear before lower
case letters in this sorting. To avoid this, you can use the following lambda function:

[46]: df.sort_index(level=0, key=lambda x: x.str.lower())

[46]: Month 12/2021 01/2022 02/2022
Version latest stable latest stable latest stable
Title Language
Jupyter Tutorial de 19651 0 30134 0 33295 0

en 4722 1825 3497 2576 4009 3707
Python Basics de 525 0 427 0 276 0

en 157 0 85 0 226 0
PyViz Tutorial de 2573 0 4873 0 3930 0

[47]: df.swaplevel(0, 1).sort_index(level=0)

[47]: Month 12/2021 01/2022 02/2022
Version latest stable latest stable latest stable
Language Title
de Jupyter Tutorial 19651 0 30134 0 33295 0

PyViz Tutorial 2573 0 4873 0 3930 0
Python Basics 525 0 427 0 276 0

en Jupyter Tutorial 4722 1825 3497 2576 4009 3707
Python Basics 157 0 85 0 226 0

Note:
Data selection performance is much better for hierarchically indexed objects if the index is sorted lexicographically,
starting with the outermost level, i.e. the result of calling sort_index(level=0) or sort_index().

Summary statistics by level

Many descriptive and summary statistics for DataFrame and Series have a level option that allows you to specify the
level by which you can aggregate on a particular axis. Consider the DataFrame above; we can aggregate either the
rows or the columns by level as follows:

[48]: df.groupby(level="Language").sum()

[48]: Month 12/2021 01/2022 02/2022
Version latest stable latest stable latest stable
Language

(continues on next page)

86 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html


Python for Data Science, Release 24.1.0

(continued from previous page)

de 22749 0 35434 0 37501 0
en 4879 1825 3582 2576 4235 3707

[49]: df.groupby(level="Month", axis=1).sum()

[49]: Month 01/2022 02/2022 12/2021
Title Language
Jupyter Tutorial de 30134 33295 19651

en 6073 7716 6547
PyViz Tutorial de 4873 3930 2573
Python Basics de 427 276 525

en 85 226 157

Internally, pandas’ DataFrame.groupby machinery is used for this purpose, which is explained in more detail in Group
Operations.

Indexing with the columns of a DataFrame

It is not uncommon to use one or more columns of a DataFrame as a row index; alternatively, you can move the row
index into the columns of the DataFrame. Here is an example DataFrame:

[50]: data = [
["Jupyter Tutorial", "de", 19651, 0, 30134, 0, 33295, 0],
["Jupyter Tutorial", "en", 4722, 1825, 3497, 2576, 4009, 3707],
["PyViz Tutorial", "de", 2573, 0, 4873, 0, 3930, 0],
["Python Basics", "de", 525, 0, 427, 0, 276, 0],
["Python Basics", "en", 157, 0, 85, 0, 226, 0],

]

df = pd.DataFrame(data)

df

[50]: 0 1 2 3 4 5 6 7
0 Jupyter Tutorial de 19651 0 30134 0 33295 0
1 Jupyter Tutorial en 4722 1825 3497 2576 4009 3707
2 PyViz Tutorial de 2573 0 4873 0 3930 0
3 Python Basics de 525 0 427 0 276 0
4 Python Basics en 157 0 85 0 226 0

The function pandas.DataFrame.set_index creates a new DataFrame that uses one or more of its columns as an index:

[51]: df2 = df.set_index([0, 1])

df2

[51]: 2 3 4 5 6 7
0 1
Jupyter Tutorial de 19651 0 30134 0 33295 0

en 4722 1825 3497 2576 4009 3707
PyViz Tutorial de 2573 0 4873 0 3930 0
Python Basics de 525 0 427 0 276 0

en 157 0 85 0 226 0

2.4. pandas 87

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.set_index.html


Python for Data Science, Release 24.1.0

By default, the columns are removed from the DataFrame, but you can also leave them in by passing drop=False to
set_index:

[52]: df.set_index([0, 1], drop=False)

[52]: 0 1 2 3 4 5 6 \
0 1
Jupyter Tutorial de Jupyter Tutorial de 19651 0 30134 0 33295

en Jupyter Tutorial en 4722 1825 3497 2576 4009
PyViz Tutorial de PyViz Tutorial de 2573 0 4873 0 3930
Python Basics de Python Basics de 525 0 427 0 276

en Python Basics en 157 0 85 0 226

7
0 1
Jupyter Tutorial de 0

en 3707
PyViz Tutorial de 0
Python Basics de 0

en 0

DataFrame.reset_index, on the other hand, does the opposite of set_index; the hierarchical index levels are moved into
the columns:

[53]: df2.reset_index()

[53]: 0 1 2 3 4 5 6 7
0 Jupyter Tutorial de 19651 0 30134 0 33295 0
1 Jupyter Tutorial en 4722 1825 3497 2576 4009 3707
2 PyViz Tutorial de 2573 0 4873 0 3930 0
3 Python Basics de 525 0 427 0 276 0
4 Python Basics en 157 0 85 0 226 0

2.4.4 Date and Time

With pandas you can create Series with date and time information. In the following we will show common operations
with date data.

Note:
pandas supports dates stored in UTC values using the datetime64[ns] datatype. Local times from a single time zone
are also supported. Multiple time zones are supported by a pandas.Timestamp object. If you need to handle times from
multiple time zones, I would probably split the data by time zone and use a separate DataFrame or Series for each time
zone.

See also:
• Time series / date functionality

88 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reset_index.html
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html


Python for Data Science, Release 24.1.0

Loading UTC time data

[1]: import pandas as pd

dt = pd.date_range("2022-03-27", periods=6, freq="H")

dt

[1]: DatetimeIndex(['2022-03-27 00:00:00', '2022-03-27 01:00:00',
'2022-03-27 02:00:00', '2022-03-27 03:00:00',
'2022-03-27 04:00:00', '2022-03-27 05:00:00'],

dtype='datetime64[ns]', freq='H')

[2]: utc = pd.to_datetime(dt, utc=True)

utc

[2]: DatetimeIndex(['2022-03-27 00:00:00+00:00', '2022-03-27 01:00:00+00:00',
'2022-03-27 02:00:00+00:00', '2022-03-27 03:00:00+00:00',
'2022-03-27 04:00:00+00:00', '2022-03-27 05:00:00+00:00'],

dtype='datetime64[ns, UTC]', freq='H')

Note:
The type of the result dtype='datetime64[ns, UTC]' indicates that the data is stored as UTC.

Let’s convert this series to the time zone Europe/Berlin:

[3]: utc.tz_convert("Europe/Berlin")

[3]: DatetimeIndex(['2022-03-27 01:00:00+01:00', '2022-03-27 03:00:00+02:00',
'2022-03-27 04:00:00+02:00', '2022-03-27 05:00:00+02:00',
'2022-03-27 06:00:00+02:00', '2022-03-27 07:00:00+02:00'],

dtype='datetime64[ns, Europe/Berlin]', freq='H')

Conversion of local time to UTC

[4]: local = utc.tz_convert("Europe/Berlin")

local.tz_convert("UTC")

[4]: DatetimeIndex(['2022-03-27 00:00:00+00:00', '2022-03-27 01:00:00+00:00',
'2022-03-27 02:00:00+00:00', '2022-03-27 03:00:00+00:00',
'2022-03-27 04:00:00+00:00', '2022-03-27 05:00:00+00:00'],

dtype='datetime64[ns, UTC]', freq='H')

2.4. pandas 89



Python for Data Science, Release 24.1.0

Conversion to Unix time

If you have a Series with UTC or local time information, you can use this code to determine the seconds according
to Unix time:

[5]: uts = pd.to_datetime(dt).view(int) / 10**9

uts

[5]: array([1.6483392e+09, 1.6483428e+09, 1.6483464e+09, 1.6483500e+09,
1.6483536e+09, 1.6483572e+09])

To load the Unix time in UTC, you can proceed as follows:

[6]: (pd.to_datetime(uts, unit="s").tz_localize("UTC"))

[6]: DatetimeIndex(['2022-03-27 00:00:00+00:00', '2022-03-27 01:00:00+00:00',
'2022-03-27 02:00:00+00:00', '2022-03-27 03:00:00+00:00',
'2022-03-27 04:00:00+00:00', '2022-03-27 05:00:00+00:00'],

dtype='datetime64[ns, UTC]', freq=None)

Manipulation of dates

Convert to strings

With pandas.DatetimeIndex you have some possibilities to convert date and time into strings, for example into the name
of the weekday:

[7]: local.day_name(locale="en_GB.UTF-8")

[7]: Index(['Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday'], dtype='object')

You can find out which locale is available to you with locale -a:

[8]: !locale -a

en_NZ
nl_NL.UTF-8
pt_BR.UTF-8
fr_CH.ISO8859-15
eu_ES.ISO8859-15
en_US.US-ASCII
af_ZA
bg_BG
cs_CZ.UTF-8
fi_FI
zh_CN.UTF-8
eu_ES
sk_SK.ISO8859-2
nl_BE
fr_BE
sk_SK
en_US.UTF-8
en_NZ.ISO8859-1

(continues on next page)

90 Chapter 2. Workspace

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html


Python for Data Science, Release 24.1.0

(continued from previous page)

de_CH
sk_SK.UTF-8
de_DE.UTF-8
am_ET.UTF-8
zh_HK
be_BY.UTF-8
uk_UA
pt_PT.ISO8859-1
en_AU.US-ASCII
kk_KZ.PT154
en_US
nl_BE.ISO8859-15
de_AT.ISO8859-1
hr_HR.ISO8859-2
fr_FR.ISO8859-1
af_ZA.UTF-8
am_ET
fi_FI.ISO8859-1
ro_RO.UTF-8
af_ZA.ISO8859-15
en_NZ.UTF-8
fi_FI.UTF-8
hr_HR.UTF-8
da_DK.UTF-8
ca_ES.ISO8859-1
en_AU.ISO8859-15
ro_RO.ISO8859-2
de_AT.UTF-8
pt_PT.ISO8859-15
sv_SE
fr_CA.ISO8859-1
fr_BE.ISO8859-1
en_US.ISO8859-15
it_CH.ISO8859-1
en_NZ.ISO8859-15
en_AU.UTF-8
de_AT.ISO8859-15
af_ZA.ISO8859-1
hu_HU.UTF-8
et_EE.UTF-8
he_IL.UTF-8
uk_UA.KOI8-U
be_BY
kk_KZ
hu_HU.ISO8859-2
it_CH
pt_BR
ko_KR
it_IT
fr_BE.UTF-8
ru_RU.ISO8859-5
zh_TW

(continues on next page)

2.4. pandas 91



Python for Data Science, Release 24.1.0

(continued from previous page)

zh_CN.GB2312
no_NO.ISO8859-15
de_DE.ISO8859-15
en_CA
fr_CH.UTF-8
sl_SI.UTF-8
uk_UA.ISO8859-5
pt_PT
hr_HR
cs_CZ
fr_CH
he_IL
zh_CN.GBK
zh_CN.GB18030
fr_CA
pl_PL.UTF-8
ja_JP.SJIS
sr_YU.ISO8859-5
be_BY.CP1251
sr_YU.ISO8859-2
sv_SE.UTF-8
sr_YU.UTF-8
de_CH.UTF-8
sl_SI
pt_PT.UTF-8
ro_RO
en_NZ.US-ASCII
ja_JP
zh_CN
fr_CH.ISO8859-1
ko_KR.eucKR
be_BY.ISO8859-5
nl_NL.ISO8859-15
en_GB.ISO8859-1
en_CA.US-ASCII
is_IS.ISO8859-1
ru_RU.CP866
nl_NL
fr_CA.ISO8859-15
sv_SE.ISO8859-15
hy_AM
en_CA.ISO8859-15
en_US.ISO8859-1
zh_TW.Big5
ca_ES.UTF-8
ru_RU.CP1251
en_GB.UTF-8
en_GB.US-ASCII
ru_RU.UTF-8
eu_ES.UTF-8
es_ES.ISO8859-1
hu_HU

(continues on next page)

92 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

el_GR.ISO8859-7
en_AU
it_CH.UTF-8
en_GB
sl_SI.ISO8859-2
ru_RU.KOI8-R
nl_BE.UTF-8
et_EE
fr_FR.ISO8859-15
cs_CZ.ISO8859-2
lt_LT.UTF-8
pl_PL.ISO8859-2
fr_BE.ISO8859-15
is_IS.UTF-8
tr_TR.ISO8859-9
da_DK.ISO8859-1
lt_LT.ISO8859-4
lt_LT.ISO8859-13
zh_TW.UTF-8
bg_BG.CP1251
el_GR.UTF-8
be_BY.CP1131
da_DK.ISO8859-15
is_IS.ISO8859-15
no_NO.ISO8859-1
nl_NL.ISO8859-1
nl_BE.ISO8859-1
sv_SE.ISO8859-1
pt_BR.ISO8859-1
zh_CN.eucCN
it_IT.UTF-8
en_CA.UTF-8
uk_UA.UTF-8
de_CH.ISO8859-15
de_DE.ISO8859-1
ca_ES
sr_YU
hy_AM.ARMSCII-8
ru_RU
zh_HK.UTF-8
eu_ES.ISO8859-1
is_IS
bg_BG.UTF-8
ja_JP.UTF-8
it_CH.ISO8859-15
fr_FR.UTF-8
ko_KR.UTF-8
et_EE.ISO8859-15
kk_KZ.UTF-8
ca_ES.ISO8859-15
en_IE.UTF-8
es_ES

(continues on next page)

2.4. pandas 93



Python for Data Science, Release 24.1.0

(continued from previous page)

de_CH.ISO8859-1
en_CA.ISO8859-1
es_ES.ISO8859-15
en_AU.ISO8859-1
el_GR
da_DK
no_NO
it_IT.ISO8859-1
en_IE
zh_HK.Big5HKSCS
hi_IN.ISCII-DEV
ja_JP.eucJP
it_IT.ISO8859-15
pl_PL
ko_KR.CP949
fr_CA.UTF-8
fi_FI.ISO8859-15
en_GB.ISO8859-15
fr_FR
hy_AM.UTF-8
no_NO.UTF-8
es_ES.UTF-8
de_AT
tr_TR.UTF-8
de_DE
lt_LT
tr_TR
C
POSIX

Other attributes of DatetimeIndex that can be used to convert date and time into strings are:

94 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Attribute Description
year the year as datetime.
month the month as January 1 and December 12
day the day of the datetime
hour the hours of the datetime
minute the minutes of the datetime
seconds the seconds of the ‘datetime
microsecond the microseconds of the datetime.
nanosecond the nanoseconds of datetime
date returns a NumPy array of Python datetime.date objects
time returns a NumPy array of datetime.time objects
timetz returns a NumPy array of datetime.time objects with timezone information
dayofyear, day_of_year the ordinal day of the year
dayofweek the day of the week with Monday (0) and Sunday (6)
day_of_week the day of the week with Monday (0) and Sunday (6)
weekday the day of the week with Monday (0) and Sunday (6)
quarter returns the quarter of the year
tz returns the time zone
freq returns the frequency object if it is set, otherwise None
freqstr returns the frequency object as a string if it is set, otherwise None
is_month_start indicates if the date is the first day of the month
is_month_end indicates whether the date is the last day of the month
is_quarter_start indicates whether the date is the first day of a quarter
is_quarter_end shows if the date is the last day of a quarter
is_year_start indicates whether the date is the first day of a year
is_year_end indicates whether the date is the last day of a year
is_leap_year Boolean indicator if the date falls in a leap year
inferred_freq tries to return a string representing a frequency determined by infer_freq

However, there are also some methods with which you can convert the DatetimeIndex into strings, for example
strftime:

[9]: local.strftime("%d.%m.%Y")

[9]: Index(['27.03.2022', '27.03.2022', '27.03.2022', '27.03.2022', '27.03.2022',
'27.03.2022'],

dtype='object')

Note:
In strftime() and strptime() Format Codes you get an overview of the different formatting possibilities of strftime.

Other methods are:

2.4. pandas 95

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes


Python for Data Science, Release 24.1.0

Method Description
normalize converts times to midnight
strftime converts to index using the specified date format
snap snaps the timestamp to the next occurring frequency
tz_convert convert a tz capable datetime array/index from one time zone to another
tz_localize localises tz-naive datetime array/index into tz-compatible datetime array/index
round rounds the data up to the nearest specified frequency
floor rounds the data sown to the specified frequency
ceil round the data to the specified frequency
to_period converts the data to a PeriodArray/Index at a given frequency
to_perioddeltacalculates TimedeltaArray of the difference between the index values and the index converted to

PeriodArray at the specified frequency
to_pydatetimereturns Datetime array/index as ndarray object of datetime.datetime objects
to_series creates a series with index and values corresponding to index keys; useful with map for returning

an indexer
to_frame creates a DataFrame with a column containing the index
month_name returns the month names of the DateTimeIndex with the specified locale
day_name returns the day names of the DateTimeIndex with the specified locale
mean returns the mean value of the array
std returns the standard deviation of the sample across the requested axis

2.4.5 Select and filter data

Indexing series (obj[...]) works analogously to indexing NumPy arrays, except that you can use index values of the
series instead of just integers. Here are some examples:

[1]: import numpy as np
import pandas as pd

[2]: idx = pd.date_range("2022-02-02", periods=7)
rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7), index=idx)

[3]: s

[3]: 2022-02-02 0.002127
2022-02-03 1.655759
2022-02-04 -1.552128
2022-02-05 -1.581026
2022-02-06 -0.992316
2022-02-07 1.490786
2022-02-08 -1.542455
Freq: D, dtype: float64

[4]: s["2022-02-03"]

[4]: 1.655759430268265

[5]: s[1]

96 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[5]: 1.655759430268265

[6]: s[2:4]

[6]: 2022-02-04 -1.552128
2022-02-05 -1.581026
Freq: D, dtype: float64

[7]: s[["2022-02-04", "2022-02-03", "2022-02-02"]]

[7]: 2022-02-04 -1.552128
2022-02-03 1.655759
2022-02-02 0.002127
dtype: float64

[8]: s[[1, 3]]

[8]: 2022-02-03 1.655759
2022-02-05 -1.581026
Freq: 2D, dtype: float64

[9]: s[s > 0]

[9]: 2022-02-02 0.002127
2022-02-03 1.655759
2022-02-07 1.490786
dtype: float64

While you can select data by label in this way, the preferred method for selecting index values is the loc operator:

[10]: s.loc[["2022-02-04", "2022-02-03", "2022-02-02"]]

[10]: 2022-02-04 -1.552128
2022-02-03 1.655759
2022-02-02 0.002127
dtype: float64

The reason for the preference for loc is the different treatment of integers when indexing with []. In regular []-based
indexing, integers are treated as labels if the index contains integers, so the behaviour varies depending on the data type
of the index. In our example, the expression s.loc[[3, 2, 1]] will fail because the index does not contain integers:

[11]: s.loc[[3, 2, 1]]

---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[11], line 1
----> 1 s.loc[[3, 2, 1]]

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
→˓core/indexing.py:1103, in _LocationIndexer.__getitem__(self, key)
1100 axis = self.axis or 0
1102 maybe_callable = com.apply_if_callable(key, self.obj)

-> 1103 return self._getitem_axis(maybe_callable, axis=axis)

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
(continues on next page)

2.4. pandas 97



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓core/indexing.py:1332, in _LocIndexer._getitem_axis(self, key, axis)
1329 if hasattr(key, "ndim") and key.ndim > 1:
1330 raise ValueError("Cannot index with multidimensional key")

-> 1332 return self._getitem_iterable(key, axis=axis)
1334 # nested tuple slicing
1335 if is_nested_tuple(key, labels):

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
→˓core/indexing.py:1272, in _LocIndexer._getitem_iterable(self, key, axis)
1269 self._validate_key(key, axis)
1271 # A collection of keys

-> 1272 keyarr, indexer = self._get_listlike_indexer(key, axis)
1273 return self.obj._reindex_with_indexers(
1274 {axis: [keyarr, indexer]}, copy=True, allow_dups=True
1275 )

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
→˓core/indexing.py:1462, in _LocIndexer._get_listlike_indexer(self, key, axis)
1459 ax = self.obj._get_axis(axis)
1460 axis_name = self.obj._get_axis_name(axis)

-> 1462 keyarr, indexer = ax._get_indexer_strict(key, axis_name)
1464 return keyarr, indexer

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
→˓core/indexes/base.py:5877, in Index._get_indexer_strict(self, key, axis_name)
5874 else:
5875 keyarr, indexer, new_indexer = self._reindex_non_unique(keyarr)

-> 5877 self._raise_if_missing(keyarr, indexer, axis_name)
5879 keyarr = self.take(indexer)
5880 if isinstance(key, Index):
5881 # GH 42790 - Preserve name from an Index

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/
→˓core/indexes/base.py:5938, in Index._raise_if_missing(self, key, indexer, axis_name)
5936 if use_interval_msg:
5937 key = list(key)

-> 5938 raise KeyError(f"None of [{key}] are in the [{axis_name}]")
5940 not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique())
5941 raise KeyError(f"{not_found} not in index")

KeyError: "None of [Index([3, 2, 1], dtype='int64')] are in the [index]"

While the loc operator exclusively indexes labels, the iloc operator exclusively indexes with integers:

[12]: s.iloc[[3, 2, 1]]

[12]: 2022-02-05 -1.581026
2022-02-04 -1.552128
2022-02-03 1.655759
Freq: -1D, dtype: float64

You can also slice with labels, but this works differently from normal Python slicing because the endpoint is included:

98 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[13]: s.loc["2022-02-03":"2022-02-04"]

[13]: 2022-02-03 1.655759
2022-02-04 -1.552128
Freq: D, dtype: float64

Setting with these methods changes the corresponding section of the row:

[14]: s.loc["2022-02-03":"2022-02-04"] = 0

s

[14]: 2022-02-02 0.002127
2022-02-03 0.000000
2022-02-04 0.000000
2022-02-05 -1.581026
2022-02-06 -0.992316
2022-02-07 1.490786
2022-02-08 -1.542455
Freq: D, dtype: float64

Indexing in a DataFrame is used to retrieve one or more columns with either a single value or a sequence:

[15]: data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],

}

df = pd.DataFrame(data)
df = pd.DataFrame(data, columns=["Decimal", "Octal", "Key"], index=df["Code"])

df

[15]: Decimal Octal Key
Code
U+0000 0 001 NUL
U+0001 1 002 Ctrl-A
U+0002 2 003 Ctrl-B
U+0003 3 004 Ctrl-C
U+0004 4 004 Ctrl-D
U+0005 5 005 Ctrl-E

[16]: df["Key"]

[16]: Code
U+0000 NUL
U+0001 Ctrl-A
U+0002 Ctrl-B
U+0003 Ctrl-C
U+0004 Ctrl-D
U+0005 Ctrl-E
Name: Key, dtype: object

2.4. pandas 99



Python for Data Science, Release 24.1.0

[17]: df[["Decimal", "Key"]]

[17]: Decimal Key
Code
U+0000 0 NUL
U+0001 1 Ctrl-A
U+0002 2 Ctrl-B
U+0003 3 Ctrl-C
U+0004 4 Ctrl-D
U+0005 5 Ctrl-E

[18]: df[:2]

[18]: Decimal Octal Key
Code
U+0000 0 001 NUL
U+0001 1 002 Ctrl-A

[19]: df[df["Decimal"] > 2]

[19]: Decimal Octal Key
Code
U+0003 3 004 Ctrl-C
U+0004 4 004 Ctrl-D
U+0005 5 005 Ctrl-E

The line selection syntax df[:2] is provided for convenience. Passing a single item or a list to the [] operator selects
columns.

Another use case is indexing with a Boolean DataFrame, which is generated by a scalar comparison, for example:

[19]: df["Decimal"] > 2

[19]: Code
U+0000 False
U+0001 False
U+0002 False
U+0003 True
U+0004 True
U+0005 True
Name: Decimal, dtype: bool

[20]: df[df["Decimal"] > 2] = "NA"

df

[20]: Decimal Octal Key
Code
U+0000 0 001 NUL
U+0001 1 002 Ctrl-A
U+0002 2 003 Ctrl-B
U+0003 NA NA NA
U+0004 NA NA NA
U+0005 NA NA NA

100 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Like Series, DataFrame has special operators loc and iloc for label-based and integer indexing respectively. Since
DataFrame is two-dimensional, you can select a subset of the rows and columns with NumPy-like notation using either
axis labels (loc) or integers (iloc).

[21]: df.loc["U+0002", ["Decimal", "Key"]]

[21]: Decimal 2
Key Ctrl-B
Name: U+0002, dtype: object

[22]: df.iloc[[2], [1, 2]]

[22]: Octal Key
Code
U+0002 003 Ctrl-B

[23]: df.iloc[[0, 1], [1, 2]]

[23]: Octal Key
Code
U+0000 001 NUL
U+0001 002 Ctrl-A

Both indexing functions work with slices in addition to individual labels or lists of labels:

[24]: df.loc[:"U+0003", "Key"]

[24]: Code
U+0000 NUL
U+0001 Ctrl-A
U+0002 Ctrl-B
U+0003 NA
Name: Key, dtype: object

[25]: df.iloc[:3, :3]

[25]: Decimal Octal Key
Code
U+0000 0 001 NUL
U+0001 1 002 Ctrl-A
U+0002 2 003 Ctrl-B

So there are many ways to select and rearrange the data contained in a pandas object. In the following, I put together a
brief summary of most of these possibilities for DataFrames:

2.4. pandas 101



Python for Data Science, Release 24.1.0

Type Note
df[LABEL] selects a single column or a sequence of columns from the DataFrame
df.loc[LABEL] selects a single row or a subset of rows from the DataFrame by label
df.loc[:, LABEL] selects a single column or a subset of columns from the DataFrame by Label
df.loc[LABEL1, LABEL2] selects both rows and columns by label
df.iloc[INTEGER] selects a single row or a subset of rows from the DataFrame by integer position
df.iloc[INTEGER1,
INTEGER2]

selects a single column or a subset of columns by integer position

df.at[LABEL1, LABEL2] selects a single value by row and column label
df.iat[INTEGER1, INTEGER2] selects a scalar value by row and column position (integers)
reindex NEW_INDEX selects rows or columns by label
get_value, set_value deprecated since version 0.21.0: use .at[] or .iat[] instead.

2.4.6 Add, change and delete data

For many data sets, you may want to perform a transformation based on the values in an array, series or column in a
DataFrame. For this, we look at the first Unicode characters:

[1]: import numpy as np
import pandas as pd

[2]: df = pd.DataFrame(
{

"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],

}
)

df

[2]: Code Decimal Octal Key
0 U+0000 0 001 NUL
1 U+0001 1 002 Ctrl-A
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E

Add data

Suppose you want to add a column where the characters are assigned to the C0 or C1 control code:

[3]: control_code = {
"u+0000": "C0",
"u+0001": "C0",
"u+0002": "C0",
"u+0003": "C0",
"u+0004": "C0",

(continues on next page)

102 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

"u+0005": "C0",
}

The map method for a series accepts a function or dict-like object that contains an assignment, but here we have a small
problem because some of the codes in control_code are lower case, but not in our DataFrame. Therefore, we need
to convert each value to lower case using the str.lower method:

[4]: lowercased = df["Code"].str.lower()

lowercased

[4]: 0 u+0000
1 u+0001
2 u+0002
3 u+0003
4 u+0004
5 u+0005
Name: Code, dtype: object

[5]: df["Control code"] = lowercased.map(control_code)

df

[5]: Code Decimal Octal Key Control code
0 U+0000 0 001 NUL C0
1 U+0001 1 002 Ctrl-A C0
2 U+0002 2 003 Ctrl-B C0
3 U+0003 3 004 Ctrl-C C0
4 U+0004 4 004 Ctrl-D C0
5 U+0005 5 005 Ctrl-E C0

We could also have passed a function that does all the work:

[6]: df["Code"].map(lambda x: control_code[x.lower()])

[6]: 0 C0
1 C0
2 C0
3 C0
4 C0
5 C0
Name: Code, dtype: object

Using map is a convenient way to perform element-wise transformations and other data cleaning operations.

2.4. pandas 103



Python for Data Science, Release 24.1.0

Change data

Note:
Replacing missing values is described in Managing missing data with pandas.

[7]: pd.Series(["Manpower", "man-made"]).str.replace("Man", "Personal", regex=False)

[7]: 0 Personalpower
1 man-made
dtype: object

[8]: pd.Series(["Man-Power", "man-made"]).str.replace("[Mm]an", "Personal", regex=True)

[8]: 0 Personal-Power
1 Personal-made
dtype: object

Note:
The replace method differs from str.replace in that it replaces strings element by element.

Delete data

Deleting one or more entries from an axis is easy if you already have an index array or a list without these entries.

To delete duplicates, see Deduplicating data.

Since this may require a bit of set theory, we return the drop method as a new object without the deleted values:

[9]: rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))

s

[9]: 0 -0.800629
1 -1.018902
2 -0.183417
3 -0.789888
4 -1.898217
5 -0.774574
6 -0.370043
dtype: float64

[10]: new = s.drop(2)

new

[10]: 0 -0.800629
1 -1.018902
3 -0.789888
4 -1.898217
5 -0.774574
6 -0.370043
dtype: float64

104 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.Series.replace.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.str.replace.html


Python for Data Science, Release 24.1.0

[11]: new = s.drop([2, 3])

new

[11]: 0 -0.800629
1 -1.018902
4 -1.898217
5 -0.774574
6 -0.370043
dtype: float64

With DataFrames, index values can be deleted on both axes. To illustrate this, we first create an example DataFrame:

[12]: data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["001", "002", "003", "004", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],

}

df = pd.DataFrame(data)

df

[12]: Code Decimal Octal Key
0 U+0000 0 001 NUL
1 U+0001 1 002 Ctrl-A
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E

[13]: df.drop([0, 1])

[13]: Code Decimal Octal Key
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E

You can also remove values from the columns by passing axis=1 or axis='columns':

[14]: df.drop("Decimal", axis=1)

[14]: Code Octal Key
0 U+0000 001 NUL
1 U+0001 002 Ctrl-A
2 U+0002 003 Ctrl-B
3 U+0003 004 Ctrl-C
4 U+0004 004 Ctrl-D
5 U+0005 005 Ctrl-E

Many functions such as drop that change the size or shape of a row or DataFrame can manipulate an object in place
without returning a new object:

2.4. pandas 105



Python for Data Science, Release 24.1.0

[15]: df.drop(0, inplace=True)

df

[15]: Code Decimal Octal Key
1 U+0001 1 002 Ctrl-A
2 U+0002 2 003 Ctrl-B
3 U+0003 3 004 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E

Warning:
Be careful with the inplace function, as the data will be irretrievably deleted.

2.4.7 Manipulation of strings

pandas offers the possibility to concisely apply Python’s string methods and regular expressions to whole arrays of data.

See also:
• string

• re

Vectorised string functions in pandas

Cleaning up a cluttered dataset for analysis often requires a lot of string manipulation. To make matters worse, a column
containing strings sometimes has missing data:

[1]: import numpy as np
import pandas as pd

addresses = {
"Veit": np.nan,
"Veit Schiele": "veit.schiele@cusy.io",
"cusy GmbH": "info@cusy.io",

}
addresses = pd.Series(addresses)

addresses

[1]: Veit NaN
Veit Schiele veit.schiele@cusy.io
cusy GmbH info@cusy.io
dtype: object

[2]: addresses.isna()

[2]: Veit True
Veit Schiele False
cusy GmbH False
dtype: bool

106 Chapter 2. Workspace

https://python-basics-tutorial.readthedocs.io/en/latest/types/strings.html#string
https://python-basics-tutorial.readthedocs.io/en/latest/types/strings.html#re


Python for Data Science, Release 24.1.0

You can apply string and regular expression methods to any value (by passing a lambda or other function) using data.
map, but this fails for NA values. To deal with this, Series has array-oriented methods for string operations that skip
and pass NA values. These are accessed via Series’ str attribute; for example, we could use str.contains to check
whether each email address contains veit:

[3]: addresses.str.contains("veit")

[3]: Veit NaN
Veit Schiele True
cusy GmbH False
dtype: object

Regular expressions can also be used, along with options such as IGNORECASE:

[4]: import re

pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
matches = addresses.str.findall(pattern, flags=re.IGNORECASE).str[0]

matches

[4]: Veit NaN
Veit Schiele (veit.schiele, cusy, io)
cusy GmbH (info, cusy, io)
dtype: object

There are several ways to retrieve a vectorised element. Either use str.get or the index of str:

[5]: matches.str.get(1)

[5]: Veit NaN
Veit Schiele cusy
cusy GmbH cusy
dtype: object

Similarly, you can also cut strings with this syntax:

[6]: addresses.str[:5]

[6]: Veit NaN
Veit Schiele veit.
cusy GmbH info@
dtype: object

The pandas.Series.str.extract method returns the captured groups of a regular expression as a DataFrame:

[7]: addresses.str.extract(pattern, flags=re.IGNORECASE)

[7]: 0 1 2
Veit NaN NaN NaN
Veit Schiele veit.schiele cusy io
cusy GmbH info cusy io

More vectorised pandas string methods:

2.4. pandas 107

https://pandas.pydata.org/docs/reference/api/pandas.Series.str.extract.html


Python for Data Science, Release 24.1.0

Method Description
cat concatenates strings element by element with optional delimiter
contains returns a boolean array if each string contains a pattern/gex
count counts occurrences of the pattern
extract uses a regular expression with groups to extract one or more strings from a set of strings; the result is

a DataFrame with one column per group
endswith equivalent to x.endswith(pattern) for each element
startswithequivalent to x.startswith(pattern) for each element
findall computes list of all occurrences of pattern/regex for each string
get index in each element (get i-th element)
isalnum Equivalent to built-in str.alnum
isalpha Equivalent to built-in str.isalpha
isdecimal Equivalent to built-in str.isdecimal
isdigit Equivalent to built-in str.isdigit
islower Equivalent to built-in str.islower
isnumeric Equivalent to built-in str.isnumeric
isupper Equivalent to built-in str.isupper
join joins strings in each element of the series with the passed separator character
len calculates the length of each string
lower,
upper

converts case; equivalent to x.lower() or x.upper() for each element

match uses re.match with the passed regular expression for each element, returning True or False if
matched.

extract captures group elements (if any) by index from each string
pad inserts spaces on the left, right or both sides of strings
centre Equivalent to pad(side='both')
repeat Duplicates values (for example s.str.repeat(3) equals x * 3 for each string)
replace replaces pattern/rulex with another string
slice splits each string in the series
split splits strings using delimiters or regular expressions
strip truncates spaces on both sides, including line breaks
rstrip truncates spaces on the right side
lstrip truncates spaces on the left side

2.4.8 Arithmetic

An important function of pandas is the arithmetic behaviour for objects with different indices. When adding objects, if
the index pairs are not equal, the corresponding index in the result will be the union of the index pairs. For users with
database experience, this is comparable to an automatic outer join on the index labels. Let’s look at an example:

[1]: import numpy as np
import pandas as pd

rng = np.random.default_rng()
s1 = pd.Series(rng.normal(size=5))
s2 = pd.Series(rng.normal(size=7))

If you add these values, you get:

108 Chapter 2. Workspace

https://en.wikipedia.org/wiki/Join_(SQL)#Outer_join


Python for Data Science, Release 24.1.0

[2]: s1 + s2

[2]: 0 2.596929
1 -2.795545
2 -0.119064
3 0.849508
4 -0.061194
5 NaN
6 NaN
dtype: float64

The internal data matching leads to missing values at the points of the labels that do not overlap. Missing values are
then passed on in further arithmetic calculations.

For DataFrames, alignment is performed for both rows and columns:

[3]: df1 = pd.DataFrame(rng.normal(size=(5,3)))
df2 = pd.DataFrame(rng.normal(size=(7,2)))

When the two DataFrames are added together, the result is a DataFrame whose index and columns are the unions of
those in each of the DataFrames above:

[4]: df1 + df2

[4]: 0 1 2
0 -0.078026 0.643059 NaN
1 -0.383531 2.018909 NaN
2 -2.770130 -0.751184 NaN
3 -0.679346 0.926763 NaN
4 -1.093289 1.424987 NaN
5 NaN NaN NaN
6 NaN NaN NaN

Since column 2 does not appear in both DataFrame objects, its values appear as missing in the result. The same applies
to the rows whose labels do not appear in both objects.

Arithmetic methods with fill values

In arithmetic operations between differently indexed objects, a special value (e.g. 0) can be useful if an axis label is
found in one object but not in the other. The add method can pass the fill_value argument:

[5]: df12 = df1.add(df2, fill_value=0)

df12

[5]: 0 1 2
0 -0.078026 0.643059 0.136076
1 -0.383531 2.018909 -0.660599
2 -2.770130 -0.751184 -1.709924
3 -0.679346 0.926763 -1.403627
4 -1.093289 1.424987 -0.283248
5 0.030022 -1.465972 NaN
6 -0.508131 0.527970 NaN

In the following example, we set the two remaining NaN values to 0:

2.4. pandas 109



Python for Data Science, Release 24.1.0

[6]: df12.iloc[[5, 6], [2]] = 0

[7]: df12

[7]: 0 1 2
0 -0.078026 0.643059 0.136076
1 -0.383531 2.018909 -0.660599
2 -2.770130 -0.751184 -1.709924
3 -0.679346 0.926763 -1.403627
4 -1.093289 1.424987 -0.283248
5 0.030022 -1.465972 0.000000
6 -0.508131 0.527970 0.000000

Arithmetic methods

Method Description
add, radd methods for addition (+)
sub, rsub methods for subtraction (-)
div, rdiv methods for division (/)
floordiv, rfloordiv methods for floor division (//)
mul, rmul methods for multiplication (*)
pow, rpow methods for exponentiation (**)

r (English: reverse) reverses the method.

Operations between DataFrame and Series

As with NumPy arrays of different dimensions, the arithmetic between DataFrame and Series is also defined.

[8]: s1 + df12

[8]: 0 1 2 3 4
0 0.583883 -1.140178 0.991236 NaN NaN
1 0.278378 0.235672 0.194562 NaN NaN
2 -2.108221 -2.534422 -0.854764 NaN NaN
3 -0.017437 -0.856475 -0.548466 NaN NaN
4 -0.431380 -0.358250 0.571912 NaN NaN
5 0.691931 -3.249210 0.855161 NaN NaN
6 0.153778 -1.255268 0.855161 NaN NaN

If we add s1 with df12, the addition is done once for each line. This is called broadcasting. By default, the arithmetic
between the DataFrame and the series corresponds to the index of the series in the columns of the DataFrame, with the
rows being broadcast down.

If an index value is found neither in the columns of the DataFrame nor in the index of the series, the objects are
re-indexed to form the union:

If instead you want to transfer the columns and match the rows, you must use one of the arithmetic methods, for example:

[9]: df12.add(s2, axis="index")

110 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[9]: 0 1 2
0 1.856994 2.578079 2.071096
1 -1.395838 1.006602 -1.672906
2 -3.744354 -1.725408 -2.684148
3 -0.239294 1.366814 -0.963576
4 -1.067525 1.450751 -0.257484
5 0.005172 -1.490822 -0.024850
6 -0.612072 0.424029 -0.103941

The axis number you pass is the axis to be aligned to. In this case, the row index of the DataFrame (axis='index' or
axis=0) is to be adjusted and transmitted.

Function application and mapping

numpy.ufunc (element-wise array methods) also work with pandas objects:

[10]: np.abs(df12)

[10]: 0 1 2
0 0.078026 0.643059 0.136076
1 0.383531 2.018909 0.660599
2 2.770130 0.751184 1.709924
3 0.679346 0.926763 1.403627
4 1.093289 1.424987 0.283248
5 0.030022 1.465972 0.000000
6 0.508131 0.527970 0.000000

Another common operation is to apply a function to one-dimensional arrays on each column or row. The pan-
das.DataFrame.apply method does just that:

[11]: df12

[11]: 0 1 2
0 -0.078026 0.643059 0.136076
1 -0.383531 2.018909 -0.660599
2 -2.770130 -0.751184 -1.709924
3 -0.679346 0.926763 -1.403627
4 -1.093289 1.424987 -0.283248
5 0.030022 -1.465972 0.000000
6 -0.508131 0.527970 0.000000

[12]: f = lambda x: x.max() - x.min()

df12.apply(f)

[12]: 0 2.800152
1 3.484882
2 1.846000
dtype: float64

Here the function f, which calculates the difference between the maximum and minimum of a row, is called once for
each column of the frame. The result is a row with the columns of the frame as index.

If you pass axis='columns' to apply, the function will be called once per line instead:

2.4. pandas 111

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html


Python for Data Science, Release 24.1.0

[13]: df12.apply(f, axis="columns")

[13]: 0 0.721086
1 2.679508
2 2.018946
3 2.330389
4 2.518277
5 1.495994
6 1.036101
dtype: float64

Many of the most common array statistics (such as sum and mean) are DataFrame methods, so the use of apply is not
necessary.

The function passed to apply does not have to return a single value; it can also return a series with multiple values:

[14]: def f(x):
return pd.Series([x.min(), x.max()], index=["min", "max"])

df12.apply(f)

[14]: 0 1 2
min -2.770130 -1.465972 -1.709924
max 0.030022 2.018909 0.136076

You can also use element-wise Python functions. Suppose you want to round each floating point value in df12 to two
decimal places, you can do this with pandas.DataFrame.applymap:

[15]: f = lambda x: round(x, 2)

df12.applymap(f)

[15]: 0 1 2
0 -0.08 0.64 0.14
1 -0.38 2.02 -0.66
2 -2.77 -0.75 -1.71
3 -0.68 0.93 -1.40
4 -1.09 1.42 -0.28
5 0.03 -1.47 0.00
6 -0.51 0.53 0.00

The reason for the name applymap is that Series has a map method for applying an element-wise function:

[16]: df12[2].map(f)

[16]: 0 0.14
1 -0.66
2 -1.71
3 -1.40
4 -0.28
5 0.00
6 0.00
Name: 2, dtype: float64

112 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.applymap.html


Python for Data Science, Release 24.1.0

2.4.9 Descriptive statistics

pandas objects are equipped with a number of common mathematical and statistical methods. Most of them fall into
the category of reductions or summary statistics, methods that extract a single value (such as the sum or mean) from
a series or set of values from the rows or columns of a DataFrame. Compared to similar methods found in NumPy
arrays, they also handle missing data.

[1]: import numpy as np
import pandas as pd

rng = np.random.default_rng()
df = pd.DataFrame(

rng.normal(size=(7, 3)), index=pd.date_range("2022-02-02", periods=7)
)
new_index = pd.date_range("2022-02-03", periods=7)
df2 = df.reindex(new_index)

df2

[1]: 0 1 2
2022-02-03 0.686507 1.870769 -0.699365
2022-02-04 -1.462243 0.833043 0.423066
2022-02-05 0.227436 -1.146793 -0.495678
2022-02-06 0.404523 0.517117 -1.475375
2022-02-07 2.022298 -0.263188 -0.478148
2022-02-08 -0.056213 0.913033 -0.723379
2022-02-09 NaN NaN NaN

Calling the pandas.DataFrame.sum method returns a series containing column totals:

[2]: df2.sum()

[2]: 0 1.822307
1 2.723981
2 -3.448879
dtype: float64

Passing axis='columns' or axis=1 instead sums over the columns:

[3]: df2.sum(axis="columns")

[3]: 2022-02-03 1.857911
2022-02-04 -0.206135
2022-02-05 -1.415035
2022-02-06 -0.553735
2022-02-07 1.280962
2022-02-08 0.133441
2022-02-09 0.000000
Freq: D, dtype: float64

If an entire row or column contains all NA values, the sum is 0. This can be disabled with the skipna option:

[4]: df2.sum(axis="columns", skipna=False)

2.4. pandas 113



Python for Data Science, Release 24.1.0

[4]: 2022-02-03 1.857911
2022-02-04 -0.206135
2022-02-05 -1.415035
2022-02-06 -0.553735
2022-02-07 1.280962
2022-02-08 0.133441
2022-02-09 NaN
Freq: D, dtype: float64

Some aggregations, such as mean, require at least one non-NaN value to obtain a valuable result:

[5]: df2.mean(axis="columns")

[5]: 2022-02-03 0.619304
2022-02-04 -0.068712
2022-02-05 -0.471678
2022-02-06 -0.184578
2022-02-07 0.426987
2022-02-08 0.044480
2022-02-09 NaN
Freq: D, dtype: float64

Options for reduction methods

Method Description
axis the axis of values to reduce: 0 for the rows of the DataFrame and 1 for the columns
skipna exclude missing values; by default True.
level reduce grouped by level if the axis is hierarchically indexed (MultiIndex)

Some methods, such as idxmin and idxmax, provide indirect statistics such as the index value at which the minimum
or maximum value is reached:

[6]: df2.idxmax()

[6]: 0 2022-02-07
1 2022-02-03
2 2022-02-04
dtype: datetime64[ns]

Other methods are accumulations:

[7]: df2.cumsum()

[7]: 0 1 2
2022-02-03 0.686507 1.870769 -0.699365
2022-02-04 -0.775736 2.703812 -0.276300
2022-02-05 -0.548300 1.557019 -0.771977
2022-02-06 -0.143777 2.074136 -2.247352
2022-02-07 1.878520 1.810948 -2.725500
2022-02-08 1.822307 2.723981 -3.448879
2022-02-09 NaN NaN NaN

114 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Another type of method is neither reductions nor accumulations. describe is one such example that produces several
summary statistics in one go:

[8]: df2.describe()

[8]: 0 1 2
count 6.000000 6.000000 6.000000
mean 0.303718 0.453997 -0.574813
std 1.128201 1.043312 0.609912
min -1.462243 -1.146793 -1.475375
25% 0.014699 -0.068112 -0.717375
50% 0.315979 0.675080 -0.597521
75% 0.616011 0.893035 -0.482530
max 2.022298 1.870769 0.423066

For non-numeric data, describe generates alternative summary statistics:

[9]: data = {
"Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
"Octal": ["001", "002", "003", "004", "004", "005"],

}
df3 = pd.DataFrame(data)

df3.describe()

[9]: Code Octal
count 6 6
unique 6 5
top U+0000 004
freq 1 2

Descriptive and summary statistics:

2.4. pandas 115



Python for Data Science, Release 24.1.0

Method Description
count number of non-NA values
describe calculation of a set of summary statistics for series or each DataFrame column
min, max calculation of minimum and maximum values
argmin,
argmax

calculation of the index points (integers) at which the minimum or maximum value was reached

idxmin,
idxmax

calculation of the index labels at which the minimum or maximum values were reached

quantile calculation of the sample quantile in the range from 0 to 1
sum sum of the values
mean arithmetic mean of the values
median arithmetic median (50% quantile) of the values
mad mean absolute deviation from the mean value
prod product of all values
var sample variance of the values
std sample standard deviation of the values
skew sample skewness (third moment) of the values
kurt sample kurtosis (fourth moment) of the values
cumsum cumulative sum of the values
cummin,
cummax

cumulated minimum and maximum of the values respectively

cumprod cumulated product of the values
diff calculation of the first arithmetic difference (useful for time series)
pct_change calculation of the percentage changes

ydata-profiling

ydata-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy,
but a bit basic for exploratory data analysis. ydata-profiling extends pandas DataFrame with df.profile_report(),
which automatically generates a standardised report for understanding the data.

Installation

$ pipenv install "ydata-profiling[notebook, unicode, pyspark]"
...
✓✓✓ Success!
Updated Pipfile.lock (cbc5f7)!
Installing dependencies from Pipfile.lock (cbc5f7)...

80/80 —␣
→˓00:02:26
...
$ pipenv run jupyter nbextension enable --py widgetsnbextension
Enabling notebook extension jupyter-js-widgets/extension...

- Validating: OK

116 Chapter 2. Workspace

https://docs.profiling.ydata.ai/latest/


Python for Data Science, Release 24.1.0

Example

[10]: from ydata_profiling import ProfileReport

profile = ProfileReport(df2, title="pandas Profiling Report")

profile.to_widgets()

Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]

Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]

Render widgets: 0%| | 0/1 [00:00<?, ?it/s]

VBox(children=(Tab(children=(Tab(children=(GridBox(children=(VBox(children=(GridspecLayout(children=(HTML(valu...

Configuration for large datasets

By default, ydata-profiling summarises the dataset to provide the most insights for data analysis. If the computation
time of profiling becomes a bottleneck, pandas-profiling offers several alternatives to overcome it. For the following
examples, we first read a larger data set into pandas:

[11]: titanic = pd.read_csv(
"https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv"

)

1. minimal mode

ydata-profiling contains a minimal configuration file config_minimal.yaml, in which the most expensive calculations
are turned off by default. This is the recommended starting point for larger data sets.

[12]: profile = ProfileReport(
titanic, title="Minimal pandas Profiling Report", minimal=True

)

profile.to_widgets()

Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]

Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]

Render widgets: 0%| | 0/1 [00:00<?, ?it/s]

VBox(children=(Tab(children=(Tab(children=(GridBox(children=(VBox(children=(GridspecLayout(children=(HTML(valu...

Further details on settings and configuration can be found in Available settings.

2.4. pandas 117

https://docs.profiling.ydata.ai/latest/advanced_settings/available_settings/#available-settings


Python for Data Science, Release 24.1.0

2. Sample

An alternative option for very large data sets is to use only a part of them for the profiling report:

[13]: sample = titanic.sample(frac=0.05)

profile = ProfileReport(sample, title="Sample pandas Profiling Report")

profile.to_widgets()

Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]

Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]

Render widgets: 0%| | 0/1 [00:00<?, ?it/s]

VBox(children=(Tab(children=(Tab(children=(GridBox(children=(VBox(children=(GridspecLayout(children=(HTML(valu...

3. Deactivate expensive calculations

To reduce the computational effort in large datasets, but still get some interesting information, some calculations can
be filtered only for certain columns:

[14]: profile = ProfileReport()
profile.config.interactions.targets = ["Sex", "Age"]
profile.df = titanic

profile.to_widgets()

Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]

Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]

Render widgets: 0%| | 0/1 [00:00<?, ?it/s]

VBox(children=(Tab(children=(Tab(children=(GridBox(children=(VBox(children=(GridspecLayout(children=(HTML(valu...

The setting interactions.targets, can be changed via configuration files as well as via environment variables; see
Interactions for details.

4 Concurrency

Currently work is being done on a scalable Spark backend for pandas-profiling, see Spark Profiling Development.

2.4.10 Sorting and ranking

Sorting a record by a criterion is another important built-in function. Sorting lexicographically by row or column index
is already described in the section Reordering and sorting from levels. In the following we look at sorting the values
with DataFrame.sort_values and Series.sort_values:

[1]: import numpy as np
import pandas as pd

(continues on next page)

118 Chapter 2. Workspace

https://docs.profiling.ydata.ai/latest/advanced_settings/available_settings/#interactions
https://github.com/ydataai/pandas-profiling/projects/3
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.sort_values.html


Python for Data Science, Release 24.1.0

(continued from previous page)

rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))

s.sort_index(ascending=False)

[1]: 6 -0.521271
5 -0.228255
4 -1.131139
3 -0.531495
2 0.783785
1 -0.311396
0 0.088381
dtype: float64

All missing values are sorted to the end of the row by default:

[2]: s = pd.Series(rng.normal(size=7))
s[s < 0] = np.nan

s.sort_values()

[2]: 6 0.303859
4 0.435222
5 0.936456
3 1.312848
2 1.840338
0 NaN
1 NaN
dtype: float64

With a DataFrame you can sort on both axes. With by you specify which column or row is to be sorted:

[3]: df = pd.DataFrame(rng.normal(size=(7, 3)))

df.sort_values(by=2, ascending=False)

[3]: 0 1 2
3 1.489694 0.104105 0.870251
6 -0.649611 -1.035134 0.515880
5 -0.176371 1.261471 0.242477
0 0.252096 -0.315417 -1.000917
2 -1.659567 -0.139293 -1.138415
4 1.533278 0.241760 -1.252604
1 1.929005 1.032325 -2.153640

You can also sort rows with axis=1 and by:

[4]: df.sort_values(axis=1, by=[0, 1], ascending=False)

[4]: 0 1 2
0 0.252096 -0.315417 -1.000917
1 1.929005 1.032325 -2.153640
2 -1.659567 -0.139293 -1.138415
3 1.489694 0.104105 0.870251
4 1.533278 0.241760 -1.252604

(continues on next page)

2.4. pandas 119



Python for Data Science, Release 24.1.0

(continued from previous page)

5 -0.176371 1.261471 0.242477
6 -0.649611 -1.035134 0.515880

Ranking

DataFrame.rank and Series.rank assign ranks from one to the number of valid data points in an array:

[5]: df.rank()

[5]: 0 1 2
0 4.0 2.0 4.0
1 7.0 6.0 1.0
2 1.0 3.0 3.0
3 5.0 4.0 7.0
4 6.0 5.0 2.0
5 3.0 7.0 5.0
6 2.0 1.0 6.0

If ties occur in the ranking, the middle rank is usually assigned in each group.

[6]: df2 = pd.concat([df, df[5:]])

df2.rank()

[6]: 0 1 2
0 6.0 3.0 4.0
1 9.0 7.0 1.0
2 1.0 4.0 3.0
3 7.0 5.0 9.0
4 8.0 6.0 2.0
5 4.5 8.5 5.5
6 2.5 1.5 7.5
5 4.5 8.5 5.5
6 2.5 1.5 7.5

The parameter min, on the other hand, assigns the smallest rank in the group:

[7]: df2.rank(method="min")

[7]: 0 1 2
0 6.0 3.0 4.0
1 9.0 7.0 1.0
2 1.0 4.0 3.0
3 7.0 5.0 9.0
4 8.0 6.0 2.0
5 4.0 8.0 5.0
6 2.0 1.0 7.0
5 4.0 8.0 5.0
6 2.0 1.0 7.0

120 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.rank.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.rank.html


Python for Data Science, Release 24.1.0

Other methods with rank

Method Description
average default: assign the average rank to each entry in the same group
min uses the minimum rank for the whole group
max uses the maximum rank for the whole group
first assigns the ranks in the order in which the values appear in the data
dense like method='min' but the ranks always increase by 1 between groups and not according to the number

of same items in a group

2.4.11 Subdividing and categorising data

Continuous data is often divided into domains or otherwise grouped for analysis.

Suppose you have data on a group of people in a study that you want to divide into discrete age groups. For this, we
generate a dataframe with 250 entries between 0 and 99:

[1]: import numpy as np
import pandas as pd

ages = np.random.randint(0, 99, 250)
df = pd.DataFrame({"Age": ages})

df

[1]: Age
0 22
1 82
2 6
3 3
4 28
.. ...
245 15
246 86
247 91
248 55
249 15

[250 rows x 1 columns]

Afterwards, pandas offers us a simple way to divide the results into ten ranges with pandas.cut. To get only whole
years, we additionally set precision=0:

[2]: cats = pd.cut(ages, 10, precision=0)

cats

[2]: [(20.0, 29.0], (78.0, 88.0], (-0.1, 10.0], (-0.1, 10.0], (20.0, 29.0], ..., (10.0, 20.0],
→˓ (78.0, 88.0], (88.0, 98.0], (49.0, 59.0], (10.0, 20.0]]
Length: 250
Categories (10, interval[float64, right]): [(-0.1, 10.0] < (10.0, 20.0] < (20.0, 29.0] <␣
→˓(29.0, 39.0] ... (59.0, 69.0] < (69.0, 78.0] < (78.0, 88.0] < (88.0, 98.0]]

2.4. pandas 121

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html


Python for Data Science, Release 24.1.0

With pandas.Categorical.categories you can display the categories:

[3]: cats.categories

[3]: IntervalIndex([(-0.1, 10.0], (10.0, 20.0], (20.0, 29.0], (29.0, 39.0], (39.0, 49.0], (49.
→˓0, 59.0], (59.0, 69.0], (69.0, 78.0], (78.0, 88.0], (88.0, 98.0]], dtype=
→˓'interval[float64, right]')

. . . or even just a single category:

[4]: cats.categories[0]

[4]: Interval(-0.1, 10.0, closed='right')

With pandas.Categorical.codes you can display an array where for each value the corresponding category is shown:

[5]: cats.codes

[5]: array([2, 8, 0, 0, 2, 6, 3, 9, 2, 1, 7, 0, 5, 1, 3, 6, 6, 7, 1, 9, 1, 6,
3, 4, 3, 2, 6, 8, 5, 0, 5, 4, 0, 8, 5, 8, 3, 8, 7, 8, 6, 1, 1, 2,
3, 4, 7, 1, 5, 9, 4, 2, 8, 2, 9, 6, 0, 9, 0, 9, 5, 0, 1, 5, 6, 5,
3, 9, 0, 4, 2, 8, 9, 6, 5, 4, 4, 5, 6, 1, 7, 4, 1, 7, 0, 0, 1, 3,
3, 7, 5, 1, 9, 3, 0, 1, 7, 5, 9, 5, 3, 9, 3, 6, 7, 6, 9, 9, 6, 0,
1, 1, 3, 2, 9, 6, 0, 2, 9, 3, 8, 3, 1, 2, 7, 2, 6, 7, 9, 6, 1, 5,
3, 3, 1, 4, 6, 9, 8, 4, 0, 4, 8, 7, 5, 5, 4, 5, 1, 5, 2, 8, 2, 6,
0, 1, 8, 6, 7, 1, 3, 3, 3, 1, 3, 0, 6, 3, 9, 5, 9, 4, 3, 3, 0, 9,
7, 8, 2, 4, 1, 5, 7, 8, 6, 1, 3, 1, 4, 8, 3, 0, 0, 2, 2, 8, 9, 3,
4, 8, 4, 0, 1, 4, 9, 2, 5, 1, 1, 5, 0, 4, 7, 1, 9, 1, 7, 8, 5, 4,
1, 7, 0, 4, 5, 0, 1, 6, 8, 0, 8, 2, 6, 0, 7, 7, 0, 2, 3, 3, 2, 0,
4, 0, 5, 1, 8, 9, 5, 1], dtype=int8)

With value_counts we can now look at how the number is distributed among the individual areas:

[6]: pd.value_counts(cats)

[6]: (10.0, 20.0] 34
(-0.1, 10.0] 29
(29.0, 39.0] 29
(49.0, 59.0] 26
(88.0, 98.0] 24
(59.0, 69.0] 23
(39.0, 49.0] 22
(78.0, 88.0] 22
(20.0, 29.0] 21
(69.0, 78.0] 20
Name: count, dtype: int64

It is striking that the age ranges do not contain an equal number of years, but with 20.0, 29.0 and 69.0, 78.0 two
ranges contain only 9 years. This is due to the fact that the age range only extends from 0 to 98:

[7]: df.min()

[7]: Age 0
dtype: int64

[8]: df.max()

122 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.Categorical.categories.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Categorical.codes.html


Python for Data Science, Release 24.1.0

[8]: Age 98
dtype: int64

With pandas.qcut, on the other hand, the set is divided into areas that are approximately the same size:

[9]: cats = pd.qcut(ages, 10, precision=0)

[10]: pd.value_counts(cats)

[10]: (24.0, 36.0] 28
(9.0, 15.0] 26
(53.0, 65.0] 26
(65.0, 76.0] 26
(-1.0, 9.0] 25
(15.0, 24.0] 24
(36.0, 44.0] 24
(76.0, 88.0] 24
(88.0, 98.0] 24
(44.0, 53.0] 23
Name: count, dtype: int64

If we want to ensure that each age group actually includes exactly ten years, we can specify this directly with pan-
das.Categorical:

[11]: age_groups = ["{0} - {1}".format(i, i + 9) for i in range(0, 99, 10)]
cats = pd.Categorical(age_groups)

cats.categories

[11]: Index(['0 - 9', '10 - 19', '20 - 29', '30 - 39', '40 - 49', '50 - 59',
'60 - 69', '70 - 79', '80 - 89', '90 - 99'],

dtype='object')

For grouping we can now use pandas.cut. However, the number of labels must be one less than the number of edges:

[12]: df["Age group"] = pd.cut(df.Age, range(0, 101, 10), right=False, labels=cats)

df

[12]: Age Age group
0 22 20 - 29
1 82 80 - 89
2 6 0 - 9
3 3 0 - 9
4 28 20 - 29
.. ... ...
245 15 10 - 19
246 86 80 - 89
247 91 90 - 99
248 55 50 - 59
249 15 10 - 19

[250 rows x 2 columns]

2.4. pandas 123

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.qcut.html
https://pandas.pydata.org/docs/reference/api/pandas.Categorical.html
https://pandas.pydata.org/docs/reference/api/pandas.Categorical.html
https://pandas.pydata.org/docs/reference/api/pandas.cut.html


Python for Data Science, Release 24.1.0

2.4.12 Combining and merging data sets

Data contained in pandas objects can be combined in several ways:

• pandas.merge joins rows in DataFrames based on one or more keys. This function is familiar from SQL or other
relational databases, as it implements database join operations.

• pandas.concat concatenates or stacks objects along an axis.

• The instance methods pandas.DataFrame.combine_first or pandas.Series.combine_first allow overlapping data
to be joined.

• With pandas.merge_asof you can perform time series based window joins between DataFrame objects.

Database-like DataFrame joins

Merge or join operations combine data sets by linking rows with one or more keys. These operations are especially
important in relational, SQL-based databases. The merge function in pandas is the main entry point for applying these
algorithms to your data.

[1]: import pandas as pd

[2]: encoding = pd.DataFrame(
{

"Unicode": [
"U+0000", "U+0 001", "U+0002", "U+0003", "U+0004", "U+0005",

],
"Decimal": [0, 1, 2, 3, 4, 5],
"Octal": ["000", "001", "002", "003", "004", "005"],
"Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],

}
)

update = pd.DataFrame(
{

"Unicode": [
"U+0003", "U+0004", "U+0005", "U+0006", "U+0007", "U+0008", "U+0009",

],
"Decimal": [3, 4, 5, 6, 7, 8, 9],
"Octal": ["003", "004", "005", "006", "007", "008", "009"],
"Key": [

"Ctrl-C", "Ctrl-D", "Ctrl-E", "Ctrl-F", "Ctrl-G", "Ctrl-H", "Ctrl-I",
],

}
)

encoding, update

[2]: ( Unicode Decimal Octal Key
0 U+0000 0 000 NUL
1 U+0001 1 001 Ctrl-A
2 U+0002 2 002 Ctrl-B
3 U+0003 3 003 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E,

(continues on next page)

124 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.merge.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.combine_first.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.combine_first.html
https://pandas.pydata.org/docs/reference/api/pandas.merge_asof.html


Python for Data Science, Release 24.1.0

(continued from previous page)

Unicode Decimal Octal Key
0 U+0003 3 003 Ctrl-C
1 U+0004 4 004 Ctrl-D
2 U+0005 5 005 Ctrl-E
3 U+0006 6 006 Ctrl-F
4 U+0007 7 007 Ctrl-G
5 U+0008 8 008 Ctrl-H
6 U+0009 9 009 Ctrl-I)

When we call merge with these objects, we get:

[3]: pd.merge(encoding, update)

[3]: Unicode Decimal Octal Key
0 U+0003 3 003 Ctrl-C
1 U+0004 4 004 Ctrl-D
2 U+0005 5 005 Ctrl-E

By default, merge performs a so-called inner join; the keys in the result are the intersection or common set in both
tables.

Note:
I did not specify which column to merge over. If this information is not specified, merge will use the overlapping
column names as keys. However, it is good practice to specify this explicitly:

[4]: pd.merge(encoding, update, on="Unicode")

[4]: Unicode Decimal_x Octal_x Key_x Decimal_y Octal_y Key_y
0 U+0003 3 003 Ctrl-C 3 003 Ctrl-C
1 U+0004 4 004 Ctrl-D 4 004 Ctrl-D
2 U+0005 5 005 Ctrl-E 5 005 Ctrl-E

If the column names are different in each object, you can specify them separately. In the following example update2
gets the key U+ and not Unicode:

[5]: update2 = pd.DataFrame(
{

"U+": [
"U+0003", "U+0004", "U+0005", "U+0006", "U+0007", "U+0008", "U+0009",

],
"Decimal": [3, 4, 5, 6, 7, 8, 9],
"Octal": ["003", "004", "005", "006", "007", "008", "009"],
"Key": [

"Ctrl-C", "Ctrl-D", "Ctrl-E", "Ctrl-F", "Ctrl-G", "Ctrl-H", "Ctrl-I",
],

}
)

pd.merge(encoding, update2, left_on="Unicode", right_on="U+")

[5]: Unicode Decimal_x Octal_x Key_x U+ Decimal_y Octal_y Key_y
0 U+0003 3 003 Ctrl-C U+0003 3 003 Ctrl-C
1 U+0004 4 004 Ctrl-D U+0004 4 004 Ctrl-D
2 U+0005 5 005 Ctrl-E U+0005 5 005 Ctrl-E

2.4. pandas 125



Python for Data Science, Release 24.1.0

However, you can use merge not only to perform an inner join, with which the keys in the result are the intersection or
common set in both tables. Other possible options are:

Option Behaviour
how='inner' uses only the key combinations observed in both tables
how='left' uses all key combinations found in the left table
how='right' uses all key combinations found in the right table
how='outer' uses all key combinations observed in both tables together

[5]: pd.merge(encoding, update, on="Unicode", how="left")

[5]: Unicode Decimal_x Octal_x Key_x Decimal_y Octal_y Key_y
0 U+0000 0 000 NUL NaN NaN NaN
1 U+0001 1 001 Ctrl-A NaN NaN NaN
2 U+0002 2 002 Ctrl-B NaN NaN NaN
3 U+0003 3 003 Ctrl-C 3.0 003 Ctrl-C
4 U+0004 4 004 Ctrl-D 4.0 004 Ctrl-D
5 U+0005 5 005 Ctrl-E 5.0 005 Ctrl-E

[7]: pd.merge(encoding, update, on="Unicode", how="outer")

[7]: Unicode Decimal_x Octal_x Key_x Decimal_y Octal_y Key_y
0 U+0000 0.0 000 NUL NaN NaN NaN
1 U+0001 1.0 001 Ctrl-A NaN NaN NaN
2 U+0002 2.0 002 Ctrl-B NaN NaN NaN
3 U+0003 3.0 003 Ctrl-C 3.0 003 Ctrl-C
4 U+0004 4.0 004 Ctrl-D 4.0 004 Ctrl-D
5 U+0005 5.0 005 Ctrl-E 5.0 005 Ctrl-E
6 U+0006 NaN NaN NaN 6.0 006 Ctrl-F
7 U+0007 NaN NaN NaN 7.0 007 Ctrl-G
8 U+0008 NaN NaN NaN 8.0 008 Ctrl-H
9 U+0009 NaN NaN NaN 9.0 009 Ctrl-I

The join method only affects the unique key values that appear in the result.

To join multiple keys, you can pass a list of column names:

[6]: pd.merge(encoding, update, on=["Unicode", "Decimal", "Octal", "Key"], how="outer")

[6]: Unicode Decimal Octal Key
0 U+0000 0 000 NUL
1 U+0001 1 001 Ctrl-A
2 U+0002 2 002 Ctrl-B
3 U+0003 3 003 Ctrl-C
4 U+0004 4 004 Ctrl-D
5 U+0005 5 005 Ctrl-E
6 U+0006 6 006 Ctrl-F
7 U+0007 7 007 Ctrl-G
8 U+0008 8 008 Ctrl-H
9 U+0009 9 009 Ctrl-I

126 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

2.4.13 Group operations

By groupby is meant a process that involves one or more of the following steps:

• Split divides the data into groups according to certain criteria

• Apply applies a function independently to each group

• Combine combines the results in a data structure

In the first phase of the process, the data contained in a pandas object, be it a Series, a DataFrame or something else,
is split into groups based on one or more keys. The division is done on a particular axis of an object. For example, a
DataFrame can be grouped by its rows (axis=0) or its columns (axis=1). Then, a function is applied to each group
to create a new value. Finally, the results of all these function applications are combined in a result object. The shape
of the result object usually depends on what is done with the data.

Each grouping key can take many forms, and the keys do not all have to be of the same type:

• a list or array of values that have the same length as the axis being grouped

• a value that specifies a column name in a DataFrame

• a dict or series that is a correspondence between the values on the axis being grouped and the group names

• a function that is called on the axis index or the individual labels in the index

Note:
The latter three methods are shortcuts to create an array of values that will be used to divide the object.

Don’t worry if this all seems abstract. Throughout this chapter I will give many examples of all these methods. For
starters, here is a small table dataset as a DataFrame:

[1]: import numpy as np
import pandas as pd

[2]: df = pd.DataFrame(
{

"Title": [
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
None,
"Python Basics",
"Python Basics",

],
"Language": ["de", "en", "de", None, "de", "en"],
"2021-12": [19651, 4722, 2573, None, 525, 157],
"2022-01": [30134, 3497, 4873, None, 427, 85],
"2022-02": [33295, 4009, 3930, None, 276, 226],

}
)

df

[2]: Title Language 2021-12 2022-01 2022-02
0 Jupyter Tutorial de 19651.0 30134.0 33295.0

(continues on next page)

2.4. pandas 127



Python for Data Science, Release 24.1.0

(continued from previous page)

1 Jupyter Tutorial en 4722.0 3497.0 4009.0
2 PyViz Tutorial de 2573.0 4873.0 3930.0
3 None None NaN NaN NaN
4 Python Basics de 525.0 427.0 276.0
5 Python Basics en 157.0 85.0 226.0

Suppose you want to calculate the sum of column 02/2022 using the labels of Title. There are several ways to do this.
One is to access 02/2022 and call groupby with the column (a Series) in Title:

[3]: grouped = df["2022-02"].groupby(df["Title"])

grouped

[3]: <pandas.core.groupby.generic.SeriesGroupBy object at 0x11f32c8d0>

This grouped variable is now a special SeriesGroupBy object. It has not yet calculated anything except some inter-
mediate data about the group key df['Title']. The idea is that this object has all the information needed to apply
an operation to each of the groups. For example, to calculate the group averages, we can call the sum method of the
GroupBy object:

[4]: grouped.sum()

[4]: Title
Jupyter Tutorial 37304.0
PyViz Tutorial 3930.0
Python Basics 502.0
Name: 2022-02, dtype: float64

Later I will explain more about what happens when you call .sum(). The important thing to note here is that the data
(a row) has been aggregated by splitting the data across the group key, creating a new row that is now indexed by the
unique values in the Title column. The resulting index is Title because groupby(df['Title'] did this.

If we had passed multiple arrays as a list instead, we would get something different:

[5]: sums = df["2021-12"].groupby([df["Language"], df["Title"]]).sum()

sums

[5]: Language Title
de Jupyter Tutorial 19651.0

PyViz Tutorial 2573.0
Python Basics 525.0

en Jupyter Tutorial 4722.0
Python Basics 157.0

Name: 2021-12, dtype: float64

Here we have grouped the data based on two keys, and the resulting series now has a hierarchical index consisting of
the observed unique key pairs:

[6]: sums.unstack()

[6]: Title Jupyter Tutorial PyViz Tutorial Python Basics
Language
de 19651.0 2573.0 525.0
en 4722.0 NaN 157.0

128 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Often the grouping information is in the same DataFrame as the data you want to edit. In this case, you can pass column
names (whether they are strings, numbers or other Python objects) as group keys:

[7]: df.groupby("Title").sum()

[7]: Language 2021-12 2022-01 2022-02
Title
Jupyter Tutorial deen 24373.0 33631.0 37304.0
PyViz Tutorial de 2573.0 4873.0 3930.0
Python Basics deen 682.0 512.0 502.0

Here it is noticeable that the result does not contain a Language column. Since df['Language'] is not numeric
data, it interferes with the table layout and is therefore automatically excluded from the result. By default, all numeric
columns are aggregated.

[8]: df.groupby(["Title","Language"]).sum()

[8]: 2021-12 2022-01 2022-02
Title Language
Jupyter Tutorial de 19651.0 30134.0 33295.0

en 4722.0 3497.0 4009.0
PyViz Tutorial de 2573.0 4873.0 3930.0
Python Basics de 525.0 427.0 276.0

en 157.0 85.0 226.0

Regardless of the goal of using groupby, a generally useful groupby method is size, which returns a series with the
group sizes:

[9]: df.groupby(["Language"]).size()

[9]: Language
de 3
en 2
dtype: int64

Note:
All missing values in a group key are excluded from the result by default. This behaviour can be disabled
by passing dropna=False to groupby:

[10]: df.groupby("Language", dropna=False).size()

[10]: Language
de 3
en 2
NaN 1
dtype: int64

[11]: df.groupby(["Title", "Language"], dropna=False).size()

[11]: Title Language
Jupyter Tutorial de 1

en 1
PyViz Tutorial de 1
Python Basics de 1

en 1
(continues on next page)

2.4. pandas 129



Python for Data Science, Release 24.1.0

(continued from previous page)

NaN NaN 1
dtype: int64

Iteration over groups

The object returned by groupby supports iteration and produces a sequence of 2-tuples containing the group name
along with the data packet. Consider the following:

[12]: for name, group in df.groupby("Title"):
print(name)
print(group)

Jupyter Tutorial
Title Language 2021-12 2022-01 2022-02

0 Jupyter Tutorial de 19651.0 30134.0 33295.0
1 Jupyter Tutorial en 4722.0 3497.0 4009.0
PyViz Tutorial

Title Language 2021-12 2022-01 2022-02
2 PyViz Tutorial de 2573.0 4873.0 3930.0
Python Basics

Title Language 2021-12 2022-01 2022-02
4 Python Basics de 525.0 427.0 276.0
5 Python Basics en 157.0 85.0 226.0

With multiple keys, the first element of the tuple is a tuple of key values:

[13]: for (i1, i2), group in df.groupby(["Title", "Language"]):
print((i1, i2))
print(group)

('Jupyter Tutorial', 'de')
Title Language 2021-12 2022-01 2022-02

0 Jupyter Tutorial de 19651.0 30134.0 33295.0
('Jupyter Tutorial', 'en')

Title Language 2021-12 2022-01 2022-02
1 Jupyter Tutorial en 4722.0 3497.0 4009.0
('PyViz Tutorial', 'de')

Title Language 2021-12 2022-01 2022-02
2 PyViz Tutorial de 2573.0 4873.0 3930.0
('Python Basics', 'de')

Title Language 2021-12 2022-01 2022-02
4 Python Basics de 525.0 427.0 276.0
('Python Basics', 'en')

Title Language 2021-12 2022-01 2022-02
5 Python Basics en 157.0 85.0 226.0

Next, we want to output a dict of the data as a one-liner:

[14]: books = dict(list(df.groupby("Title")))

books

130 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[14]: {'Jupyter Tutorial': Title Language 2021-12 2022-01 2022-02
0 Jupyter Tutorial de 19651.0 30134.0 33295.0
1 Jupyter Tutorial en 4722.0 3497.0 4009.0,
'PyViz Tutorial': Title Language 2021-12 2022-01 2022-02
2 PyViz Tutorial de 2573.0 4873.0 3930.0,
'Python Basics': Title Language 2021-12 2022-01 2022-02
4 Python Basics de 525.0 427.0 276.0
5 Python Basics en 157.0 85.0 226.0}

By default, groupby groups on axis=0, but you can also group on any of the other axes. For example, we could group
the columns of our example df here by dtype as follows:

[15]: df.dtypes

[15]: Title object
Language object
2021-12 float64
2022-01 float64
2022-02 float64
dtype: object

[16]: grouped = df.groupby(df.dtypes, axis=1)

[17]: for dtype, group in grouped:
print(dtype)
print(group)

float64
2021-12 2022-01 2022-02

0 19651.0 30134.0 33295.0
1 4722.0 3497.0 4009.0
2 2573.0 4873.0 3930.0
3 NaN NaN NaN
4 525.0 427.0 276.0
5 157.0 85.0 226.0
object

Title Language
0 Jupyter Tutorial de
1 Jupyter Tutorial en
2 PyViz Tutorial de
3 None None
4 Python Basics de
5 Python Basics en

2.4. pandas 131



Python for Data Science, Release 24.1.0

Selecting a column or subset of columns

Indexing a GroupBy object created from a DataFrame with a column name or an array of column names has the effect
of subdividing columns for aggregation. This means that:

[18]: df.groupby("Title")["2021-12"]
df.groupby("Title")[["2022-01"]]

[18]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x11f2f08d0>

are simplified spellings for:

[19]: df["2021-12"].groupby(df["Title"])
df[["2022-01"]].groupby(df["Title"])

[19]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x11f362a50>

Especially for large datasets, it may be desirable to aggregate only some columns. For example, to calculate the sum
for only column 01/2022 in the previous dataset and get the result as a DataFrame, we could write:

[20]: df.groupby(["Title", "Language"])[["2022-01"]].sum()

[20]: 2022-01
Title Language
Jupyter Tutorial de 30134.0

en 3497.0
PyViz Tutorial de 4873.0
Python Basics de 427.0

en 85.0

The object returned by this indexing operation is a grouped DataFrame if a list or array is passed, or a grouped series
if only a single column name is passed as a scalar:

[21]: series_grouped = df.groupby(["Title", "Language"])["2022-01"]

series_grouped

[21]: <pandas.core.groupby.generic.SeriesGroupBy object at 0x11f36d150>

[22]: series_grouped.sum()

[22]: Title Language
Jupyter Tutorial de 30134.0

en 3497.0
PyViz Tutorial de 4873.0
Python Basics de 427.0

en 85.0
Name: 2022-01, dtype: float64

132 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Grouping with dicts and series

Grouping information can also be in a form other than an array:

[23]: df.iloc[2:3, [2, 3]] = np.nan

Suppose I have a group correspondence for the columns and want to group the columns together by group:

[24]: mapping = {"2021-12": "Dec 2021",
"2022-01": "Jan 2022",
"2022-02": "Feb 2022"}

Now an array could be constructed from this dict to pass to groupby, but instead we can just pass the dict:

[25]: by_column = df.groupby(mapping, axis=1)

by_column.sum()

[25]: Dec 2021 Feb 2022 Jan 2022
0 19651.0 33295.0 30134.0
1 4722.0 4009.0 3497.0
2 0.0 3930.0 0.0
3 0.0 0.0 0.0
4 525.0 276.0 427.0
5 157.0 226.0 85.0

The same functionality applies to Series:

[26]: map_series = pd.Series(mapping)

map_series

[26]: 2021-12 Dec 2021
2022-01 Jan 2022
2022-02 Feb 2022
dtype: object

[27]: df.groupby(map_series, axis=1).sum()

[27]: Dec 2021 Feb 2022 Jan 2022
0 19651.0 33295.0 30134.0
1 4722.0 4009.0 3497.0
2 0.0 3930.0 0.0
3 0.0 0.0 0.0
4 525.0 276.0 427.0
5 157.0 226.0 85.0

2.4. pandas 133



Python for Data Science, Release 24.1.0

Grouping with Functions

Using Python functions is a more general method of defining a group assignment compared to a Dict or Series. Each
function passed as a group key is called once per index value, with the return values used as group names. Specifically,
consider the example DataFrame from the previous section, which contains the titles as index values. Suppose If you
want to group by the length of the names, you can calculate an array with the lengths of the strings, but it is easier to
pass the len function:

[28]: df = pd.DataFrame(
[

[19651, 30134, 33295],
[4722, 3497, 4009],
[2573, 4873, 3930],
[525, 427, 276],
[157, 85, 226],

],
index=[

"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
"Python Basics",
"Python Basics",

],
columns=["2021-12", "2022-01", "2022-02"],

)

[29]: df.groupby(len).count()

[29]: 2021-12 2022-01 2022-02
13 2 2 2
14 1 1 1
16 2 2 2

Mixing functions with arrays, dicts or series is no problem, as everything is converted internally into arrays:

[30]: languages = ["de", "en", "de", "de", "en"]

[31]: df.groupby([len, languages]).count()

[31]: 2021-12 2022-01 2022-02
13 de 1 1 1

en 1 1 1
14 de 1 1 1
16 de 1 1 1

en 1 1 1

134 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Grouping by index levels

A final practical feature for hierarchically indexed datasets is the ability to aggregate by one of the index levels of an
axis. Let’s look at an example:

[32]: version_hits = [
[19651, 0, 30134, 0, 33295, 0],
[4722, 1825, 3497, 2576, 4009, 3707],
[2573, 0, 4873, 0, 3930, 0],
[None, None, None, None, None, None],
[525, 0, 427, 0, 276, 0],
[157, 0, 85, 0, 226, 0],

]

df = pd.DataFrame(
version_hits,
index=[

[
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
None,
"Python Basics",
"Python Basics",

],
["de", "en", "de", None, "de", "en"],

],
columns=[

["2021-12", "2021-12", "2022-01", "2022-01", "2022-02", "2022-02"],
["latest", "stable", "latest", "stable", "latest", "stable"],

],
)

df.columns.names = ["Month", "Version"]

df

[32]: Month 2021-12 2022-01 2022-02
Version latest stable latest stable latest stable
Jupyter Tutorial de 19651.0 0.0 30134.0 0.0 33295.0 0.0

en 4722.0 1825.0 3497.0 2576.0 4009.0 3707.0
PyViz Tutorial de 2573.0 0.0 4873.0 0.0 3930.0 0.0
NaN NaN NaN NaN NaN NaN NaN NaN
Python Basics de 525.0 0.0 427.0 0.0 276.0 0.0

en 157.0 0.0 85.0 0.0 226.0 0.0

[33]: df.groupby(level="Month", axis=1).sum()

[33]: Month 2021-12 2022-01 2022-02
Jupyter Tutorial de 19651.0 30134.0 33295.0

en 6547.0 6073.0 7716.0
PyViz Tutorial de 2573.0 4873.0 3930.0
NaN NaN 0.0 0.0 0.0
Python Basics de 525.0 427.0 276.0

(continues on next page)

2.4. pandas 135



Python for Data Science, Release 24.1.0

(continued from previous page)

en 157.0 85.0 226.0

2.4.14 Aggregation

Aggregations refer to any data transformation that produces scalar values from arrays. In the previous examples, several
of them were used, including count and sum. You may now be wondering what happens when you apply sum() to a
GroupBy object. Optimised implementations exist for many common aggregations, such as the one in the following
table. However, they are not limited to this set of methods.

Function name Description

Function name Description
any, all Returns True if one (or more) or all of the non-NA values are truthy
count Number of non-NA values
cummin, cummax Cumulative minimum and maximum of the non-NA values
cumsum Cumulative sum of the non-NA values
cumprod Cumulative product of non-NA values
first, last First and last non-NA values
mean Mean of the non-NA values
median Arithmetic median of the non-NA values
min, max Minimum and maximum of the non-NA values
nth Retrieval of the nth largest value
ohlc calculates the four open-high-low-close statistics for time series-like data
prod Product of the non-NA values
quantile calculates the sample quantile
rank Ordinal ranks of non-NA values, as when calling Series.rank
sum Sum of non-NA values
std, var Standard deviation and variance of the sample

You can use your own aggregations and also call any method that is also defined for the grouped object. For example,
the Series method nsmallest selects the smallest requested number of values from the data.

Although nsmallest is not explicitly implemented for GroupBy, we can still use it with a non-optimised implemen-
tation. Internally, GroupBy decomposes the Series, calls df.nsmallest(n) for each part and then merges these
results in the result object:

[1]: import numpy as np
import pandas as pd

[2]: df = pd.DataFrame(
{

"Title": [
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
None,
"Python Basics",
"Python Basics",

],
"2021-12": [30134, 6073, 4873, None, 427, 95],

(continues on next page)

136 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

"2022-01": [33295, 7716, 3930, None, 276, 226],
"2022-02": [19651, 6547, 2573, None, 525, 157],

}
)

df

[2]: Title 2021-12 2022-01 2022-02
0 Jupyter Tutorial 30134.0 33295.0 19651.0
1 Jupyter Tutorial 6073.0 7716.0 6547.0
2 PyViz Tutorial 4873.0 3930.0 2573.0
3 None NaN NaN NaN
4 Python Basics 427.0 276.0 525.0
5 Python Basics 95.0 226.0 157.0

[3]: grouped = df.groupby("Title")

[4]: grouped["2022-01"].nsmallest(1)

[4]: Title
Jupyter Tutorial 1 7716.0
PyViz Tutorial 2 3930.0
Python Basics 5 226.0
Name: 2022-01, dtype: float64

To use a custom aggregation function, pass any function that aggregates an array to the aggregate or agg method:

[5]: def range(arr):
return arr.max() - arr.min()

grouped.agg(range)

[5]: 2021-12 2022-01 2022-02
Title
Jupyter Tutorial 24061.0 25579.0 13104.0
PyViz Tutorial 0.0 0.0 0.0
Python Basics 332.0 50.0 368.0

You will find that some methods like describe also work, even though they are not strictly speaking aggregations:

[6]: grouped.describe()

[6]: 2021-12 \
count mean std min 25% 50%

Title
Jupyter Tutorial 2.0 18103.5 17013.696262 6073.0 12088.25 18103.5
PyViz Tutorial 1.0 4873.0 NaN 4873.0 4873.00 4873.0
Python Basics 2.0 261.0 234.759451 95.0 178.00 261.0

2022-01 ... \
75% max count mean ... 75% max

Title ...
Jupyter Tutorial 24118.75 30134.0 2.0 20505.5 ... 26900.25 33295.0
PyViz Tutorial 4873.00 4873.0 1.0 3930.0 ... 3930.00 3930.0

(continues on next page)

2.4. pandas 137



Python for Data Science, Release 24.1.0

(continued from previous page)

Python Basics 344.00 427.0 2.0 251.0 ... 263.50 276.0

2022-02 \
count mean std min 25% 50%

Title
Jupyter Tutorial 2.0 13099.0 9265.927261 6547.0 9823.0 13099.0
PyViz Tutorial 1.0 2573.0 NaN 2573.0 2573.0 2573.0
Python Basics 2.0 341.0 260.215295 157.0 249.0 341.0

75% max
Title
Jupyter Tutorial 16375.0 19651.0
PyViz Tutorial 2573.0 2573.0
Python Basics 433.0 525.0

[3 rows x 24 columns]

Note:
Custom aggregation functions are generally much slower than the optimised functions in the table above. This is because
there is some extra work involved in creating the intermediate data sets for the group (function calls, reordering of data).

Additional functions column by column

As we have already seen, aggregating a Series or all columns of a DataFrame is a matter of using aggregate (or
agg) with the desired function or calling a method such as mean or std. However, it is more common to aggregate
simultaneously with another function depending on the column or with multiple functions.

[7]: grouped.agg("mean")

[7]: 2021-12 2022-01 2022-02
Title
Jupyter Tutorial 18103.5 20505.5 13099.0
PyViz Tutorial 4873.0 3930.0 2573.0
Python Basics 261.0 251.0 341.0

If you pass a list of functions or function names instead, you will get back a DataFrame with column names from the
functions:

[8]: grouped.agg(["mean", "std", range])

[8]: 2021-12 2022-01 \
mean std range mean std

Title
Jupyter Tutorial 18103.5 17013.696262 24061.0 20505.5 18087.084356
PyViz Tutorial 4873.0 NaN 0.0 3930.0 NaN
Python Basics 261.0 234.759451 332.0 251.0 35.355339

2022-02
range mean std range

Title
Jupyter Tutorial 25579.0 13099.0 9265.927261 13104.0

(continues on next page)

138 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

PyViz Tutorial 0.0 2573.0 NaN 0.0
Python Basics 50.0 341.0 260.215295 368.0

Here we have passed agg a list of aggregation functions to be evaluated independently for the data groups.

You don’t need to accept the names that GroupBy gives to the columns; in particular, lambda functions have the name
<lambda>, which makes them difficult to identify. When you pass a list of tuples, the first element of each tuple is used
as the column name in the DataFrame:

[9]: grouped.agg(
[("Mean", "mean"), ("Standard deviation", "std"), ("Range", range)]

)

[9]: 2021-12 2022-01 \
Mean Standard deviation Range Mean

Title
Jupyter Tutorial 18103.5 17013.696262 24061.0 20505.5
PyViz Tutorial 4873.0 NaN 0.0 3930.0
Python Basics 261.0 234.759451 332.0 251.0

2022-02 \
Standard deviation Range Mean Standard deviation

Title
Jupyter Tutorial 18087.084356 25579.0 13099.0 9265.927261
PyViz Tutorial NaN 0.0 2573.0 NaN
Python Basics 35.355339 50.0 341.0 260.215295

Range
Title
Jupyter Tutorial 13104.0
PyViz Tutorial 0.0
Python Basics 368.0

With a DataFrame, you have the option of specifying a list of functions to be applied to all columns or to different
functions per column. Let’s say we want to calculate the same three statistics for the columns:

[10]: stats = ["count", "mean", "max"]

evaluations = grouped.agg(stats)

evaluations

[10]: 2021-12 2022-01 2022-02 \
count mean max count mean max count

Title
Jupyter Tutorial 2 18103.5 30134.0 2 20505.5 33295.0 2
PyViz Tutorial 1 4873.0 4873.0 1 3930.0 3930.0 1
Python Basics 2 261.0 427.0 2 251.0 276.0 2

mean max
Title
Jupyter Tutorial 13099.0 19651.0

(continues on next page)

2.4. pandas 139



Python for Data Science, Release 24.1.0

(continued from previous page)

PyViz Tutorial 2573.0 2573.0
Python Basics 341.0 525.0

As you can see, the resulting DataFrame has hierarchical columns, just as you would get if you aggregated each column
separately and used pandas.concat to join the results together, using the column names as key arguments:

[11]: evaluations["2021-12"]

[11]: count mean max
Title
Jupyter Tutorial 2 18103.5 30134.0
PyViz Tutorial 1 4873.0 4873.0
Python Basics 2 261.0 427.0

As before, a list of tuples with user-defined names can be passed:

[12]: tuples = [("Mean", "mean"), ("Variance", np.var)]

grouped[["2021-12", "2022-01"]].agg(tuples)

[12]: 2021-12 2022-01
Mean Variance Mean Variance

Title
Jupyter Tutorial 18103.5 289465860.5 20505.5 327142620.5
PyViz Tutorial 4873.0 NaN 3930.0 NaN
Python Basics 261.0 55112.0 251.0 1250.0

If we now assume that potentially different functions are to be applied to one or more of the columns, we pass a dict
to agg that contains an assignment of column names to one of the function specifications:

[13]: grouped.agg({"2021-12": "mean", "2022-01": np.var})

[13]: 2021-12 2022-01
Title
Jupyter Tutorial 18103.5 327142620.5
PyViz Tutorial 4873.0 NaN
Python Basics 261.0 1250.0

[14]: grouped.agg({"2021-12": ["min", "max", "mean", "std"], "2022-01": "sum"})

[14]: 2021-12 2022-01
min max mean std sum

Title
Jupyter Tutorial 6073.0 30134.0 18103.5 17013.696262 41011.0
PyViz Tutorial 4873.0 4873.0 4873.0 NaN 3930.0
Python Basics 95.0 427.0 261.0 234.759451 502.0

140 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.concat.html


Python for Data Science, Release 24.1.0

Return aggregated data without row indices

In all the examples so far, the aggregated data is returned with an index. Since this is not always desired, you can
disable this behaviour in most cases by passing as_index=False to groupby:

[15]: grouped.agg([range], as_index=False).mean()

[15]: 2021-12 8131.000000
2022-01 8543.000000
2022-02 4490.666667
dtype: float64

By using the method as_index=False, some unnecessary calculations are avoided. Of course, it is always possible
to get the result back with index by calling reset_index for the result.

2.4.15 Apply

The most general GroupBy method is apply. It splits the object to be processed, calls the passed function on each part
and then tries to chain the parts together.

Suppose we want to select the five largest hit values by group. To do this, we first write a function that selects the
rows with the largest values in a particular column:

[1]: import numpy as np
import pandas as pd

[2]: df = pd.DataFrame(
{

"2021-12": [30134, 6073, 4873, None, 427, 95],
"2022-01": [33295, 7716, 3930, None, 276, 226],
"2022-02": [19651, 6547, 2573, None, 525, 157],

},
index=[

[
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
"PyViz Tutorial",
"Python Basics",
"Python Basics",

],
["de", "en", "de", "en", "de", "en"],

],
)
df.index.names = ["Title", "Language"]

df

[2]: 2021-12 2022-01 2022-02
Title Language
Jupyter Tutorial de 30134.0 33295.0 19651.0

en 6073.0 7716.0 6547.0
PyViz Tutorial de 4873.0 3930.0 2573.0

en NaN NaN NaN
(continues on next page)

2.4. pandas 141



Python for Data Science, Release 24.1.0

(continued from previous page)

Python Basics de 427.0 276.0 525.0
en 95.0 226.0 157.0

[3]: def top(df, n=5, column="2021-12"):
return df.sort_values(by=column, ascending=False)[:n]

top(df, n=3)

[3]: 2021-12 2022-01 2022-02
Title Language
Jupyter Tutorial de 30134.0 33295.0 19651.0

en 6073.0 7716.0 6547.0
PyViz Tutorial de 4873.0 3930.0 2573.0

If we now group by titles, for example, and call apply with this function, we get the following:

[4]: grouped_titles = df.groupby("Title", as_index=False)

grouped_titles.apply(top)

[4]: 2021-12 2022-01 2022-02
Title Language

0 Jupyter Tutorial de 30134.0 33295.0 19651.0
en 6073.0 7716.0 6547.0

1 PyViz Tutorial de 4873.0 3930.0 2573.0
en NaN NaN NaN

2 Python Basics de 427.0 276.0 525.0
en 95.0 226.0 157.0

What happened here? The upper function is called for each row group of the DataFrame, and then the results are
concatenated with pandas.concat, labelling the parts with the group names. The result therefore has a hierarchical
index whose inner level contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass them after the function:

[5]: grouped_titles = df.groupby("Title", as_index=False)

grouped_titles.apply(top, n=1)

[5]: 2021-12 2022-01 2022-02
Title Language

0 Jupyter Tutorial de 30134.0 33295.0 19651.0
1 PyViz Tutorial de 4873.0 3930.0 2573.0
2 Python Basics de 427.0 276.0 525.0

We have now seen the basic usage of apply. What happens inside the passed function is very versatile and up to you;
it only has to return a pandas object or a single value. In the following, we will therefore mainly show examples that
can give you ideas on how to solve various problems with groupby.

First, let’s look again at describe, called over the GroupBy object:

[6]: result = grouped_titles.describe()

result

142 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.concat.html


Python for Data Science, Release 24.1.0

[6]: 2021-12 \
count mean std min 25% 50% 75%

0 2.0 18103.5 17013.696262 6073.0 12088.25 18103.5 24118.75
1 1.0 4873.0 NaN 4873.0 4873.00 4873.0 4873.00
2 2.0 261.0 234.759451 95.0 178.00 261.0 344.00

2022-01 ... 2022-02 \
max count mean ... 75% max count mean

0 30134.0 2.0 20505.5 ... 26900.25 33295.0 2.0 13099.0
1 4873.0 1.0 3930.0 ... 3930.00 3930.0 1.0 2573.0
2 427.0 2.0 251.0 ... 263.50 276.0 2.0 341.0

std min 25% 50% 75% max
0 9265.927261 6547.0 9823.0 13099.0 16375.0 19651.0
1 NaN 2573.0 2573.0 2573.0 2573.0 2573.0
2 260.215295 157.0 249.0 341.0 433.0 525.0

[3 rows x 24 columns]

When you call a method like describe within GroupBy, it is actually just an abbreviation for:

[7]: f = lambda x: x.describe()
grouped_titles.apply(f)

[7]: 2021-12 2022-01 2022-02
0 count 2.000000 2.000000 2.000000
mean 18103.500000 20505.500000 13099.000000
std 17013.696262 18087.084356 9265.927261
min 6073.000000 7716.000000 6547.000000
25% 12088.250000 14110.750000 9823.000000
50% 18103.500000 20505.500000 13099.000000
75% 24118.750000 26900.250000 16375.000000
max 30134.000000 33295.000000 19651.000000

1 count 1.000000 1.000000 1.000000
mean 4873.000000 3930.000000 2573.000000
std NaN NaN NaN
min 4873.000000 3930.000000 2573.000000
25% 4873.000000 3930.000000 2573.000000
50% 4873.000000 3930.000000 2573.000000
75% 4873.000000 3930.000000 2573.000000
max 4873.000000 3930.000000 2573.000000

2 count 2.000000 2.000000 2.000000
mean 261.000000 251.000000 341.000000
std 234.759451 35.355339 260.215295
min 95.000000 226.000000 157.000000
25% 178.000000 238.500000 249.000000
50% 261.000000 251.000000 341.000000
75% 344.000000 263.500000 433.000000
max 427.000000 276.000000 525.000000

2.4. pandas 143



Python for Data Science, Release 24.1.0

Suppression of the group keys

In the previous examples, you saw that the resulting object has a hierarchical index formed by the group keys together
with the indices of the individual parts of the original object. You can disable this by passing group_keys=False to
groupby:

[8]: grouped_lang = df.groupby("Language", group_keys=False)

grouped_lang.apply(top)

[8]: 2021-12 2022-01 2022-02
Title Language
Jupyter Tutorial de 30134.0 33295.0 19651.0
PyViz Tutorial de 4873.0 3930.0 2573.0
Python Basics de 427.0 276.0 525.0
Jupyter Tutorial en 6073.0 7716.0 6547.0
Python Basics en 95.0 226.0 157.0
PyViz Tutorial en NaN NaN NaN

Quantile and bucket analysis

As described in discretisation and grouping, pandas has some tools, especially cut and qcut, to split data into buckets
with bins of your choice or by sample quantiles. Combine these functions with groupby and you can conveniently
perform bucket or quantile analysis on a dataset. Consider a simple random data set and a bucket categorisation of
equal length with cut:

[9]: rng = np.random.default_rng()
df2 = pd.DataFrame(

{
"data1": rng.normal(size=1000),
"data2": rng.normal(size=1000)

}
)

quartiles = pd.cut(df2.data1, 4)

quartiles[:10]

[9]: 0 (-1.38, 0.0424]
1 (-1.38, 0.0424]
2 (0.0424, 1.464]
3 (0.0424, 1.464]
4 (-1.38, 0.0424]
5 (0.0424, 1.464]
6 (-1.38, 0.0424]
7 (-1.38, 0.0424]
8 (-1.38, 0.0424]
9 (-1.38, 0.0424]
Name: data1, dtype: category
Categories (4, interval[float64, right]): [(-2.807, -1.38] < (-1.38, 0.0424] < (0.0424,␣
→˓1.464] < (1.464, 2.886]]

The category object returned by cut can be passed directly to groupby. So we could calculate a set of group statistics
for the quartiles as follows:

144 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[10]: def stats(group):
return pd.DataFrame(

{
"min": group.min(),
"max": group.max(),
"count": group.count(),
"mean": group.mean(),

}
)

grouped_quart = df2.groupby(quartiles)

grouped_quart.apply(stats)

[10]: min max count mean
data1
(-2.807, -1.38] data1 -2.801488 -1.389215 74 -1.791025

data2 -2.435057 2.248734 74 -0.052099
(-1.38, 0.0424] data1 -1.369729 0.042258 452 -0.557848

data2 -2.815141 2.555586 452 0.007063
(0.0424, 1.464] data1 0.043187 1.453391 401 0.661546

data2 -2.680655 3.002200 401 0.055687
(1.464, 2.886] data1 1.471820 2.886283 73 1.832881

data2 -2.108169 3.566785 73 0.145811

These were buckets of equal length; to calculate buckets of equal size based on sample quantiles, we can use qcut. I
pass labels=False to get only quantile numbers:

[11]: quartiles_samp = pd.qcut(df2.data1, 4, labels=False)

grouped_quart_samp = df2.groupby(quartiles_samp)

grouped_quart_samp.apply(stats)

[11]: min max count mean
data1
0 data1 -2.801488 -0.651380 250 -1.207350

data2 -2.815141 2.555586 250 -0.048382
1 data1 -0.648977 -0.027545 250 -0.332227

data2 -2.529867 2.478078 250 0.069973
2 data1 -0.026572 0.691897 250 0.325120

data2 -2.638173 3.002200 250 0.063670
3 data1 0.692362 2.886283 250 1.272046

data2 -2.680655 3.566785 250 0.043986

2.4. pandas 145



Python for Data Science, Release 24.1.0

Populating data with group-specific values

When cleaning missing data, in some cases you will replace data observations with dropna, but in other cases you may
want to fill the null values (NA) with a fixed value or a value derived from the data. fillna is the right tool for this;
here, for example, I fill the null values with the mean:

[12]: s = pd.Series(rng.normal(size=8))
s[::3] = np.nan

s

[12]: 0 NaN
1 0.835698
2 -0.262870
3 NaN
4 -1.345111
5 -0.266797
6 NaN
7 0.550379
dtype: float64

[13]: s.fillna(s.mean())

[13]: 0 -0.097740
1 0.835698
2 -0.262870
3 -0.097740
4 -1.345111
5 -0.266797
6 -0.097740
7 0.550379
dtype: float64

Here are some sample data for my tutorials, divided into German and English editions:

Suppose you want the fill value to vary by group. These values can be predefined, and since the groups have an internal
name attribute, you can use this with apply:

[14]: fill_values = {"de": 10632, "en": 3469}

fill_func = lambda g: g.fillna(fill_values[g.name])

df.groupby("Language").apply(fill_func)

[14]: 2021-12 2022-01 2022-02
Language Title Language
de Jupyter Tutorial de 30134.0 33295.0 19651.0

PyViz Tutorial de 4873.0 3930.0 2573.0
Python Basics de 427.0 276.0 525.0

en Jupyter Tutorial en 6073.0 7716.0 6547.0
PyViz Tutorial en 3469.0 3469.0 3469.0
Python Basics en 95.0 226.0 157.0

You can also group the data and use apply with a function that calls fillna for each data packet:

146 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

[15]: fill_mean = lambda g: g.fillna(g.mean())

df.groupby("Language").apply(fill_mean)

[15]: 2021-12 2022-01 2022-02
Language Title Language
de Jupyter Tutorial de 30134.0 33295.0 19651.0

PyViz Tutorial de 4873.0 3930.0 2573.0
Python Basics de 427.0 276.0 525.0

en Jupyter Tutorial en 6073.0 7716.0 6547.0
PyViz Tutorial en 3084.0 3971.0 3352.0
Python Basics en 95.0 226.0 157.0

Group weighted average

Since operations between columns in a DataFrame or two Series are possible, we can calculate the group-weighted
average, for example:

[16]: df3 = pd.DataFrame(
{

"category": ["de", "de", "de", "de", "en", "en", "en", "en"],
"data": np.random.randint(100000, size=8),
"weights": np.random.rand(8),

}
)

df3

[16]: category data weights
0 de 41970 0.967458
1 de 53639 0.605162
2 de 16329 0.007546
3 de 14668 0.033338
4 en 99258 0.826135
5 en 7727 0.861027
6 en 13388 0.005460
7 en 27957 0.276577

The group average weighted by category would then be:

[17]: grouped_cat = df3.groupby("category")
get_wavg = lambda g: np.average(g["data"], weights=g["weights"])

grouped_cat.apply(get_wavg)

[17]: category
de 45662.558991
en 48983.872414
dtype: float64

2.4. pandas 147



Python for Data Science, Release 24.1.0

Correlation

An interesting task could be to calculate a DataFrame consisting of the percentage changes.

For this purpose, we first create a function that calculates the pairwise correlation of the 2021-12 column with the
subsequent columns:

[18]: corr = lambda x: x.corrwith(x["2021-12"])

Next, we calculate the percentage change:

[19]: pcts = df.pct_change().dropna()

Finally, we group these percentage changes by year, which can be extracted from each row label with a one-line function
that returns the year attribute of each date label:

[20]: grouped_lang = pcts.groupby("Language")

grouped_lang.apply(corr)

[20]: 2021-12 2022-01 2022-02
Language
de 1.0 1.000000 1.00000
en 1.0 0.699088 0.99781

[21]: grouped_lang.apply(lambda g: g["2021-12"].corr(g["2022-01"]))

[21]: Language
de 1.000000
en 0.699088
dtype: float64

Performance problems with apply

Since the apply method typically acts on each individual value in a Series, the function is called once for each value.
If you have thousands of values, the function will be called thousands of times. This ignores the fast vectorisations of
pandas unless you are using NumPy functions and slow Python is used. For example, we previously grouped the data
by title and then called our top method with apply. Let’s measure the time for this:

[22]: %%timeit
grouped_titles.apply(top)

566 µs ± 8.04 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

We can get the same result without applying by passing the DataFrame to our top method:

[23]: %%timeit
top(df)

43.8 µs ± 693 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

This calculation is 18 times faster.

148 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

Optimising apply with Cython

It is not always easy to find an alternative for apply. However, numerical operations like our top method can be made
faster with Cython. To use Cython in Jupyyter, we use the following IPython magic:

[24]: %load_ext Cython

Then we can define our top function with Cython:

[25]: %%cython
def top_cy(df, n=5, column="2021-12"):

return df.sort_values(by=column, ascending=False)[:n]

[26]: %%timeit
grouped_titles.apply(top_cy)

565 µs ± 7.08 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

We haven’t really gained much with this yet. Further optimisation possibilities would be to define the type in the Cython
code with cpdef. For this, however, we would have to modify our method, because then no DataFrame can be passed.

2.4.16 Pivot tables and crosstabs

A pivot table is a data summary tool often found in spreadsheet and other data analysis software. It summarises a table
of data by one or more keys and arranges the data in a rectangle, with some of the group keys along the rows and some
along the columns. Pivot tables in Python with pandas are made possible by the groupby function in combination with
reshaping operations using hierarchical indexing. DataFrame has a pivot_table method, and there is also a top-level
function pandas.pivot_table. pivot_table not only provides a convenient interface to groupby, but can also add
partial sums (margins).

Suppose we wanted to compute a table of group averages (the default aggregation type of pivot_table) ordered by
title and language in the rows:

[1]: import numpy as np
import pandas as pd

[2]: df = pd.DataFrame(
{

"Title": [
"Jupyter Tutorial",
"Jupyter Tutorial",
"PyViz Tutorial",
"PyViz Tutorial",
"Python Basics",
"Python Basics",

],
"Language": ["de", "en", "de", None, "de", "en"],
"2021-12": [30134, 6073, 4873, None, 427, 95],
"2022-01": [33295, 7716, 3930, None, 276, 226],
"2022-02": [19651, 6547, 2573, None, 525, 157],

}
)

df

2.4. pandas 149

https://cython.org/
https://en.wikipedia.org/wiki/Pivot_table
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pivot_table.html
https://pandas.pydata.org/docs/reference/api/pandas.pivot_table.html


Python for Data Science, Release 24.1.0

[2]: Title Language 2021-12 2022-01 2022-02
0 Jupyter Tutorial de 30134.0 33295.0 19651.0
1 Jupyter Tutorial en 6073.0 7716.0 6547.0
2 PyViz Tutorial de 4873.0 3930.0 2573.0
3 PyViz Tutorial None NaN NaN NaN
4 Python Basics de 427.0 276.0 525.0
5 Python Basics en 95.0 226.0 157.0

[3]: df.pivot_table(index=["Title", "Language"])

[3]: 2021-12 2022-01 2022-02
Title Language
Jupyter Tutorial de 30134.0 33295.0 19651.0

en 6073.0 7716.0 6547.0
PyViz Tutorial de 4873.0 3930.0 2573.0
Python Basics de 427.0 276.0 525.0

en 95.0 226.0 157.0

This could also have been done directly with groupby.

Now let’s say we want to get the mean of hits of all languages per title for each individual month. For this I will enter
Title in the table columns and the months in the rows:

[4]: df.pivot_table(columns="Title")

[4]: Title Jupyter Tutorial PyViz Tutorial Python Basics
2021-12 18103.5 4873.0 261.0
2022-01 20505.5 3930.0 251.0
2022-02 13099.0 2573.0 341.0

Alternatively, we can keep the languages as columns and add the mean values by specifying margins=True:

[5]: df.pivot_table(columns=["Title", "Language"], margins=True)

[5]: Title Jupyter Tutorial PyViz Tutorial \
Language de en All de All
2021-12 30134.0 6073.0 18103.5 4873.0 4873.0
2022-01 33295.0 7716.0 20505.5 3930.0 3930.0
2022-02 19651.0 6547.0 13099.0 2573.0 2573.0

Title Python Basics
Language de en All
2021-12 427.0 95.0 261.0
2022-01 276.0 226.0 251.0
2022-02 525.0 157.0 341.0

To use an aggregation function other than mean, pass it to the keyword argument aggfunc. With sum, for example,
you get the sum:

[6]: df.pivot_table(columns=["Title", "Language"], aggfunc=sum, margins=True)

[6]: Title Jupyter Tutorial PyViz Tutorial \
Language de en All de All
2021-12 30134.0 6073.0 36207.0 4873.0 4873.0
2022-01 33295.0 7716.0 41011.0 3930.0 3930.0

(continues on next page)

150 Chapter 2. Workspace



Python for Data Science, Release 24.1.0

(continued from previous page)

2022-02 19651.0 6547.0 26198.0 2573.0 2573.0

Title Python Basics
Language de en All
2021-12 427.0 95.0 522.0
2022-01 276.0 226.0 502.0
2022-02 525.0 157.0 682.0

pivot_table options:

Function
name

Description

values column name(s) to aggregate; by default, all numeric columns are aggregated
index column names or other group keys to be grouped in the rows of the resulting pivot table
columns column names or other group keys to be grouped in the columns of the resulting pivot table
aggfunc aggregation function or list of functions (by default mean); can be any function valid in a groupby

context
fill_value replaces missing values in the result table
dropna if True, columns whose entries are all NA are ignored
margins inserts row/column subtotals and grand totals (default: False)
margins_name name used for row/column labels if margins=True is passed, default is All.
observed For categorical group keys, if True, only the observed category values are displayed in the keys

and not all categories

Crosstabs

A crosstab is a special case of a pivot table that calculates the frequency of groups. For example, in the context of
an analysis of this data, we might want to determine which title was published in which language, so we could use
pivot_table for this, but the function pandas.crosstab is more convenient.

[7]: pd.crosstab(df.Title, df.Language)

[7]: Language de en
Title
Jupyter Tutorial 1 1
PyViz Tutorial 1 0
Python Basics 1 1

The first two arguments for crosstab can each be either an array or a series or a list of arrays.

With margins=True we can also calculate the sums of the columns and rows as well as the total sum:

[8]: pd.crosstab(df.Title, df.Language, margins=True)

[8]: Language de en All
Title
Jupyter Tutorial 1 1 2
PyViz Tutorial 1 0 1
Python Basics 1 1 2
All 3 2 5

2.4. pandas 151

https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html


Python for Data Science, Release 24.1.0

2.4.17 Convert dtype

Sometimes the pandas data types do not fit really well. This can be due to serialisation formats that do not contain
type information, for example. However, sometimes you should also change the type to achieve better performance –
either more manipulation possibilities or less memory requirements. In the following examples, we will make different
conversions of a Series:

[1]: import numpy as np
import pandas as pd

[2]: rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))

[3]: s

[3]: 0 0.330852
1 0.703606
2 -0.773463
3 -0.814739
4 1.677859
5 0.992312
6 0.175644
dtype: float64

Automatic conversion

pandas.Series.convert_dtypes tries to convert a Series to a type that supports NA. In the case of our Series, the type
is changed from float64 to Float64:

[4]: s.convert_dtypes()

[4]: 0 0.330852
1 0.703606
2 -0.773463
3 -0.814739
4 1.677859
5 0.992312
6 0.175644
dtype: Float64

Unfortunately, however, with convert_dtypes I have little control over what data type is converted to. Therefore, I
prefer pandas.Series.astype:

[5]: s.astype("Float32")

[5]: 0 0.330852
1 0.703606
2 -0.773463
3 -0.814739
4 1.677859
5 0.992312
6 0.175644
dtype: Float32

152 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.Series.convert_dtypes.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.astype.html


Python for Data Science, Release 24.1.0

Using the correct type can save memory. The usual data type is 8 bytes wide, for example int64 or float64. If you
can use a narrower type, this will significantly reduce memory consumption, allowing you to process more data. You
can use NumPy to check the limits of integer and float types:

[6]: np.iinfo("int64")

[6]: iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)

[7]: np.finfo("float32")

[7]: finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32)

[8]: np.finfo("float64")

[8]: finfo(resolution=1e-15, min=-1.7976931348623157e+308, max=1.7976931348623157e+308,␣
→˓dtype=float64)

Memory usage

To calculate the memory consumption of the Series, you can use pandas.Series.nbytes to determine the memory used
by the data. pandas.Series.memory_usage also records the index memory and the data type. With deep=True you can
also determine the memory consumption at system level.

[9]: s.nbytes

[9]: 56

[10]: s.astype("Float32").nbytes

[10]: 35

[11]: s.memory_usage()

[11]: 188

[12]: s.astype("Float32").memory_usage()

[12]: 167

[13]: s.memory_usage(deep=True)

[13]: 188

String and category types

The pandas.Series.astype method can also convert numeric series into strings if you pass str. Note the dtype in the
following example:

[14]: s.astype(str)

[14]: 0 0.33085233447486595
1 0.7036061214691522
2 -0.7734631836438829
3 -0.8147390382513203

(continues on next page)

2.4. pandas 153

https://pandas.pydata.org/docs/reference/api/pandas.Series.nbytes.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.memory_usage.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.astype.html


Python for Data Science, Release 24.1.0

(continued from previous page)

4 1.6778586038914356
5 0.9923123929031976
6 0.17564372049973478
dtype: object

[15]: s.astype(str).memory_usage()

[15]: 188

[16]: s.astype(str).memory_usage(deep=True)

[16]: 661

To convert to a categorical type, you can pass 'category' as the type:

[17]: s.astype(str).astype("category")

[17]: 0 0.33085233447486595
1 0.7036061214691522
2 -0.7734631836438829
3 -0.8147390382513203
4 1.6778586038914356
5 0.9923123929031976
6 0.17564372049973478
dtype: category
Categories (7, object): ['-0.7734631836438829', '-0.8147390382513203', '0.
→˓17564372049973478', '0.33085233447486595', '0.7036061214691522', '0.9923123929031976',
→˓'1.6778586038914356']

A categorical Series is useful for string data and can lead to large memory savings. This is because when converting
to categorical data, pandas no longer uses Python strings for each value, but repeating values are not duplicated. You
still have all the features of the str attribute, but you save a lot of memory when you have a lot of duplicate values and
you increase performance because you don’t have to do as many string operations.

[18]: s.astype("category").memory_usage(deep=True)

[18]: 495

Ordered categories

To create ordered categories, you need to define your own pandas.CategoricalDtype:

[19]: from pandas.api.types import CategoricalDtype

sorted = pd.Series(sorted(set(s)))
cat_dtype = CategoricalDtype(categories=sorted, ordered=True)

s.astype(cat_dtype)

[19]: 0 0.330852
1 0.703606
2 -0.773463

(continues on next page)

154 Chapter 2. Workspace

https://pandas.pydata.org/docs/reference/api/pandas.CategoricalDtype.html


Python for Data Science, Release 24.1.0

(continued from previous page)

3 -0.814739
4 1.677859
5 0.992312
6 0.175644
dtype: category
Categories (7, float64): [-0.814739 < -0.773463 < 0.175644 < 0.330852 < 0.703606 < 0.
→˓992312 < 1.677859]

[20]: s.astype(cat_dtype).memory_usage(deep=True)

[20]: 495

The following table lists the types you can pass to astype.

Data type Description
str, 'str' convert to Python string
'string' convert to Pandas string with pandas.NA
int, 'int', 'int64' convert to NumPy int64
'int32', 'uint32' convert to NumPy int32
'Int64' convert to pandas Int64 with pandas.NA
float, 'float', 'float64' convert to floats
'category' convert to CategoricalDtype with pandas.NA

Conversion to other data types

The pandas.Series.to_numpy method or the pandas.Series.values property gives us a NumPy array of values, and
pandas.Series.to_list returns a Python list of values. Why would you want to do this? pandas objects are usually
much more user-friendly and the code is easier to read. Also, python lists will be much slower to process. With
pandas.Series.to_frame you can create a DataFrame with a single column, if necessary:

[21]: s.to_frame()

[21]: 0
0 0.330852
1 0.703606
2 -0.773463
3 -0.814739
4 1.677859
5 0.992312
6 0.175644

The function pandas.to_datetime can also be useful to convert values in pandas to date and time.

2.4. pandas 155

https://pandas.pydata.org/docs/reference/api/pandas.Series.to_numpy.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.values.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.to_list.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.to_frame.html
https://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html


Python for Data Science, Release 24.1.0

156 Chapter 2. Workspace



CHAPTER

THREE

READ, PERSIST AND PROVIDE DATA

You can get an overview of public repositories with research data e.g. in Open data.

In addition to specific Python libraries for accessing Overview and Geodata, we will introduce you to different serial-
isation formats and three tools in more detail that make data accessible:

• pandas IO tools

• httpx

• Intake

See also:
pandas I/O API

The pandas I/O API is a set of top level reader functions that return a pandas object. In most cases corresponding
write methods are also available.

Scrapy
Framework for extracting data from websites as JSON, CSV or XML files.

Pattern
Python module for data mining, natural language processing, ML and network analysis.

Web Scraping Reference
Overview of web scraping with Python.

We introduce PostgreSQL, SQLAlchemy and PostGIS for storing relational data, Python objects and geodata.

For the storage of other data types we introduce you to different NoSQL databases and concepts.

Next, we will show you how to provide the data via an Application Programming Interface (API).

With DVC we present you a tool that allows data provenance, i.e. the traceability of the origin of the data and the way
they are created.

Finally in the next chapter you will learn some good practices and helpful Python packages to clean up and validate
data.

157

https://pandas.pydata.org/docs/user_guide/io.html
https://scrapy.org/
https://github.com/clips/pattern
https://blog.hartleybrody.com/web-scraping-cheat-sheet/


Python for Data Science, Release 24.1.0

3.1 Open data

You can get an overview of public repositories with research data e.g. in

• Registry of research data repositories (re3data)

• Awesome Public Datasets

• Public APIs

• Machine learning datasets

• Roboflow Computer Vision Datasets

• DBpedia

• World Health Data Platform/Global Health Observatory

• UNICEF Data

• IATI Registry

• World Bank Open Data

• Open Data Inception

• European data

• GovData.de

• US Census Bureau

• data.gov

• Google Dataset Search

• Google Public Data Search

• Registry of Open Data on AWS

• Yelp Open Dataset

• Kaggle Datasets

• OpenDataMonitor

• Open Data Impact Map

• CKAN

• UC Irvine Machine Learning Repository

• Hugging Face Datasets

• Dataverse Project

• Open Data Kit

• LODUM University of Münster‘s Open Data initiative

• freeCodeCamp open-data

• Reddit Datasets Community

158 Chapter 3. Read, persist and provide data

https://www.re3data.org/
https://github.com/awesomedata/awesome-public-datasets
https://github.com/public-apis/public-apis
https://www.datasetlist.com/
https://public.roboflow.com/
https://www.dbpedia.org/
https://www.who.int/data/gho/
https://data.unicef.org/
https://www.iatiregistry.org/
https://data.worldbank.org/
https://opendatainception.io/
https://data.europa.eu/en
https://www.govdata.de/
https://www.census.gov/data.html
https://www.data.gov/
https://datasetsearch.research.google.com/
https://www.google.com/publicdata/directory
https://registry.opendata.aws/
https://www.yelp.com/dataset
https://www.kaggle.com/datasets
https://project.opendatamonitor.eu
https://opendataimpactmap.org/
https://ckan.org/
https://archive.ics.uci.edu/ml/index.php
https://github.com/huggingface/datasets
https://dataverse.org/
https://opendatakit.org/
https://www.uni-muenster.de/LODUM/
https://github.com/freeCodeCamp/open-data
https://www.reddit.com/r/datasets/


Python for Data Science, Release 24.1.0

3.2 pandas IO tools

pandas has a number of functions for reading table data as DataFrame objects, including

Function Description
pan-
das.read_csv

loads CSV data from a file, URL or file-like object; usually a comma is used as separator

pan-
das.read_fwf

loads fwf (fixed-width files), which is data in column format with a fixed width

pan-
das.read_clipboard

reads data from the clipboard and passes it to read_csv; useful for converting tables from web
pages, among other things

pan-
das.read_excel

reads table data from an Excel XLS or XLSX file

pan-
das.read_hdf

reads HDF5 (Hierarchical Data Format) files

pan-
das.read_html

reads all tables from the specified HTML document

pan-
das.read_json

reads data from a JSON file

pan-
das.read_feather

reads the Feather binary file format

pan-
das.read_orc

reads Apache ORC (Optimized Row Columnar) binary data

pan-
das.read_parquet

reads Apache Parquet binary file format

pan-
das.read_pickle

reads any object stored in Python Pickle format

pan-
das.read_sas

reads a SAS (Statistical Analysis System) data set

pan-
das.read_spss

reads a data file created by SPSS

pan-
das.read_sql

reads the results of an SQL query (with SQLAlchemy) as a pandas DataFrame

pan-
das.read_sql_table

reads an entire SQL table (with SQLAlchemy) as a pandas DataFrame (corresponds to a query that
selects everything Rin this table with read_sql)

pan-
das.read_stata

reads a data set from the Stata file format

See also:
pandas I/O API

The pandas I/O API is a collection of reader functions that return a pandas object. In most cases, corresponding
writer methods are also available.

First, I will give an overview of some of these functions that are designed to convert text and excel data into a pandas
DataFrame: CSV , JSON and Excel. The optional arguments for these functions can be divided into the following
categories:

Indexing
Can one or more columns index the returned DataFrame, and whether the column names should be retrieved
from the file, the arguments you specify, or not at all.

Type inference and data conversion
This includes the custom value conversions and the custom list of missing value flags.

3.2. pandas IO tools 159

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_clipboard.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_clipboard.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_hdf.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_html.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_html.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_feather.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_feather.html
https://arrow.apache.org/docs/python/feather.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_orc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_orc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_parquet.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_parquet.html
https://parquet.apache.org
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_pickle.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sas.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sas.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_spss.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_spss.html
https://en.wikipedia.org/wiki/SPSS
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql_table.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sql_table.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_stata.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_stata.html
https://www.stata.com
https://pandas.pydata.org/docs/user_guide/io.html


Python for Data Science, Release 24.1.0

Date and time parsing
This includes the combining capability, including combining date and time information spread across multiple
columns into a single column in the result.

Iteration
Support for iteration over parts of very large files.

Problems with unclean data
Skipping of rows or footers, comments or other trivia such as numeric data with thousands separated by commas.

Since data can be very messy in the real world, some of the data loading functions (especially read_csv) have accu-
mulated a long list of optional arguments over time. The online documentation for pandas contains many examples of
each function.

Some of these functions, like pandas.read_csv, perform type inference because the data types of the columns are
not part of the data format. This means that you don’t necessarily have to specify which columns are numeric, integer,
boolean or string. With other data formats such as HDF5, ORC and Parquet, however, the data type information is
already embedded in the format.

3.3 Serialisation formats

Data serialisation converts structured data to a format that allows sharing and or storing of the data. Before serialising
data you have to decide how the data should be structured – flat or nested. The differences in the two styles are shown
in the examples below:

Flat JSON style:

{
"id" : "veit",
"first_name" : "Veit",
"last_name" : "Schiele",

}

Nested JSON style:

{
"veit" : {
"first_name" : "Veit",
"last_name" : "Schiele",

},
}

3.3.1 Data serialisation

If the data is to be serialised flat, Python offers two functions:

160 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

repr

repr() outputs a printable representation of the input, for example:

[1]: data = { "id" : "veit", "first_name": "Veit", "last_name": "Schiele" }

print(repr(data))

{'id': 'veit', 'first_name': 'Veit', 'last_name': 'Schiele'}

[2]: with open("data.txt", "w") as f:
f.write(repr(data))

ast.literal_eval

The ast.literal_eval() function parses and analyses the Python data type of an expression. Supported data types are
strings, numbers, tuples, lists, dictionaries and None.

[3]: import ast

with open("data.txt", "r") as f:
d = ast.literal_eval(f.read())

print(d)

{'id': 'veit', 'first_name': 'Veit', 'last_name': 'Schiele'}

3.3.2 CSV

3.3. Serialisation formats 161

https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/ast.html#ast.literal_eval
https://python-basics-tutorial.readthedocs.io/en/latest/types/strings.html
https://python-basics-tutorial.readthedocs.io/en/latest/types/numbers.html
https://python-basics-tutorial.readthedocs.io/en/latest/types/tuples.html
https://python-basics-tutorial.readthedocs.io/en/latest/types/lists.html
https://python-basics-tutorial.readthedocs.io/en/latest/types/dicts.html
https://python-basics-tutorial.readthedocs.io/en/latest/types/none.html


Python for Data Science, Release 24.1.0

Overview

Data
struc-
ture
sup-
port

-- CSV is used to store tabular data, but unlike other serialisation formats reviewed here, it’s not suitable
for (nested) objects.

Stan-
dard-
isa-
tion

-- CSV is not well standardised: neither the encoding is defined nor the separation of the cell contents
(comma, semicolon etc.).

Schema
IDL

-- No

Lan-
guage
sup-
port

++ The CSV format is well supported by almost every programming language. A csv module is included
in the Python standard library and pandas can read a CSV file straight into a Dataframe.
Even if CSV is the only format described here that is well supported by spreadsheet programs like Ex-
cel, you should see if you can import more structured Excel files directly, e.g. with pandas read_excel.

Hu-
man
read-
abil-
ity

+- CSV is readable especially for integer or decimal numbers with the same character length. In all other
cases it will be difficult to identify the corresponding columns.

Speed + CSV is very fast to serialise and deserialise.
File
size

++ Only Protocol Buffers (Protobuf) should be more compact.

See also:
• RFC 4180
• xsv

Example

iris.csv

5.1,0.222222222,3.5,0.625,1.4,0.06779661,0.2,0.041666667,setosa
4.9,0.166666667,3,0.416666667,1.4,0.06779661,0.2,0.041666667,setosa
4.7,0.111111111,3.2,0.5,1.3,0.050847458,0.2,0.041666667,setosa
4.6,0.083333333,3.1,0.458333333,1.5,0.084745763,0.2,0.041666667,setosa
5,0.194444444,3.6,0.666666667,1.4,0.06779661,0.2,0.041666667,setosa
...

162 Chapter 3. Read, persist and provide data

https://docs.python.org/3/library/csv.html
https://pandas.pydata.org/
https://pandas.pydata.org/docs/user_guide/io.html#io-excel-reader
https://datatracker.ietf.org/doc/html/rfc4180.html
https://github.com/BurntSushi/xsv
https://sourceforge.net/projects/irisdss/files/IRIS.csv


Python for Data Science, Release 24.1.0

CSV example

[1]: import pandas as pd

After importing pandas, we first read a csv file with read_csv:

[2]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv"
)

[2]: Python basics en Veit Schiele BSD-3-Clause 2021-10-28
0 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
1 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
2 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

As you can see, this file has no header. To give the DataFrame a header, you have several options. You can allow pandas
to assign default column names, or you can define the names yourself:

[3]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
header=None,

)

[3]: 0 1 2 3 4
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

[4]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
names=["Title", "Language", "Authors", "License", "Publication date"],

)

[4]: Title Language Authors License Publication date
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

Suppose you want the Authors column to be the index of the returned DataFrame. You can either specify that you
want the column at index 3 or with the name Authors by using the argument index_col:

[5]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
index_col=["Authors"],
names=["Title", "Language", "Authors", "License", "Publication date"],

)

[5]: Title Language License Publication date
Authors

(continues on next page)

3.3. Serialisation formats 163



Python for Data Science, Release 24.1.0

(continued from previous page)

Veit Schiele Python basics en BSD-3-Clause 2021-10-28
Veit Schiele Jupyter Tutorial en BSD-3-Clause 2019-06-27
Veit Schiele Jupyter Tutorial de BSD-3-Clause 2020-10-26
Veit Schiele PyViz Tutorial en BSD-3-Clause 2020-04-13

In case you want to build a hierarchical index from several columns, pass a list of column numbers or names:

[6]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
index_col=[2, 0],
names=["Title", "Language", "Authors", "License", "Publication date"],

)

[6]: Language License Publication date
Authors Title
Veit Schiele Python basics en BSD-3-Clause 2021-10-28

Jupyter Tutorial en BSD-3-Clause 2019-06-27
Jupyter Tutorial de BSD-3-Clause 2020-10-26
PyViz Tutorial en BSD-3-Clause 2020-04-13

In some cases, a table does not have a fixed separator, but uses several spaces or some other pattern to separate fields.
Suppose a file looks like this:

[7]: list(open("books.txt"))

[7]: [' Title Language Authors License Publication date\n',
'1 Python basics en Veit Schiele BSD-3-Clause 2021-10-28\n',
'2 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27\n',
'3 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26\n',
'4 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13\n']

In such cases, you can pass a regular expression as a separator for read_csv. This can be expressed by the regular
expression \s\s+, so then we have:

[8]: pd.read_csv("books.txt", sep="\s\s+", engine="python")

[8]: Title Language Authors License Publication date
1 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
2 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
3 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
4 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

Since there was one column name less than the number of data rows, read_csv infers that in this case the first column
should be the index of the DataFrame.

The parser functions have many additional arguments that help you handle the wide variety of exception file formats
that occur. For example, you can skip individual lines of a file with skiprows:

[9]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
skiprows=[2],
names=["Title", "Language", "Authors", "License", "Publication date"],

)

164 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

[9]: Title Language Authors License Publication date
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

Dealing with missing values is an important and often complicated part of parsing data. Missing data is usually either
not present (empty string) or indicated by a placeholder. By default, pandas uses a number of common placeholders,
such as NA and NULL:

[10]: df = pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
names=[

"Title",
"Language",
"Authors",
"License",
"Publication date",
"doi",

],
)

df

[10]: Title Language Authors License Publication date doi
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28 NaN
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27 NaN
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26 NaN
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13 NaN

[11]: df.isna()

[11]: Title Language Authors License Publication date doi
0 False False False False False True
1 False False False False False True
2 False False False False False True
3 False False False False False True

The na_values option can take either a list or a series of strings to account for missing values:

[12]: pd.read_csv(
"https://raw.githubusercontent.com/veit/python-basics-tutorial-de/main/docs/save-

→˓data/books.csv",
na_values=["BSD-3-Clause"],
names=[

"Title",
"Language",
"Authors",
"License",
"Publication date",
"doi",

],
)

3.3. Serialisation formats 165



Python for Data Science, Release 24.1.0

[12]: Title Language Authors License Publication date doi
0 Python basics en Veit Schiele NaN 2021-10-28 NaN
1 Jupyter Tutorial en Veit Schiele NaN 2019-06-27 NaN
2 Jupyter Tutorial de Veit Schiele NaN 2020-10-26 NaN
3 PyViz Tutorial en Veit Schiele NaN 2020-04-13 NaN

The most frequent arguments of the function read_csv:

Argu-
ment

Description

path String specifying the location in the file system, a URL or a file-like object
sep
or
delimiter

String or regular expression to separate the fields in each row

header Row number to be used as column name; default is 0, i.e. the first row, but should be None if there is no
header row

index_colRow numbers or names to be used as row index in the result; can be a single name/number or a list of them
for a hierarchical index

names List of column names
skiprowsNumber of rows to be ignored at the beginning of the file or list of row numbers starting at 0 to be skipped
na_valuessequence of values to be replaced by NA
commentcharacter to separate comments from the end of the line
parse_datesAttempt to parse data with datetime; defaults to False. If True, attempts to parse all columns. Otherwise,

a list of column numbers or names to parse can be specified. If the list element is a tuple or a list, multiple
columns are combined and converted to a date, for example if the date and time are split between two
columns

keep_date_colif columns are combined to parse the date, the combined columns are kept; default: False
convertersDict containing the column number of names mapped to functions, for example {'Titel': f} would

apply the function f to all values in the column Title
dayfirsttreat as an international format when parsing potentially ambiguous dates, for example 28/6/2021→ 28.

Juni 2021; False by default
date_parserfunction to use for parsing dates
nrows Number of lines to read from the beginning of the file.
iteratorReturn a TextFileReader object to read the file piece by piece; this object can also be used with the with

statement
chunksizeFor the iteration, the size of the data blocks.
skip_footernumber of lines to be ignored at the end of the file
verboseoutputs various information about the parser output, for example the number of missing values in non-

numeric columns
encodingText encoding for Unicode, for example utf-8 for UTF-8 encoded text
squeezeif the parsed data contains only one column, a Series is returned
thousandsSeparator for thousands, for example , or .

166 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

Reading in text files piece by piece

If you want to process very large files, you can also read in only a small part of a file or iterate through smaller parts of
a file.

Before we look at a large file, we reduce the number of lines displayed with options.display.max_rows:

[13]: pd.options.display.max_rows = 10

[14]: pd.read_csv("example.csv")

[14]: Date Mon. Tues. Wed. Thurs. Fri. Sat. \
0 1996-01-01 0.129453 -0.023836 1.121460 1.698286 -0.598506 1.042221
1 1996-01-02 -0.094021 -0.727942 0.698641 -1.198040 1.927505 1.147445
2 1996-01-03 -0.560857 0.145222 -0.990202 1.200214 0.717339 1.117095
3 1996-01-04 -0.169755 -0.677391 -1.533519 -0.343477 -0.109705 1.038236
4 1996-01-05 1.344705 -1.817261 0.460991 -0.839633 0.265814 0.477659
... ... ... ... ... ... ... ...
9127 2020-12-27 -0.881800 -0.074270 -0.351769 1.381641 -0.049548 1.664180
9128 2020-12-28 -0.143386 0.198217 -1.243861 1.196576 1.338166 -0.212333
9129 2020-12-29 0.398787 -0.848786 1.791707 -1.167592 -0.033881 -0.285559
9130 2020-12-30 0.587846 0.411580 1.150380 0.444638 -1.093577 0.605456
9131 2020-12-31 0.736350 0.436292 -0.260171 -0.066066 -0.328324 -0.586792

Sun.
0 -0.726412
1 -1.134103
2 -1.793565
3 -0.799088
4 0.636383
... ...
9127 -1.032204
9128 -0.023131
9129 -0.323477
9130 1.463345
9131 -1.204582

[9132 rows x 8 columns]

If you only want to read a small number of lines (without reading the whole file), you can specify this with nrows:

[15]: pd.read_csv("example.csv", nrows=7)

[15]: Date Mon. Tues. Wed. Thurs. Fri. Sat. \
0 1996-01-01 0.129453 -0.023836 1.121460 1.698286 -0.598506 1.042221
1 1996-01-02 -0.094021 -0.727942 0.698641 -1.198040 1.927505 1.147445
2 1996-01-03 -0.560857 0.145222 -0.990202 1.200214 0.717339 1.117095
3 1996-01-04 -0.169755 -0.677391 -1.533519 -0.343477 -0.109705 1.038236
4 1996-01-05 1.344705 -1.817261 0.460991 -0.839633 0.265814 0.477659
5 1996-01-06 -0.354445 -0.065182 -1.244963 -0.559732 0.042362 -0.303712
6 1996-01-07 1.460922 0.164412 0.883960 -0.833642 0.001582 1.138469

Sun.
0 -0.726412

(continues on next page)

3.3. Serialisation formats 167



Python for Data Science, Release 24.1.0

(continued from previous page)

1 -1.134103
2 -1.793565
3 -0.799088
4 0.636383
5 0.067632
6 0.561618

To read a file piece by piece, you can specify the number of lines with chunksize:

[16]: pd.read_csv("example.csv", chunksize=1000)

[16]: <pandas.io.parsers.readers.TextFileReader at 0x11fa09110>

The TextFileReader object returned by read_csv allows iteration over parts of the file according to the chunksize.
For example, we can iterate over the example.csv file and aggregate the number of values in the Date column as
follows:

[17]: chunks = pd.read_csv("example.csv", chunksize=1000)

serie = pd.Series([], dtype="float64")
for chunk in chunks:

values = serie.add(chunk["Date"].value_counts(), fill_value=0)

sorted_values = values.sort_values(ascending=False)

[18]: sorted_values[:10]

[18]: Date
2020-08-22 1.0
2020-09-07 1.0
2020-08-24 1.0
2020-08-25 1.0
2020-08-26 1.0
2020-08-27 1.0
2020-08-28 1.0
2020-08-29 1.0
2020-08-30 1.0
2020-08-31 1.0
dtype: float64

TextFileReader also has a get_chunk method that allows you to read pieces of any size.

Write DataFrame and Series as a CSV file

Data can also be exported in a comma-separated format. With the method pandas.DataFrame.to_csv we can write
the data into a comma-separated file:

[19]: df.to_csv("out.csv")

Of course, other delimiters can also be used, for example to write to sys.stdout, so that the text result is output on
the console and not in a file:

168 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

[20]: import sys

[21]: df.to_csv(sys.stdout, sep="|")

|Title|Language|Authors|License|Publication date|doi
0|Python basics|en|Veit Schiele|BSD-3-Clause|2021-10-28|
1|Jupyter Tutorial|en|Veit Schiele|BSD-3-Clause|2019-06-27|
2|Jupyter Tutorial|de|Veit Schiele|BSD-3-Clause|2020-10-26|
3|PyViz Tutorial|en|Veit Schiele|BSD-3-Clause|2020-04-13|

Missing values appear in the output as empty strings. You may want to mark them with a different placeholder:

[22]: df.to_csv(sys.stdout, na_rep="NaN")

,Title,Language,Authors,License,Publication date,doi
0,Python basics,en,Veit Schiele,BSD-3-Clause,2021-10-28,NaN
1,Jupyter Tutorial,en,Veit Schiele,BSD-3-Clause,2019-06-27,NaN
2,Jupyter Tutorial,de,Veit Schiele,BSD-3-Clause,2020-10-26,NaN
3,PyViz Tutorial,en,Veit Schiele,BSD-3-Clause,2020-04-13,NaN

If no other options are given, both the row and column labels are written. Both can be deactivated:

[23]: df.to_csv(sys.stdout, index=False, header=False)

Python basics,en,Veit Schiele,BSD-3-Clause,2021-10-28,
Jupyter Tutorial,en,Veit Schiele,BSD-3-Clause,2019-06-27,
Jupyter Tutorial,de,Veit Schiele,BSD-3-Clause,2020-10-26,
PyViz Tutorial,en,Veit Schiele,BSD-3-Clause,2020-04-13,

You can also write only a subset of the columns, in an order of your choosing:

[24]: df.to_csv(
sys.stdout,
index=False,
columns=["Title", "Language", "Authors", "Publication date"],

)

Title,Language,Authors,Publication date
Python basics,en,Veit Schiele,2021-10-28
Jupyter Tutorial,en,Veit Schiele,2019-06-27
Jupyter Tutorial,de,Veit Schiele,2020-10-26
PyViz Tutorial,en,Veit Schiele,2020-04-13

Working with the csv module of Python

Most forms of table data can be loaded using functions such as pandas.read_csv. However, in some cases manual
processing may be required. It is not uncommon to receive a file with one or more incorrect rows that cause read_csv
to fail. For any file with a single-digit delimiter, you can use Python’s built-in csv module. To use it, pass an open file
or file-like object to csv.reader:

[25]: import csv

f = open("out.csv")
(continues on next page)

3.3. Serialisation formats 169

https://docs.python.org/3/library/csv.html


Python for Data Science, Release 24.1.0

(continued from previous page)

reader = csv.reader(f)

for line in reader:
print(line)

['', 'Title', 'Language', 'Authors', 'License', 'Publication date', 'doi']
['0', 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28', '']
['1', 'Jupyter Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2019-06-27', '']
['2', 'Jupyter Tutorial', 'de', 'Veit Schiele', 'BSD-3-Clause', '2020-10-26', '']
['3', 'PyViz Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2020-04-13', '']

Dialekte

csv-Dateien gibt es in vielen verschiedenen Varianten. Das Python csv-Modul kommt bereits mit drei verschiedenen
Dialekten:

Parameter excel excel-tab unix
delimiter ',' '\\t' ','
quotechar '\"' '\"' '\"'
doublequote True True True
skipinitialspace False False False
lineterminator '\\r\\n' '\\r\\n' '\\n'
quoting csv.QUOTE_MINIMAL csv.QUOTE_MINIMAL csv.QUOTE_ALL
escapechar None None None

You can also use it to define your own format with a different separator, a different string convention or a different
end-of-line character. Registering your own dialect is recommended for this. Possible options and functions of csv.
register_dialect are:

Argu-
ment

Description

delimiterOne-character string to separate fields; default value is ,.
lineterminatorLine terminator for writing; default value is \r\n. Reader ignores this and recognises cross-platform

line delimiters.
quotecharQuotation marks for fields with special characters (like a separator); default is ".
quoting Quoting convention. Options include csv.QUOTE_ALL – quote all fields, csv.QUOTE_MINIMAL – quote

only fields with special characters like the delimiter, csv.QUOTE_NONNUMERIC, and csv.QUOTE_NONE
– no quotes. The default value is QUOTE_MINIMAL.

skipinitialspaceIgnore spaces after each delimiter; default is False.
doublequoteif True, quotes are doubled within a field.
escapecharString to bypass the delimiter when quoting is set to csv.QUOTE_NONE; default is disabled.

[26]: csv.register_dialect(
"my_csv_dialect",
lineterminator="\n",
delimiter=",",
quotechar="'",

(continues on next page)

170 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

quoting=csv.QUOTE_MINIMAL,
)

Now the CSV file can be opened with:

[27]: with open("out.csv") as f:
reader = csv.reader(f, "my_csv_dialect")
for line in reader:

print(line)

['', 'Title', 'Language', 'Authors', 'License', 'Publication date', 'doi']
['0', 'Python basics', 'en', 'Veit Schiele', 'BSD-3-Clause', '2021-10-28', '']
['1', 'Jupyter Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2019-06-27', '']
['2', 'Jupyter Tutorial', 'de', 'Veit Schiele', 'BSD-3-Clause', '2020-10-26', '']
['3', 'PyViz Tutorial', 'en', 'Veit Schiele', 'BSD-3-Clause', '2020-04-13', '']

Then we can create a Dict with data columns by using Dict Comprehensions and iterating over the values from values
with zip. Note that this requires a lot of storage space for large files, as the rows are converted into columns:

[28]: with open("out.csv") as f:
reader = csv.reader(f, "my_csv_dialect")
lines = list(reader)
header, values = lines[0], lines[1:]
data_dict = {h: v for h, v in zip(header, zip(*values))}

data_dict

[28]: {'': ('0', '1', '2', '3'),
'Title': ('Python basics',
'Jupyter Tutorial',
'Jupyter Tutorial',
'PyViz Tutorial'),
'Language': ('en', 'en', 'de', 'en'),
'Authors': ('Veit Schiele', 'Veit Schiele', 'Veit Schiele', 'Veit Schiele'),
'License': ('BSD-3-Clause', 'BSD-3-Clause', 'BSD-3-Clause', 'BSD-3-Clause'),
'Publication date': ('2021-10-28', '2019-06-27', '2020-10-26', '2020-04-13'),
'doi': ('', '', '', '')}

To write files with separators manually, you can use csv.writer. It accepts an open, writable file object and the same
dialect and format options as csv.reader:

[29]: with open("new.csv", "w") as f:
writer = csv.writer(f, "my_csv_dialect")
writer.writerow(("", "Titel", "Sprache", "Autor*innen"))
writer.writerow(("1", "Python basics", "en", "Veit Schiele"))
writer.writerow(("2", "Jupyter Tutorial", "en", "Veit Schiele"))

[30]: list(open("new.csv"))

[30]: [',Titel,Sprache,Autor*innen\n',
'1,Python basics,en,Veit Schiele\n',
'2,Jupyter Tutorial,en,Veit Schiele\n']

3.3. Serialisation formats 171

https://www.python.org/dev/peps/pep-0274/
https://docs.python.org/3/library/functions.html#zip


Python for Data Science, Release 24.1.0

3.3.3 JSON

Overview

Data
struc-
ture
sup-
port

+- JSON supports array and map or object structures and many different data types including strings,
numbers, boolean, null etc., but no date formats.
However, JSON does not support all data types of JavaScript: NaN and Infinity become null.
Note that the JSON syntax also don’t support comments and you have to work arround for example with
a __comment__ key/value pair.

Stan-
dard-
isa-
tion

+ JSON has a formal strongly typed standard (see also RFC 8259). However, JSON data also contains
some pitfalls due to the ambiguity of the JSON specifications:
A JSON parser MUST accept all texts that conform to the JSON grammar (RFC 7159)
and
An implementation may set limits on the size of texts that it accepts. An implementation may set limits on
the maximum depth of nesting. An implementation may set limits on the range and precision of numbers.
An implementation may set limits on the length and character contents of strings (RFC 7158#section-
9).
Unfortunately there is neither a reference implementation nor an official test suite that would show the
expected behaviour – at least JSON_Checker gives some hints.

Schema
IDL

+- Partly with JSON Schema Proposal, JSON Encoding Rules (JER), Kwalify, Rx, JSON-LD or JMES-
Path.
After all, there are many different validators available.

Lan-
guage
sup-
port

++ The JSON format is very well supported by almost every programming language.
The data structure of JSON closely represent objects in many languages for example a Python dict
can be represented as JSON object, and a Python list by a JSON array.

Hu-
man
read-
abil-
ity

+- JSON is a human-readable serialisation format but it does not support comments.

Speed ++ JSON is one of the fastest human-readable formats to serialise and deserialise.
File
size

+- JSON is in the medium range similar to YAML and TOML.

See also:
• JC – JSON Convert

• fx

• gron

• python-json-patch

172 Chapter 3. Read, persist and provide data

https://www.json.org/json-en.html
https://datatracker.ietf.org/doc/html/rfc8259.html
https://datatracker.ietf.org/doc/html/rfc7159.html
https://datatracker.ietf.org/doc/html/rfc7158.html#section-9
https://datatracker.ietf.org/doc/html/rfc7158.html#section-9
http://www.json.org/JSON_checker/
http://json-schema.org/
https://www.itu.int/rec/T-REC-X.697-201710-I/
http://www.kuwata-lab.com/kwalify/
http://rx.codesimply.com/
https://json-ld.org
https://jmespath.org/
https://jmespath.org/
https://json-schema.org/implementations.html#validators
https://github.com/kellyjonbrazil/jc
https://github.com/antonmedv/fx
https://github.com/tomnomnom/gron
https://github.com/stefankoegl/python-json-patch


Python for Data Science, Release 24.1.0

Example

Response of the OSM-Nominatim-API

[
{

'place_id': 234847916,
'licence': 'Data ^A© OpenStreetMap contributors, ODbL 1.0. https://osm.org/

→˓copyright',
'osm_type': 'relation',
'osm_id': 131761,
'boundingbox': ['52.5200695', '52.5232601', '13.4103097', '13.4160798'],
'lat': '52.521670650000004',
'lon': '13.413278026558228',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'class': 'highway',
'type': 'pedestrian',
'importance': 0.6914982526373583

},
{

'place_id': 53256307,
'licence': 'Data ^A© OpenStreetMap contributors, ODbL 1.0. https://osm.org/

→˓copyright',
'osm_type': 'node',
'osm_id': 4389211800,
'boundingbox': ['52.5231653', '52.5232653', '13.414475', '13.414575'],
'lat': '52.5232153',
'lon': '13.414525',
'display_name': 'Alexanderplatz, AlexanderstraÃŸe, Mitte, Berlin, 10178,␣

→˓Deutschland',
'class': 'highway',
'type': 'bus_stop',
'importance': 0.22100000000000003,
'icon': 'https://nominatim.openstreetmap.org/images/mapicons/transport_bus_stop2.

→˓p.20.png'
},
{

'place_id': 90037579,
'licence': 'Data ^A© OpenStreetMap contributors, ODbL 1.0. https://osm.org/

→˓copyright',
'osm_type': 'way',
'osm_id': 23853138,
'boundingbox': ['52.5214702', '52.5217276', '13.4037885', '13.4045026'],
'lat': '52.5215991',
'lon': '13.404112295159964',
'display_name': 'Alexander Plaza, 1, RosenstraÃŸe, Mitte, Berlin, 10178,␣

→˓Deutschland',
'class': 'tourism',
'type': 'hotel',
'importance': 0.11100000000000002,
'icon': 'https://nominatim.openstreetmap.org/images/mapicons/accommodation_

→˓hotel2.p.20.png'
}

]

3.3. Serialisation formats 173



Python for Data Science, Release 24.1.0

JSON example

JSON (short for JavaScript Object Notation) has become one of the standard formats for transmitting data via HTTP
request between web browsers and other applications.

JSON is similar to Python code, except for the null value and the prohibition of commas at the end of lists. The
basic types are objects (dicts), arrays (lists), strings, numbers, Boolean values and null. All keys of an object must be
strings. There are several Python libraries for reading and writing JSON data. I will use json from the Python standard
library here. To convert a JSON string into Python form, I use json.loads:

[1]: import json

f = open("books.json")
data = json.load(f)

for i in data:
print(i)

{'Title': 'Python basics', 'Language': 'en', 'Authors': 'Veit Schiele', 'License': 'BSD-
→˓3-Clause', 'Publication date': '2021-10-28'}
{'Title': 'Jupyter Tutorial', 'Language': 'en', 'Authors': 'Veit Schiele', 'License':
→˓'BSD-3-Clause', 'Publication date': '2019-06-27'}
{'Title': 'Jupyter Tutorial', 'Language': 'de', 'Authors': 'Veit Schiele', 'License':
→˓'BSD-3-Clause', 'Publication date': '2020-10-26'}
{'Title': 'PyViz Tutorial', 'Language': 'en', 'Authors': 'Veit Schiele', 'License': 'BSD-
→˓3-Clause', 'Publication date': '2020-04-13'}

json.dumps, on the other hand, converts a Python object back to JSON:

[2]: json.dumps(data)

[2]: '[{"Title": "Python basics", "Language": "en", "Authors": "Veit Schiele", "License":
→˓"BSD-3-Clause", "Publication date": "2021-10-28"}, {"Title": "Jupyter Tutorial",
→˓"Language": "en", "Authors": "Veit Schiele", "License": "BSD-3-Clause", "Publication␣
→˓date": "2019-06-27"}, {"Title": "Jupyter Tutorial", "Language": "de", "Authors": "Veit␣
→˓Schiele", "License": "BSD-3-Clause", "Publication date": "2020-10-26"}, {"Title":
→˓"PyViz Tutorial", "Language": "en", "Authors": "Veit Schiele", "License": "BSD-3-Clause
→˓", "Publication date": "2020-04-13"}]'

How you convert a JSON object or list of objects into a DataFrame or other data structure for analysis is up to you.
Conveniently, you can pass a list of dicts (which were previously JSON objects) to the DataFrame constructor:

[3]: import pandas as pd

df = pd.DataFrame(data)

df

[3]: Title Language Authors License Publication date
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

174 Chapter 3. Read, persist and provide data

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html#json.dumps


Python for Data Science, Release 24.1.0

pandas.read_json can automatically convert JSON records in certain arrangements into a Series or DataFrame, for
example:

[4]: df2 = pd.read_json("books.json")

df2

[4]: Title Language Authors License Publication date
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

The default options for pandas.read_json assume that each object in the JSON array is a row in the table.

If you want to export data from pandas to JSON, you can use pandas.DataFrame.to_json:

[5]: print(df.to_json())

{"Title":{"0":"Python basics","1":"Jupyter Tutorial","2":"Jupyter Tutorial","3":"PyViz␣
→˓Tutorial"},"Language":{"0":"en","1":"en","2":"de","3":"en"},"Authors":{"0":"Veit␣
→˓Schiele","1":"Veit Schiele","2":"Veit Schiele","3":"Veit Schiele"},"License":{"0":"BSD-
→˓3-Clause","1":"BSD-3-Clause","2":"BSD-3-Clause","3":"BSD-3-Clause"},"Publication date":
→˓{"0":"2021-10-28","1":"2019-06-27","2":"2020-10-26","3":"2020-04-13"}}

[6]: print(df.to_json(orient="records"))

[{"Title":"Python basics","Language":"en","Authors":"Veit Schiele","License":"BSD-3-
→˓Clause","Publication date":"2021-10-28"},{"Title":"Jupyter Tutorial","Language":"en",
→˓"Authors":"Veit Schiele","License":"BSD-3-Clause","Publication date":"2019-06-27"},{
→˓"Title":"Jupyter Tutorial","Language":"de","Authors":"Veit Schiele","License":"BSD-3-
→˓Clause","Publication date":"2020-10-26"},{"Title":"PyViz Tutorial","Language":"en",
→˓"Authors":"Veit Schiele","License":"BSD-3-Clause","Publication date":"2020-04-13"}]

3.3.4 Excel

pandas also supports reading table data stored in Excel 2003 (and higher) files, either with the ExcelFile class or the
pandas.read_excel function. Internally, these tools use the add-on packages xlrd and openpyxl to read XLS and
XLSX files respectively. These must be installed separately from pandas with pipenv.

To use ExcelFile, create an instance by passing a path to an xls or xlsx file:

[1]: import pandas as pd

[2]: xlsx = pd.ExcelFile("library.xlsx")

You can then display the sheets of the file with:

[3]: xlsx.sheet_names

[3]: ['books']

[4]: books = pd.read_excel(xlsx, "books")

books

3.3. Serialisation formats 175

https://pandas.pydata.org/docs/reference/api/pandas.read_json.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html
https://xlrd.readthedocs.io/en/latest/
https://openpyxl.readthedocs.io/en/stable/


Python for Data Science, Release 24.1.0

[4]: Titel Sprache Autor*innen Lizenz Veröffentlichungsdatum
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

If you are reading in multiple sheets of a file, it is quicker to create the Excel file, but you can also just pass the file
name to pandas.read_excel:

[5]: pd.read_excel("library.xlsx", "books")

[5]: Titel Sprache Autor*innen Lizenz Veröffentlichungsdatum
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

To write pandas data in Excel format, you must first create an ExcelWriter and then write data to it using pan-
das.DataFrame.to_excel:

[6]: writer = pd.ExcelWriter("library.xlsx")
books.to_excel(writer, "books")
writer.close()

You can also pass a file path to_excel and thus bypass the ExcelWriter:

[7]: books.to_excel("library.xlsx")

3.3.5 XML/HTML

Overview

Data struc-
ture support

++ XML is very flexible as each element can have attributes and arbitrary child elements.

Standardisa-
tion

++ XML is well standardised, the specification can be found at https://www.w3.org/TR/xml/.
XML supports both DOM style and streaming SAX style parsers.

Schema-IDL ++ XML schema, RELAX NG
Language
support

+ Supported in all major languages, usually with built-in libraries.

Human read-
ability

+- XML is a human-readable serialisation protocol. One disadvantage of XML is it’s verbosity,
in particular it’s descriptive end tags.

Speed + XML is quite fast, although typically slower to parse than JSON.
File size -- XML has the largest file size in comparison.

176 Chapter 3. Read, persist and provide data

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_excel.html
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xmlschema-0/
https://relaxng.org/


Python for Data Science, Release 24.1.0

Example

Listing 1: books.xml

<?xml version="1.0"?>

<!--
SPDX-FileCopyrightText: 2022 Veit Schiele

SPDX-License-Identifier: BSD-3-Clause
-->

<catalog>
<book id="1">
<title>Python basics</title>
<language>en</language>
<author>Veit Schiele</author>
<license>BSD-3-Clause</license>
<date>2021-10-28</date>

</book>
<book id="2">
<title>Jupyter Tutorial</title>
<language>en</language>
<author>Veit Schiele</author>
<license>BSD-3-Clause</license>
<date>2019-06-27</date>

</book>
<book id="3">
<title>Jupyter Tutorial</title>
<language>de</language>
<author>Veit Schiele</author>
<license>BSD-3-Clause</license>
<date>2020-10-26</date>

</book>
<book id="4">
<title>PyViz Tutorial</title>
<language>en</language>
<author>Veit Schiele</author>
<license>BSD-3-Clause</license>
<date>2020-04-13</date>

</book>
</catalog>

See also:
• Home

• Specification

• Validator

• The XML FAQ

3.3. Serialisation formats 177

https://www.w3.org/XML/
https://www.w3.org/TR/REC-xml/
http://validator.w3.org/
http://xml.silmaril.ie/


Python for Data Science, Release 24.1.0

XML/HTML examples

HTML

Python has numerous libraries for reading and writing data in the ubiquitous HTML and XML formats. Examples are
lxml, Beautiful Soup and html5lib. While lxml is generally comparatively much faster, the other libraries are better at
handling corrupted HTML or XML files.

pandas has a built-in function, read_html, which uses libraries like lxml, html5lib and Beautiful Soup to automatically
parse tables from HTML files as DataFrame objects. These have to be installed additionally. With Spack you can
provide lxml, BeautifulSoup and html5lib in your kernel:

$ spack env activate python-311
$ spack install py-lxml py-beautifulsoup4~html5lib~lxml py-html5lib

Alternatively, you can install BeautifulSoup with other package managers, for example

$ pipenv install lxml beautifulsoup4 html5lib

To show how this works, I use an HTML file from Wikipedia that gives an overview of different serialisation formats.

[1]: import pandas as pd

tables = pd.read_html("https://en.wikipedia.org/wiki/Comparison_of_data-serialization_
→˓formats")

The pandas.read_html function has a number of options, but by default it looks for and tries to parse all table data
contained in <table> tags. The result is a list of DataFrame objects:

[2]: len(tables)

[2]: 3

[3]: formats = tables[0]

formats.head()

[3]: Name Creator-maintainer \
0 Apache Avro Apache Software Foundation
1 Apache Parquet Apache Software Foundation
2 ASN.1 ISO, IEC, ITU-T
3 Bencode Bram Cohen (creator) BitTorrent, Inc. (maintai...
4 Binn Bernardo Ramos

Based on Standardized?[definition needed] \
0 — No
1 — No
2 — Yes
3 — De facto as BEP
4 JSON (loosely) No

Specification \
0 Apache Avro™ Specification

(continues on next page)

178 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

1 Apache Parquet
2 ISO/IEC 8824 / ITU-T X.680 (syntax) and ISO/IE...
3 Part of BitTorrent protocol specification
4 Binn Specification

Binary? \
0 Yes
1 Yes
2 BER, DER, PER, OER, or custom via ECN
3 Except numbers and delimiters, being ASCII
4 Yes

Human-readable? Supports references?e Schema-IDL? \
0 Partialg — Built-in
1 No No —
2 XER, JER, GSER, or custom via ECN Yesf Built-in
3 No No No
4 No No No

Standard APIs Supports zero-copy operations
0 C, C#, C++, Java, PHP, Python, Ruby —
1 Java, Python, C++ No
2 — OER
3 No No
4 No Yes

From here we can do some data cleansing and analysis, such as the number of different schema IDLs:

[4]: formats["Schema-IDL?"].value_counts()

[4]: Schema-IDL?
No ␣
→˓ 15
Yes ␣
→˓ 5
Built-in ␣
→˓ 4
Schema WD ␣
→˓ 1
Partial (Kwalify, Rx, built-in language type-defs) ␣
→˓ 1
XML schema, RELAX NG ␣
→˓ 1
WSDL, XML schema ␣
→˓ 1
Partial (JSON Schema Proposal, other JSON schemas/IDLs) ␣
→˓ 1
? ␣
→˓ 1
Ion schema ␣
→˓ 1
Partial (JSON Schema Proposal, ASN.1 with JER, Kwalify, Rx, Itemscript Schema), JSON-LD ␣
→˓ 1

(continues on next page)

3.3. Serialisation formats 179



Python for Data Science, Release 24.1.0

(continued from previous page)

— ␣
→˓ 1
XML schema ␣
→˓ 1
XML Schema ␣
→˓ 1
Partial (Signature strings) ␣
→˓ 1
CDDL ␣
→˓ 1
Schema-IDL? ␣
→˓ 1
Name: count, dtype: int64

XML

pandas has a function read_xml, which makes reading XML files very easy:

[5]: pd.read_xml("books.xml")

[5]: id title language author license date
0 1 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 2 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 3 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 4 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

lxml

Alternatively, lxml.objectify can be used first to parse XML files. In doing so, we get a reference to the root node
of the XML file with getroot:

[6]: from lxml import objectify

parsed = objectify.parse(open("books.xml"))
root = parsed.getroot()

[7]: books = []

for element in root.book:
data = {}
for child in element.getchildren():

data[child.tag] = child.pyval
books.append(data)

[8]: pd.DataFrame(books)

[8]: title language author license date
0 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27

(continues on next page)

180 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

2 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

BeautifulSoup

[1]: import requests

url = "https://de.wikipedia.org/wiki/Liste_der_Stra%C3%9Fen_und_Pl%C3%A4tze_in_Berlin-
→˓Mitte"
r = requests.get(url)

1. Install:

With Spack you can make BeautifulSoup available in your kernel:

$ spack env activate python-311
$ spack install py-beautifulsoup4~html5lib~lxml

Alternatively, you can install BeautifulSoup with other package managers, for example

$ pipenv install beautifulsoup4

2. With r.content we can output the HTML of the page.

3. Next, we have to decompose this string into a Python representation of the page with BeautifulSoup:

[2]: from bs4 import BeautifulSoup

soup = BeautifulSoup(r.content, "html.parser")

4. To structure the code, we create a new function get_dom (Document Object Model) that includes all the previous
code:

[3]: def get_dom(url):
r = request.get(url)
r.raise_for_status()
return BeautifulSoup(r.content, "html.parser")

Filtering out individual elements can be done, for example, via CSS selectors. These can be determined in a website, for
example, by right-clicking on one of the table cells in the first column of the table in Firefox. In the Inspector that now
opens, you can right-click the element again and then select Copy → CSS Selector. The clipboard will then contain,
for example, table.wikitable:nth-child(13) > tbody:nth-child(2) > tr:nth-child(1). We now clean
up this CSS selector, as we do not want to filter for the 13th child element of the table.wikitable or the 2nd child
element in tbody, but only for the 1st column within tbody.

Finally, with limit=3 in this notebook, we only display the first three results as an example:

[4]: links = soup.select(
"table.wikitable > tbody > tr > td:nth-child(1) > a", limit=3

)
(continues on next page)

3.3. Serialisation formats 181



Python for Data Science, Release 24.1.0

(continued from previous page)

print(links)

[<a href="/wiki/Ackerstra%C3%9Fe_(Berlin)" title="Ackerstraße (Berlin)">Ackerstraße</a>,
→˓<a href="/wiki/Alexanderplatz" title="Alexanderplatz">Alexanderplatz</a>, <a href="/
→˓wiki/Almstadtstra%C3%9Fe" title="Almstadtstraße">Almstadtstraße</a>]

However, we do not want the entire HTML link, but only its text content:

[5]: for content in links:
print(content.text)

Ackerstraße
Alexanderplatz
Almstadtstraße

See also
• Beautiful Soup Documentation

3.3.6 YAML

Overview

Data
structure
support

++ YAML, short for YAML Ain’t Markup Language, supports most common data types including
strings, integers, floats and dates. YAML even supports references and external data.

Standardis-
ation

+ YAML is a strongly tpyed formal standard, but it’s hard to find schema validators.

Schema-
IDL

+- Partly with Kwalify, Rx and built-in language type defs.

Language
support

+- There be libraries for the most popular languages.

Human
readability

+ Basic YAML is really easy to read, however YAML’s complexity can confuse a reader.

Speed -- YAML is very slow to serialise and deserialise.
File size +- YAML is in the medium range similar to JSON and TOML.

See also:
• Home

• Specification

• YAML Validator

• StrictYAML

• What YAML features does StrictYAML remove?

• noyaml.com

182 Chapter 3. Read, persist and provide data

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.kuwata-lab.com/kwalify/
http://rx.codesimply.com/
https://yaml.org/
https://yaml.org/spec/
https://codebeautify.org/yaml-validator
https://hitchdev.com/strictyaml/
https://hitchdev.com/strictyaml/features-removed/
https://noyaml.com/


Python for Data Science, Release 24.1.0

Example

CITATION.cff:

# YAML 1.2
---
cff-version: 1.1.0
message: If you use this software, please cite it as below.
authors:
- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: "My Research Software"
version: 2.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18

You can output YAML files as Python dictionaries with:

[1]: import yaml

with open("CITATION.cff", "r") as file:
cite = yaml.safe_load(file)
print(cite)

{'cff-version': '1.1.0', 'message': 'If you use this software, please cite it␣
→˓as below.', 'authors': [{'family-names': 'Druskat', 'given-names': 'Stephan',
→˓ 'orcid': 'https://orcid.org/0000-0003-4925-7248'}], 'title': 'My Research␣
→˓Software', 'version': '2.0.4', 'doi': '10.5281/zenodo.1234', 'date-released':
→˓ datetime.date(2017, 12, 18)}

3.3.7 TOML

Overview

Data struc-
ture support

+ TOML (Tom’s Obvious, Minimal Language) supports most common including strings, inte-
gers, floats and dates, but not references like YAML does.

Standardisa-
tion

++ TOML is a formal strongly typed standard.

Schema-IDL +- Partly with JSON Schema Everywhere
Language
support

++ TOML is a relatively new serialization format and doesn’t have the same broad support as
JSON, CSV or XML for various programming languages.

Human read-
ability

++ One of TOML’s primary goals was to be very easy to read.

Speed +- TOML can be processed at medium speed.
File size - Only XML/HTML is less compact.

You need the Python package toml to convert TOML files into Python Dictionaries. You can then load TOML files,
for example with:

3.3. Serialisation formats 183

https://citation-file-format.github.io/
https://python-basics-tutorial.readthedocs.io/en/latest/types/dicts.html
https://json-schema-everywhere.github.io/toml
https://pypi.org/project/toml/
https://python-basics-tutorial.readthedocs.io/en/latest/types/dicts.html


Python for Data Science, Release 24.1.0

import toml

config = toml.load("pyproject.toml")

See also:
• Home

• GitHub

• Wiki

• What is wrong with TOML?

• An INI critique of TOML

Example

pyproject.toml

[tool.black]
line-length = 79

[tool.isort]
atomic=true
force_grid_wrap=0
include_trailing_comma=true
lines_after_imports=2
lines_between_types=1
multi_line_output=3
not_skip="__init__.py"
use_parentheses=true

known_first_party=["MY_FIRST_MODULE", "MY_SECOND_MODULE"]
known_third_party=["mpi4py", "numpy", "requests"]

For Python < 3.11 you need the Python package toml to convert TOML files into Python dictionaries.

For Python 3.11 you can load TOML files, for example with:

[1]: import tomllib

with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)

data

[1]: {'tool': {'black': {'line-length': 79},
'isort': {'atomic': True,
'force_grid_wrap': 0,
'include_trailing_comma': True,
'lines_after_imports': 2,
'lines_between_types': 1,

(continues on next page)

184 Chapter 3. Read, persist and provide data

https://toml.io/
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml/wiki
https://hitchdev.com/strictyaml/why-not/toml/
https://github.com/madmurphy/libconfini/wiki/An-INI-critique-of-TOML
https://github.com/veit/items/blob/main/pyproject.toml


Python for Data Science, Release 24.1.0

(continued from previous page)

'multi_line_output': 3,
'not_skip': '__init__.py',
'use_parentheses': True,
'known_first_party': ['MY_FIRST_MODULE', 'MY_SECOND_MODULE'],
'known_third_party': ['mpi4py', 'numpy', 'requests']}}}

3.3.8 Pickle

Overview

Data
structure
support

+- Pickle is used to store Python object structures like list or dict in a byte stream. In contrast to
marshal, already serialised objects are tracked so that later references are not serialised again.
Recursive objects are also possible.

Stan-
dardisa-
tion

++ Pickle is defined in the Python Enhancement Proposals Proposals PEP 307, PEP 3154 and
:pep:``574`.

Schema
IDL

-- No

Lan-
guage
support

-- Python-specific

Human
readabil-
ity

+- Pickle is a binary serialisation format, but it can be easily read with Python.

Speed +- The pickle format can usually be serialised and deserialised quickly by Python; see also Don’t
pickle your data.

File size ++ Compact binary format, which can, however, be compressed even further, see also Data Compres-
sion and Archiving.

See also:
pickle – Python object serialization

Documentation of the pickle module

shelve – Python object persistence
Indexed databases of pickle objects

Uwe Korn: The implications of pickling ML models
Alternatives to pickle for ML models

Ned Batchelder: Pickle’s nine flaws
Disadvantages of pickle and alternatives

3.3. Serialisation formats 185

https://peps.python.org/pep-0307/
https://peps.python.org/pep-3154/
https://www.benfrederickson.com/dont-pickle-your-data/
https://www.benfrederickson.com/dont-pickle-your-data/
https://docs.python.org/3/library/archiving.html
https://docs.python.org/3/library/archiving.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/shelve.html#module-shelve
https://uwekorn.com/2021/04/26/implications-of-pickling-ml-models.html
https://nedbatchelder.com/blog/202006/pickles_nine_flaws.html


Python for Data Science, Release 24.1.0

Pickle examples

Python pickle module

In this example we want to use the Python pickle module to save the following dict in pickle format:

[1]: pyviz = {
"Title": "PyViz Tutorial",
"Language": "de",
"Authors": "Veit Schiele",
"License": "BSD-3-Clause",
"Publication date": "2020-04-13",

}

[2]: import pickle

[3]: with open("pyviz.pkl", "wb") as f:
pickle.dump(pyviz, f, pickle.HIGHEST_PROTOCOL)

Now we read the pickle file again:

[4]: with open("pyviz.pkl", "rb") as f:
pyviz = pickle.load(f)

print(pyviz)

{'Title': 'PyViz Tutorial', 'Language': 'de', 'Authors': 'Veit Schiele', 'License': 'BSD-
→˓3-Clause', 'Publication date': '2020-04-13'}

This way we can easily store Python objects persistently.

Warning:
pickle can only be recommended as a short-term storage format. The problem is that the format is not guaranteed
to remain stable over time; an object picked today may not be unpickled with a later version of the library.

pandas

All pandas objects have a to_pickle method that writes data to disk in pickle format:

[5]: import pandas as pd

books = pd.read_pickle("books.pkl")

books

[5]: id title language author license date
0 1 Python basics en Veit Schiele BSD-3-Clause 2021-10-28
1 2 Jupyter Tutorial en Veit Schiele BSD-3-Clause 2019-06-27
2 3 Jupyter Tutorial de Veit Schiele BSD-3-Clause 2020-10-26
3 4 PyViz Tutorial en Veit Schiele BSD-3-Clause 2020-04-13

186 Chapter 3. Read, persist and provide data

https://docs.python.org/3/library/pickle.html


Python for Data Science, Release 24.1.0

pandas objects all have a to_pickle method that writes the data to the hard disk in pickle format:

[6]: books.to_pickle("books.pkl")

3.3.9 Protocol Buffers (Protobuf)

Overview

Data struc-
ture support

+ Protobuf allows you to define data structures in *.proto files. Protobuf supports many prim-
itive types, which can be combined into nested classes.

Standardisa-
tion

+- Protobuf is a strongly typed flexible standard.

Schema-IDL ++ Built-in IDL compiler
Language
support

++ The protobuf format is well supported by many programming languages.

Human read-
ability

-- Protobuf ist not designed to be human readable.

Speed ++ Protobuf is very fast, especially in C++.
File size ++ Protobuf is the most compact format.

See also:
• Home

• GitHub

• Language Guide (proto3)

• Buf

– Home

– Docs

– GitHub

• gRPC

3.3.10 Other Formats

Apache Avro
A compact and fast binary data format.

See also:
• Data Serialization and Deserialization

BSON
Short for Binary JSON. A binary data format mainly for MongoDB

See also:
• Specification

• MongoDB Extended JSON

• bsondump

3.3. Serialisation formats 187

https://developers.google.com/protocol-buffers/
https://github.com/protocolbuffers/protobuf
https://developers.google.com/protocol-buffers/docs/proto3
https://buf.build/
https://docs.buf.build/introduction
https://github.com/bufbuild/buf
https://avro.apache.org/
https://avro.apache.org/docs/1.11.1/specification/#data-serialization-and-deserialization
http://bsonspec.org/
http://bsonspec.org/spec.html
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/reference/program/bsondump/


Python for Data Science, Release 24.1.0

Cap’n Proto
A fast data interchange format.

See also:
• GitHub

JSON5
A superset of JSON by including strings with multiple lines and character escapes, hexadecimal numbers, com-
ments etc.

See also:
• PyPI

HOCON
Short for Human-Optimized Config Object Notation. A JSON superset with comments, multi-line strings etc.

See also:
• GitHub

• Play framework configuration file syntax and features

MessagePack
An efficient binary serialization format supported by Redis scripting.

See also:
• Specification

• GitHub

SDLang
Short for Simple Declarative Language. Textually represent data in a XML-like structure.

See also:
• Language Guide

• GitHub

XDR (RFC 4506)
Short for External Data Representation Standard. Useful for transferring data between different computer archi-
tectures.

3.4 Intake

Intake makes it easy to find, explore, load, and distribute data. Therefore it is not only interesting for data scientists and
engineers, but also for data providers.

See also:
• Docs

• GitHub

• Intake: Taking the Pain out of Data Access

• Intake: Parsing Data from Filenames and Paths

• Intake: Discovering and Exploring Data in a Graphical Interface

• Accessing Remote Data with a Generalized File System

188 Chapter 3. Read, persist and provide data

https://capnproto.org/
https://github.com/capnproto/capnproto
https://github.com/json5/json5
https://pypi.org/project/json5/
https://github.com/lightbend/config/blob/master/HOCON.md
https://github.com/lightbend/config/blob/master/HOCON.md
https://www.playframework.com/documentation/2.5.x/ConfigFile
https://msgpack.org/index.html
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack
https://sdlang.org/
https://github.com/Abscissa/SDLang-D/wiki/Language-Guide
https://github.com/Abscissa/SDLang-D
https://datatracker.ietf.org/doc/html/rfc4506.html
https://intake.readthedocs.io/
https://github.com/intake/intake/
https://www.anaconda.com/blog/intake-taking-the-pain-out-of-data-access
https://www.anaconda.com/blog/intake-parsing-data-from-filenames-and-paths
https://www.anaconda.com/blog/intake-discovering-and-exploring-data-in-a-graphical-interface
https://www.anaconda.com/blog/accessing-remote-data-generalized-file-system


Python for Data Science, Release 24.1.0

• Intake: Caching Data on First Read Makes Future Analysis Faster

3.4.1 Install Intake

Requirements

Current versions of Bokeh2.0 and Panel must be available in order to use intake.gui.

Installation

Intake can be easily installed for your Jupyter kernel with:

$ pipenv install intake

Create a catalog with sample data

For the following examples we need some data sets that we create with:

$ pipenv run intake example
Creating example catalog...
Writing us_states.yml
Writing states_1.csv
Writing states_2.csv

To load the catalog:
>>> import intake
>>> cat = intake.open_catalog('us_states.yml')

3.4.2 Intake for data scientists

Intake makes it easy to load many different formats and types. For a complete overview, take a look at the Plugin
Directory and the Intake Project Dashboard. Intake then transfers the data to common storage formats such as Pandas
DataFrames, Numpy arrays or Python lists. They are then easily searchable and also accessible to distributed systems.
If you are missing a plugin, you can also order one yourself, as described in Making Drivers.

Load a data source

Hereinafter we will read two csv data records and transfer them to an intake catalog.

[1]: import intake

ds = intake.open_csv("states_*.csv")

print(ds)

sources:
csv:
args:

(continues on next page)

3.4. Intake 189

https://www.anaconda.com/blog/intake-caching-data-on-first-read-makes-future-analysis-faster
https://intake.readthedocs.io/en/latest/plugin-directory.html
https://intake.readthedocs.io/en/latest/plugin-directory.html
https://intake.github.io/status/
https://intake.readthedocs.io/en/latest/making-plugins.html


Python for Data Science, Release 24.1.0

(continued from previous page)

urlpath: states_*.csv
description: ''
driver: intake.source.csv.CSVSource
metadata: {}

Mit der open_*-Funktion von Intake lassen sich verschiedenen Datenquellen einlesen. Je nach Datenformat oder
Dienst lassen sich unterschiedliche Argmuente verwenden.

Configure the search path for data sources

Intake checks the Intake configuration file for catalog_path and the environment variable "INTAKE_PATH" for a
colon-separated list of paths or semicolons in Windows to look for catalog files. When importing intake, all entries
from all catalogs that are referenced by intake.cat as part of a global catalog are displayed.

Read data

Intake reads data in containers of various formats:

• Tables in Pandas DataFrames

• Multi-dimensional arrays in numpy arrays

• Semi-structured data in Python lists of objects, usually dictionaries

To find out in which container format Intake holds the data, you can use the container attribute:

[2]: ds.container

[2]: 'dataframe'

In addition to dataframe, the result can also be ndarray or python.

[3]: df = ds.read()

df.head()

[3]: state slug code nickname \
0 Alabama alabama AL Yellowhammer State
1 Alaska alaska AK The Last Frontier
2 Arizona arizona AZ The Grand Canyon State
3 Arkansas arkansas AR The Natural State
4 California california CA Golden State

website admission_date admission_number capital_city \
0 http://www.alabama.gov 1819-12-14 22 Montgomery
1 http://alaska.gov 1959-01-03 49 Juneau
2 https://az.gov 1912-02-14 48 Phoenix
3 http://arkansas.gov 1836-06-15 25 Little Rock
4 http://www.ca.gov 1850-09-09 31 Sacramento

capital_url population population_rank \
0 http://www.montgomeryal.gov 4833722 23
1 http://www.juneau.org 735132 47

(continues on next page)

190 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

2 https://www.phoenix.gov 6626624 15
3 http://www.littlerock.org 2959373 32
4 http://www.cityofsacramento.org 38332521 1

constitution_url \
0 http://alisondb.legislature.state.al.us/alison...
1 http://www.legis.state.ak.us/basis/folioproxy...
2 http://www.azleg.gov/Constitution.asp
3 http://www.arkleg.state.ar.us/assembly/Summary...
4 http://www.leginfo.ca.gov/const-toc.html

state_flag_url \
0 https://cdn.civil.services/us-states/flags/ala...
1 https://cdn.civil.services/us-states/flags/ala...
2 https://cdn.civil.services/us-states/flags/ari...
3 https://cdn.civil.services/us-states/flags/ark...
4 https://cdn.civil.services/us-states/flags/cal...

state_seal_url \
0 https://cdn.civil.services/us-states/seals/ala...
1 https://cdn.civil.services/us-states/seals/ala...
2 https://cdn.civil.services/us-states/seals/ari...
3 https://cdn.civil.services/us-states/seals/ark...
4 https://cdn.civil.services/us-states/seals/cal...

map_image_url \
0 https://cdn.civil.services/us-states/maps/alab...
1 https://cdn.civil.services/us-states/maps/alas...
2 https://cdn.civil.services/us-states/maps/ariz...
3 https://cdn.civil.services/us-states/maps/arka...
4 https://cdn.civil.services/us-states/maps/cali...

landscape_background_url \
0 https://cdn.civil.services/us-states/backgroun...
1 https://cdn.civil.services/us-states/backgroun...
2 https://cdn.civil.services/us-states/backgroun...
3 https://cdn.civil.services/us-states/backgroun...
4 https://cdn.civil.services/us-states/backgroun...

skyline_background_url \
0 https://cdn.civil.services/us-states/backgroun...
1 https://cdn.civil.services/us-states/backgroun...
2 https://cdn.civil.services/us-states/backgroun...
3 https://cdn.civil.services/us-states/backgroun...
4 https://cdn.civil.services/us-states/backgroun...

twitter_url \
0 https://twitter.com/alabamagov
1 https://twitter.com/alaska
2 NaN
3 https://twitter.com/arkansasgov
4 https://twitter.com/cagovernment

(continues on next page)

3.4. Intake 191



Python for Data Science, Release 24.1.0

(continued from previous page)

facebook_url
0 https://www.facebook.com/alabamagov
1 https://www.facebook.com/AlaskaLocalGovernments
2 NaN
3 https://www.facebook.com/Arkansas.gov
4 NaN

[4]: for chunk in ds.read_chunked():
print("Chunk: %d" % len(chunk))

Chunk: 24
Chunk: 26

[5]: ddf = ds.to_dask()

ddf.head()

[5]: state slug code nickname \
0 Alabama alabama AL Yellowhammer State
1 Alaska alaska AK The Last Frontier
2 Arizona arizona AZ The Grand Canyon State
3 Arkansas arkansas AR The Natural State
4 California california CA Golden State

website admission_date admission_number capital_city \
0 http://www.alabama.gov 1819-12-14 22 Montgomery
1 http://alaska.gov 1959-01-03 49 Juneau
2 https://az.gov 1912-02-14 48 Phoenix
3 http://arkansas.gov 1836-06-15 25 Little Rock
4 http://www.ca.gov 1850-09-09 31 Sacramento

capital_url population population_rank \
0 http://www.montgomeryal.gov 4833722 23
1 http://www.juneau.org 735132 47
2 https://www.phoenix.gov 6626624 15
3 http://www.littlerock.org 2959373 32
4 http://www.cityofsacramento.org 38332521 1

constitution_url \
0 http://alisondb.legislature.state.al.us/alison...
1 http://www.legis.state.ak.us/basis/folioproxy...
2 http://www.azleg.gov/Constitution.asp
3 http://www.arkleg.state.ar.us/assembly/Summary...
4 http://www.leginfo.ca.gov/const-toc.html

state_flag_url \
0 https://cdn.civil.services/us-states/flags/ala...
1 https://cdn.civil.services/us-states/flags/ala...
2 https://cdn.civil.services/us-states/flags/ari...
3 https://cdn.civil.services/us-states/flags/ark...
4 https://cdn.civil.services/us-states/flags/cal...

(continues on next page)

192 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

state_seal_url \
0 https://cdn.civil.services/us-states/seals/ala...
1 https://cdn.civil.services/us-states/seals/ala...
2 https://cdn.civil.services/us-states/seals/ari...
3 https://cdn.civil.services/us-states/seals/ark...
4 https://cdn.civil.services/us-states/seals/cal...

map_image_url \
0 https://cdn.civil.services/us-states/maps/alab...
1 https://cdn.civil.services/us-states/maps/alas...
2 https://cdn.civil.services/us-states/maps/ariz...
3 https://cdn.civil.services/us-states/maps/arka...
4 https://cdn.civil.services/us-states/maps/cali...

landscape_background_url \
0 https://cdn.civil.services/us-states/backgroun...
1 https://cdn.civil.services/us-states/backgroun...
2 https://cdn.civil.services/us-states/backgroun...
3 https://cdn.civil.services/us-states/backgroun...
4 https://cdn.civil.services/us-states/backgroun...

skyline_background_url \
0 https://cdn.civil.services/us-states/backgroun...
1 https://cdn.civil.services/us-states/backgroun...
2 https://cdn.civil.services/us-states/backgroun...
3 https://cdn.civil.services/us-states/backgroun...
4 https://cdn.civil.services/us-states/backgroun...

twitter_url \
0 https://twitter.com/alabamagov
1 https://twitter.com/alaska
2 <NA>
3 https://twitter.com/arkansasgov
4 https://twitter.com/cagovernment

facebook_url
0 https://www.facebook.com/alabamagov
1 https://www.facebook.com/AlaskaLocalGovernments
2 <NA>
3 https://www.facebook.com/Arkansas.gov
4 <NA>

[6]: cat = intake.open_catalog("us_states.yml")

[7]: list(cat)

[7]: ['states']

[8]: cat.states.to_dask()[["state", "slug"]].head()

[8]: state slug
(continues on next page)

3.4. Intake 193



Python for Data Science, Release 24.1.0

(continued from previous page)

0 Alabama alabama
1 Alaska alaska
2 Arizona arizona
3 Arkansas arkansas
4 California california

[9]: cat.states(csv_kwargs={"header": None, "skiprows": 1}).read().head()

[9]: 0 1 2 3 4 \
0 Alabama alabama AL Yellowhammer State http://www.alabama.gov
1 Alaska alaska AK The Last Frontier http://alaska.gov
2 Arizona arizona AZ The Grand Canyon State https://az.gov
3 Arkansas arkansas AR The Natural State http://arkansas.gov
4 California california CA Golden State http://www.ca.gov

5 6 7 8 9 10 \
0 1819-12-14 22 Montgomery http://www.montgomeryal.gov 4833722 23
1 1959-01-03 49 Juneau http://www.juneau.org 735132 47
2 1912-02-14 48 Phoenix https://www.phoenix.gov 6626624 15
3 1836-06-15 25 Little Rock http://www.littlerock.org 2959373 32
4 1850-09-09 31 Sacramento http://www.cityofsacramento.org 38332521 1

11 \
0 http://alisondb.legislature.state.al.us/alison...
1 http://www.legis.state.ak.us/basis/folioproxy...
2 http://www.azleg.gov/Constitution.asp
3 http://www.arkleg.state.ar.us/assembly/Summary...
4 http://www.leginfo.ca.gov/const-toc.html

12 \
0 https://cdn.civil.services/us-states/flags/ala...
1 https://cdn.civil.services/us-states/flags/ala...
2 https://cdn.civil.services/us-states/flags/ari...
3 https://cdn.civil.services/us-states/flags/ark...
4 https://cdn.civil.services/us-states/flags/cal...

13 \
0 https://cdn.civil.services/us-states/seals/ala...
1 https://cdn.civil.services/us-states/seals/ala...
2 https://cdn.civil.services/us-states/seals/ari...
3 https://cdn.civil.services/us-states/seals/ark...
4 https://cdn.civil.services/us-states/seals/cal...

14 \
0 https://cdn.civil.services/us-states/maps/alab...
1 https://cdn.civil.services/us-states/maps/alas...
2 https://cdn.civil.services/us-states/maps/ariz...
3 https://cdn.civil.services/us-states/maps/arka...
4 https://cdn.civil.services/us-states/maps/cali...

15 \
0 https://cdn.civil.services/us-states/backgroun...

(continues on next page)

194 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

1 https://cdn.civil.services/us-states/backgroun...
2 https://cdn.civil.services/us-states/backgroun...
3 https://cdn.civil.services/us-states/backgroun...
4 https://cdn.civil.services/us-states/backgroun...

16 \
0 https://cdn.civil.services/us-states/backgroun...
1 https://cdn.civil.services/us-states/backgroun...
2 https://cdn.civil.services/us-states/backgroun...
3 https://cdn.civil.services/us-states/backgroun...
4 https://cdn.civil.services/us-states/backgroun...

17 \
0 https://twitter.com/alabamagov
1 https://twitter.com/alaska
2 NaN
3 https://twitter.com/arkansasgov
4 https://twitter.com/cagovernment

18
0 https://www.facebook.com/alabamagov
1 https://www.facebook.com/AlaskaLocalGovernments
2 NaN
3 https://www.facebook.com/Arkansas.gov
4 NaN

3.4.3 Intake-GUI: Exploring data in a graphical user interface

Intake GUI has been re-implemented so that it can be made available not only in Jupyter notebooks, but also in other
web applications. It displays the contents of all installed catalogs and enables local and remote catalogs to be selected
and to be searched and selected from.

Intake supports the division of labor between data engineers who curate, manage, and deploy data, and data scientists
who analyse and visualise data without having to know how it’s stored.

The Intake GUI is based on Panel, with the control panel offering a composite dashboard solution for displaying plots,
images, tables, texts and widgets. Panel works both in a Jupyter notebook and in a standalone Tornado application.

From a data engineer’s point of view, this means that you can deploy the recording GUI at an endpoint and use it as
a data exploration tool for your data users. This also means that it’s easy to adapt and reorganise the GUI in order to
insert your own logo, reuse parts of it in your own applications or add new functions.

In the future, Intake-GUI should also allow the input of user parameters as well as the editing and saving of catalogs.

[1]: import intake

intake.gui

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

3.4. Intake 195

https://jupyter-tutorial.readthedocs.io/en/latest/dashboards/panel/index.html


Python for Data Science, Release 24.1.0

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[1]: Column(width_policy='max')
[0] Row(width_policy='max')

[0] PNG(str)
[1] Column(width_policy='max')

[0] Column(name='Select Catalog')
[0] Markdown(str, max_height=40)
[1] MultiSelect(min_width=200, options={'builtin': <Intake c...}, size=9,

→˓ value=[<Intake catalog: b...], width_policy='min')
[1] Row(name='Controls')

[0] Toggle(name='', width=50)
[1] Button(name='—', width=50)
[2] Toggle(name='', width=50)

[2] Column(width_policy='max')
[0] Column(name='Select Data Source')

[0] Markdown(str, max_height=40)
[1] MultiSelect(min_width=200, size=9, width_policy='min')

[1] Row(name='Controls')
[0] Toggle(disabled=True, name='', width=50)
[1] Toggle(disabled=True, name='', width=50)

[3] Column(height=240, name='Description', scroll=True, sizing_mode='stretch_
→˓width', width_policy='max')

[0] Markdown(str)
[1] Row(width_policy='max')

[0] Row(height_policy='min', max_width=5000, name='Search', width_policy='max')
[1] Column(max_width=5000, name='Add Catalog', width_policy='max')
[2] Column(name='Plot', width_policy='max')

The GUI contains three main areas:

1. a list of catalogs. The builtin catalog shown by defaul tcontains data records installed in the system, just like
intake.cat.

2. a list of the sources in the currently selected catalog.

3. a description of the currently selected source.

196 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

Ad 1: Catalogs

No catalog is currently displayed in the list of catalogs. However, under the three main areas there are three buttons
that can be used to add, remove, or search catalogs.

The buttons are also available through the API, e.g. for Add Catalog with:

[2]: intake.gui.add("./us_crime/us_crime.yaml")

Remote catalogs are e.g. available under

• https://s3.amazonaws.com/earth-data/UCMerced_LandUse/catalog.yml

• https://raw.githubusercontent.com/ContinuumIO/anaconda-package-data/master/catalog/anaconda_package_
data.yaml

• https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/master.yaml

Ad 2. Sources

Selecting a source from the list updates the descriptive text on the left side of the user interface.

This is also available via the API:

[3]: intake.gui.sources

[3]: [name: us_crime
container: dataframe
plugin: ['csv']
driver: ['csv']
description: US Crime data [UCRDataTool](https://www.ucrdatatool.gov/Search/Crime/State/
→˓StatebyState.cfm)
direct_access: forbid
user_parameters: []
metadata:
plots:
line_example:
kind: line
y: ['Robbery', 'Burglary']
x: Year

violin_example:
kind: violin
y: ['Burglary rate', 'Larceny-theft rate', 'Robbery rate', 'Violent Crime rate']
group_label: Type of crime
value_label: Rate per 100k
invert: True

args:
urlpath: {{ CATALOG_DIR }}/data/crime.csv]

This consists of a list of regular Intake data source entries. To look at the first entries, we can enter the following:

[4]: source = intake.gui.sources[0]

source.to_dask().head()

3.4. Intake 197

https://s3.amazonaws.com/earth-data/UCMerced_LandUse/catalog.yml
https://raw.githubusercontent.com/ContinuumIO/anaconda-package-data/master/catalog/anaconda_package_data.yaml
https://raw.githubusercontent.com/ContinuumIO/anaconda-package-data/master/catalog/anaconda_package_data.yaml
https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/master.yaml


Python for Data Science, Release 24.1.0

[4]: textasciitildeYear Population Violent crime total \
0 1960 179323175 288460
1 1961 182992000 289390
2 1962 185771000 301510
3 1963 188483000 316970
4 1964 191141000 364220

Murder and nonnegligent Manslaughter Legacy rape /1 Revised rape /2 \
0 9110 17190 NaN
1 8740 17220 NaN
2 8530 17550 NaN
3 8640 17650 NaN
4 9360 21420 NaN

Robbery Aggravated assault Property crime total Burglary ... \
0 107840 154320 3095700 912100 ...
1 106670 156760 3198600 949600 ...
2 110860 164570 3450700 994300 ...
3 116470 174210 3792500 1086400 ...
4 130390 203050 4200400 1213200 ...

Violent Crime rate Murder and nonnegligent manslaughter rate \
0 160.9 5.1
1 158.1 4.8
2 162.3 4.6
3 168.2 4.6
4 190.6 4.9

Legacy rape rate /1 Revised rape rate /2 Robbery rate \
0 9.6 NaN 60.1
1 9.4 NaN 58.3
2 9.4 NaN 59.7
3 9.4 NaN 61.8
4 11.2 NaN 68.2

Aggravated assault rate Property crime rate Burglary rate \
0 86.1 1726.3 508.6
1 85.7 1747.9 518.9
2 88.6 1857.5 535.2
3 92.4 2012.1 576.4
4 106.2 2197.5 634.7

Larceny-theft rate Motor vehicle theft rate
0 1034.7 183.0
1 1045.4 183.6
2 1124.8 197.4
3 1219.1 216.6
4 1315.5 247.4

[5 rows x 22 columns]

[5]: source.gui

198 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[5]: Column
[0] Row

[0] PNG(str)
[1] Column

[0] Toggle(name='', width=50)
[1] Toggle(disabled=True, name='', width=50)

[1] Column(height=240, name='Description', scroll=True, sizing_mode='stretch_width',␣
→˓width_policy='max')

[0] Markdown(str)
[2] Column(name='Plot', width_policy='max')

[6]: intake.gui.source.description

[6]: Column(height=240, name='Description', scroll=True, sizing_mode='stretch_width', width_
→˓policy='max')

[0] Markdown(str)

[7]: cat = intake.open_catalog("./us_crime/us_crime.yaml")

cat.gui

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

[7]: Column(width_policy='max')
[0] Row(width_policy='max')

[0] PNG(str)
[1] Column(width_policy='max')

[0] Column(name='Select Catalog')
[0] Markdown(str, max_height=40)
[1] MultiSelect(min_width=200, options={'us_crime': <...}, size=9,␣

→˓value=[<Intake catalog: u...], width_policy='min')
(continues on next page)

3.4. Intake 199



Python for Data Science, Release 24.1.0

(continued from previous page)

[1] Row(name='Controls')
[0] Toggle(name='', width=50)
[1] Button(name='—', width=50)
[2] Toggle(name='', width=50)

[2] Column(width_policy='max')
[0] Column(name='Select Data Source')

[0] Markdown(str, max_height=40)
[1] MultiSelect(min_width=200, options=OrderedDict([('us_crime', ...]),␣

→˓size=9, value=[name: us_crime
container:...], width_policy='min')

[1] Row(name='Controls')
[0] Toggle(name='', width=50)
[1] Toggle(disabled=True, name='', width=50)

[3] Column(height=240, name='Description', scroll=True, sizing_mode='stretch_
→˓width', width_policy='max')

[0] Markdown(str)
[1] Row(width_policy='max')

[0] Row(height_policy='min', max_width=5000, name='Search', width_policy='max')
[1] Column(max_width=5000, name='Add Catalog', width_policy='max')
[2] Column(name='Plot', width_policy='max')

[8]: us_crime = cat.gui.sources[0]

[9]: intake.output_notebook()

us_crime.plot.bivariate(
"Burglary rate",
"Property crime rate",
legend=False,
width=500,
height=400

) * us_crime.plot.scatter(
"Burglary rate",
"Property crime rate",
color="black",
size=15,
legend=False,

) + us_crime.plot.table(
["Burglary rate", "Property crime rate"],
width=350,
height=350

)

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

200 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

[9]: :Layout
.Overlay.I :Overlay

.Bivariate.I :Bivariate [Burglary rate,Property crime rate] (Density)

.Scatter.I :Scatter [Burglary rate] (Property crime rate)
.Table.I :Table [Burglary rate,Property crime rate]

Ad 3. Source view

As soon as catalogs are loaded and the desired sources have been selected, they are available under the attribute intake.
gui.sources. Each source entry has methods and can be opened as a data source like any catalog entry. For Source:
UCMerced_LandUse_by_landuse, the entry looks like this:

name: UCMerced_LandUse_by_landuse
container: None
plugin: []
description: All images matching given landuse from UCMerced_LandUse/Image.
direct_access: forbid
user_parameters: [{'name': 'landuse', 'description': 'which landuse to collect', 'type':
→˓'str', 'default': 'airplane'}]
metadata:
args:
urlpath: s3://earth-data/UCMerced_LandUse/Images/{{ landuse }}/{{ landuse }}{id:2d}.tif
storage_options:
anon: True

concat_dim: id
coerce_shape: [256, 256]

Below the list of sources there is a series of buttons for opening up the selected data source: Plot opens a sub-window
to display the predefined (i.e. the ones specified in yaml) plots for the selected source.

See also:
• GUI

3.4.4 Intake for data engineers

Intake supports data engineers with the provision of data and with the specification of the data sources, the distribution
of the data, the parameterisation of the user options etc. This makes it easier for data scientists to access the data
afterwards, as the possible options are already specified in the catalog.

[1]: import hvplot.pandas
import intake

intake.output_notebook()

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

3.4. Intake 201

https://intake.readthedocs.io/en/latest/gui.html


Python for Data Science, Release 24.1.0

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Intake data sets are loaded with so-called drivers, some come with the intake package, but others have to be reloaded
as plug-ins. You can display the available drivers as follows:

[2]: list(intake.registry)

[2]: ['parquet',
'alias',
'catalog',
'csv',
'intake_remote',
'json',
'jsonl',
'ndzarr',
'numpy',
'textfiles',
'tiled',
'tiled_cat',
'yaml_file_cat',
'yaml_files_cat',
'zarr_cat']

Each of these drivers is assigned an intake.open_* function. It is also possible to refer to drivers by the fully qualified
name (e.g. package.submodule.DriverClass). In the following example, however, we will focus on the csv driver
that is included in the standard Intake installation.

In general, the first step in writing a catalog entry is to use the appropriate open_* function to create a DataSource
object:

[3]: source = intake.open_csv(
"https://timeseries.weebly.com/uploads/" "2/1/0/8/21086414/sea_ice.csv"

)

The above specification has now created a DataSource object, but has not yet checked whether the data can actually be
accessed. To test whether the loading was really successful, the source itself can be opened (source.discover) or
read (source.read):

[4]: source.discover()

[4]: {'dtype': {'Time': 'object', 'Arctic': 'float64', 'Antarctica': 'float64'},
'shape': (None, 3),
'npartitions': 1,
'metadata': {}}

[5]: df = source.read()

df.head()

202 Chapter 3. Read, persist and provide data

https://intake.readthedocs.io/en/latest/plugin-directory.html


Python for Data Science, Release 24.1.0

[5]: Time Arctic Antarctica
0 1990M01 12.72 3.27
1 1990M02 13.33 2.15
2 1990M03 13.44 2.71
3 1990M04 12.16 5.10
4 1990M05 10.84 7.37

After we have determined that the data can be loaded as desired, we want to open up the data visually:

[6]: df.hvplot(
kind="line", x="Time", y=["Arctic", "Antarctica"], width=700, height=500

)

[6]: :NdOverlay [Variable]
:Curve [Time] (value)

Now we can load a source correctly and also receive a graphic output for opening up the data. We can now display this
recipe in the YAML syntax with:

[7]: print(source.yaml())

sources:
csv:
args:
urlpath: https://timeseries.weebly.com/uploads/2/1/0/8/21086414/sea_ice.csv

description: ''
driver: intake.source.csv.CSVSource
metadata: {}

Finally, we can create a YAML file containing this recipe with an additional description and the tested diagram:

[8]: %%writefile sea.yaml
sources:

sea_ice:
args:
urlpath: "https://timeseries.weebly.com/uploads/2/1/0/8/21086414/sea_ice.csv"

description: "Polar sea ice cover"
driver: csv
metadata:
plots:
basic:
kind: line
x: Time
y: [Arctic, Antarctica]
width: 700
height: 500

Overwriting sea.yaml

To check that the YAML file works too, we can reload it and try to work with it:

[9]: cat = intake.open_catalog("sea.yaml")

3.4. Intake 203



Python for Data Science, Release 24.1.0

[10]: cat.sea_ice.plot.basic()

[10]: :NdOverlay [Variable]
:Curve [Time] (value)

The catalog appears to be functional and can now be released. The easiest way to share an Intake catalog is to put it in
a place where it can be read by your target audience. In this tutorial stored in a Git repo, this can be the url of the file
in the repo. All you have to share with your users is the URL of the catalog. You can try this yourself with:

[11]: cat = intake.open_catalog(
"https://raw.githubusercontent.com/veit/Python4DataScience/main/docs/data-processing/

→˓intake/sea.yaml"
)

[12]: cat.sea_ice.read().head()

[12]: Time Arctic Antarctica
0 1990M01 12.72 3.27
1 1990M02 13.33 2.15
2 1990M03 13.44 2.71
3 1990M04 12.16 5.10
4 1990M05 10.84 7.37

Note
This catalog is also a DataSource instance, i.e. you can refer to it from other catalogs and thus build a hierarchy of
data sources. For example, you have a master or main catalog that references several other catalogs, each with entries
of a certain type and the whole thing can e.g. be searched with Intake-GUI . In this way, the overall data acquisition
structure has a structure that makes it easier to navigate to the correct data set. You can even have separate hierarchies
that reference the same data.

[13]: print(cat.yaml())

sources:
sea:
args:
path: https://raw.githubusercontent.com/veit/Python4DataScience/main/docs/data-

→˓processing/intake/sea.yaml
description: ''
driver: intake.catalog.local.YAMLFileCatalog
metadata: {}

3.5 httpx

httpx is an http client with which requests can be sent easily.

204 Chapter 3. Read, persist and provide data

https://www.python-httpx.org


Python for Data Science, Release 24.1.0

3.5.1 httpx installation and sample application

Installation

The httpx library is useful for communicating with REST APIs. With Spack you can provide httpx in your kernel:

$ spack env activate python-311
$ spack install py-httpx

Alternatively, you can install httpx with other package managers, for example

$ pipenv install httpx

Example OSM Nominatim API

In this example we get our data from the OpenStreetMap Nominatim API. This can be reached via the
URL https://nominatim.openstreetmap.org/search?. To e.g. receive information about the Berlin
Congress Center in Berlin in JSON format, the URL https://nominatim.openstreetmap.org/search.php?
q=Alexanderplatz+Berlin&format=json should be given, and if you want to display the corresponding map sec-
tion you just have to leave out &format=json.

Then we define the search URL and the parameters. Nominatim expects at least the following two parameters

Key Value
q Address query that allows the following specifications: street, city, county, state, country and

postalcode.
format Format in which the data is returned. Possible values are html, xml, json, jsonv2, geojson and

geocodejson.

The query can then be made with:

[1]: import httpx

search_url = "https://nominatim.openstreetmap.org/search?"
params = {

"q": "Alexanderplatz, Berlin",
"format": "json",

}
r = httpx.get(search_url, params=params)

[2]: r.status_code

[2]: 200

[3]: r.json()

[3]: [{'place_id': 128497332,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 783052052,
'lat': '52.5219814',

(continues on next page)

3.5. httpx 205

https://nominatim.org/release-docs/develop/api/Overview/#nominatim-api


Python for Data Science, Release 24.1.0

(continued from previous page)

'lon': '13.413635717448294',
'class': 'place',
'type': 'square',
'place_rank': 25,
'importance': 0.47149825263735834,
'addresstype': 'square',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5201457', '52.5238113', '13.4103097', '13.4160801']},

{'place_id': 128243381,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'node',
'osm_id': 3908141014,
'lat': '52.5215661',
'lon': '13.4112804',
'class': 'railway',
'type': 'station',
'place_rank': 30,
'importance': 0.43609907778808027,
'addresstype': 'railway',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Dircksenstraße, Mitte, Berlin, 10179, Deutschland',
'boundingbox': ['52.5165661', '52.5265661', '13.4062804', '13.4162804']},

{'place_id': 128416772,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 346206374,
'lat': '52.5216214',
'lon': '13.4131913',
'class': 'highway',
'type': 'pedestrian',
'place_rank': 26,
'importance': 0.10000999999999993,
'addresstype': 'road',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5216214', '52.5216661', '13.4131913', '13.4131914']},

{'place_id': 127680907,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 301733776,
'lat': '52.5222454',
'lon': '13.4158136',
'class': 'highway',
'type': 'primary',
'place_rank': 26,
'importance': 0.10000999999999993,
'addresstype': 'road',
'name': 'Alexanderstraße',
'display_name': 'Alexanderstraße, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5222454', '52.5224356', '13.4153983', '13.4158136']}]

Three different locations are found, the square, a bus stop and a hotel. In order to be able to filter further, we can only

206 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

display the most important location:

[4]: params = {"q": "Alexanderplatz, Berlin", "format": "json", "limit": "1"}
r = httpx.get(search_url, params=params)
r.json()

[4]: [{'place_id': 128497332,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 783052052,
'lat': '52.5219814',
'lon': '13.413635717448294',
'class': 'place',
'type': 'square',
'place_rank': 25,
'importance': 0.47149825263735834,
'addresstype': 'square',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5201457', '52.5238113', '13.4103097', '13.4160801']}]

Clean Code

Now that we know the code works, let’s turn everything into a clean and flexible function.

To ensure that the interaction was successful, we use the raise_for_status method of httpx, which throws an
exception if the HTTP status code isn’t 200 OK:

[5]: r.raise_for_status()

[5]: <Response [200 OK]>

Since we don’t want to exceed the load limits of the Nominatim API, we will delay our httpx with the time.sleep
function:

[6]: from time import sleep

sleep(1)
r.json()

[6]: [{'place_id': 128497332,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 783052052,
'lat': '52.5219814',
'lon': '13.413635717448294',
'class': 'place',
'type': 'square',
'place_rank': 25,
'importance': 0.47149825263735834,
'addresstype': 'square',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5201457', '52.5238113', '13.4103097', '13.4160801']}]

3.5. httpx 207



Python for Data Science, Release 24.1.0

Next we declare the function itself. As arguments we need the address, the format, the limit of the objects to be returned
with the default value 1 and further kwargs (keyword arguments) that are passed as parameters:

[7]: def nominatim_search(address, format="json", limit=1, **kwargs):
"""Thin wrapper around the Nominatim search API.
For the list of parameters see
https://nominatim.org/release-docs/develop/api/Search/#parameters
"""
search_url = "https://nominatim.openstreetmap.org/search?"
params = {"q": address, "format": format, "limit": limit, **kwargs}
r = httpx.get(search_url, params=params)
# Raise an exception if the status is unsuccessful
r.raise_for_status()

sleep(1)
return r.json()

Now we can try out the function, for example with

[8]: nominatim_search("Alexanderplatz, Berlin")

[8]: [{'place_id': 128497332,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 783052052,
'lat': '52.5219814',
'lon': '13.413635717448294',
'class': 'place',
'type': 'square',
'place_rank': 25,
'importance': 0.47149825263735834,
'addresstype': 'square',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5201457', '52.5238113', '13.4103097', '13.4160801']}]

Caching

If the same queries are to be asked over and over again within a session, it makes sense to call up this data only once
and use it again. In Python we can use lru_cache from Python’s standard functools library. lru_cache saves the
last N requests (Least Recent Used) and as soon as the limit is exceeded, the oldest values are discarded. To use this
for the nominatim_search method, all you have to do is define an import and a decorator:

[9]: from functools import lru_cache

@lru_cache(maxsize=1000)
def nominatim_search(address, format="json", limit=1, **kwargs):

"""..."""

However, lru_cache only saves the results during a session. If a script terminates because of a timeout or an exception,
the results are lost. If the data is to be saved more permanently, tools such as joblib or python-diskcache can be used.

208 Chapter 3. Read, persist and provide data

https://joblib.readthedocs.io/
http://www.grantjenks.com/docs/diskcache/


Python for Data Science, Release 24.1.0

3.5.2 Create module

It is not very practical to start Jupyter every time and go through all the cells of the httpx notebook just to be able to
use the functions. Instead, we should store our functions in a separate module, like in nominatim.py:

1. For this I have created a new text file in Jupyter in the same place as these notebooks, and named it nominatim.
py.

2. Then I copied the imports, the method nominatim_search and its decorator lru_cache and saved the file.

3. Now we can go back to our notebook and import the code from this file and do our searches:

[1]: from nominatim import nominatim_search

[2]: nominatim_search("Alexanderplatz, Berlin, Germany")

[2]: [{'place_id': 128497332,
'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. http://osm.org/copyright',
'osm_type': 'way',
'osm_id': 783052052,
'lat': '52.5219814',
'lon': '13.413635717448294',
'class': 'place',
'type': 'square',
'place_rank': 25,
'importance': 0.47149825263735834,
'addresstype': 'square',
'name': 'Alexanderplatz',
'display_name': 'Alexanderplatz, Mitte, Berlin, 10178, Deutschland',
'boundingbox': ['52.5201457', '52.5238113', '13.4103097', '13.4160801']}]

The outsourcing of the notebook’s code to modules makes it easier to reuse it, and also makes the notebooks more
readable.

However, for the code to work, nominatim.py needs to be in the same folder as a Jupyter notebook. If you want to
call this module from another location, the path specification in the import would have to be changed. In this case it is
better to create your own package, as described in Packing.

3.6 Overview

3.6.1 Remote storage media

boto3
S3

azure-storage-blob
Azure

pydrive2
Google Drive

paramiko
SSH

PyArrow
HDFS

3.6. Overview 209

nominatim.py
https://aws.amazon.com/de/sdk-for-python/
https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/storage/azure-storage-blob
https://github.com/gsuitedevs/PyDrive
http://www.paramiko.org/
https://arrow.apache.org/docs/python/


Python for Data Science, Release 24.1.0

3.6.2 Geodata

Rasterio
reads and writes GeoTIFF and other forms of raster datasets.

Geospatial Data Abstraction Library (GDAL)
provides a low-level but more powerful API for reading and writing hundreds of data formats.

satpy
Easy to use API for sensors of satellite images like MODIS, Sentinel-2 etc.

sentinelsat
Find and download Copernicus Sentinel satellite imagery using command line or Python.

fiona
reads and writes *shp- and *json data and many other formats.

pyproj
Python interface to PROJ, a library for cartographic projections and coordinate transformations.

pyModis
Collection of Python scripts for downloading and mosaicking MODIS data.

Arcpy
is used by Esri ArcGIS to perform geographic data analysis, data conversion, data management, and map au-
tomation.

RSGISLib
or The Remote Sensing and GIS Software Library is a set of remote sensing tools for raster processing and
analysis.

pgeocode
is used for querying of GPS coordinates and municipality names from postal codes, distances between postal
codes as well as general distances.

3.7 Geodata

Rasterio
reads and writes GeoTIFF and other forms of raster datasets.

Geospatial Data Abstraction Library (GDAL)
provides a low-level but more powerful API for reading and writing hundreds of data formats.

satpy
Easy to use API for sensors of satellite images like MODIS, Sentinel-2 etc.

sentinelsat
Find and download Copernicus Sentinel satellite imagery using command line or Python.

fiona
reads and writes *shp- and *json data and many other formats.

pyproj
Python interface to PROJ, a library for cartographic projections and coordinate transformations.

pyModis
Collection of Python scripts for downloading and mosaicking MODIS data.

210 Chapter 3. Read, persist and provide data

https://rasterio.readthedocs.io/en/latest/
https://gdal.org/
https://satpy.readthedocs.io/
https://modis.gsfc.nasa.gov/data/
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://github.com/sentinelsat/sentinelsat
https://fiona.readthedocs.io/en/latest/
https://github.com/pyproj4/pyproj
https://proj.org/
http://www.pymodis.org/
https://pro.arcgis.com/de/pro-app/arcpy/get-started/what-is-arcpy-.htm
http://rsgislib.org
https://pypi.org/project/pgeocode/
https://rasterio.readthedocs.io/en/latest/
https://gdal.org/
https://satpy.readthedocs.io/
https://modis.gsfc.nasa.gov/data/
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://github.com/sentinelsat/sentinelsat
https://fiona.readthedocs.io/en/latest/
https://github.com/pyproj4/pyproj
https://proj.org/
http://www.pymodis.org/


Python for Data Science, Release 24.1.0

Arcpy
is used by Esri ArcGIS to perform geographic data analysis, data conversion, data management, and map au-
tomation.

RSGISLib
or The Remote Sensing and GIS Software Library is a set of remote sensing tools for raster processing and
analysis.

pgeocode
is used for querying of GPS coordinates and municipality names from postal codes, distances between postal
codes as well as general distances.

3.8 PostgreSQL

3.8.1 Basic funtions

ACID compliant
ACID (A tomicity, C onsistency, I solation, D urability) is a series of properties that database transactions should
fulfil to guarantee the validity of the data even in the event of a fault.

SQL:2011
temporal_tables also meet the SQL standard ISO/IEC 9075:2011, including:

• Time period definitions

• Valid time tables

• Transaction time tables (system-versioned tables) with time-sliced and sequenced queries

Data types
The following data types are supported out of the box:

• primitive data types: Integer, Numeric, String, Boolean

• structured data types: Date/Time, Array, Range, UUID

• document types: JSON/JSONB, XML, key-value (Hstore)

• geometric data types: point, line, circle, polygon

• adjustments: composite, custom Types

• transactional data definition language (DDL)

Transactional DDL is implemented via write-ahead logging. Big changes are also possible, but not adding
and dropping databases and tables:

$ psql mydb
mydb=# DROP TABLE IF EXISTS foo;
NOTICE: table "foo" does not exist
DROP TABLE
mydb=# BEGIN;
BEGIN
mydb=# CREATE TABLE foo (bar int);
CREATE TABLE
mydb=# INSERT INTO foo VALUES (1);
INSERT 0 1
mydb=# ROLLBACK;

(continues on next page)

3.8. PostgreSQL 211

https://pro.arcgis.com/de/pro-app/arcpy/get-started/what-is-arcpy-.htm
http://rsgislib.org/
https://pypi.org/project/pgeocode/
https://github.com/arkhipov/temporal_tables
https://www.postgresql.org/docs/current/hstore.html
https://www.postgresql.org/docs/current/wal-intro.html


Python for Data Science, Release 24.1.0

(continued from previous page)

ROLLBACK
mydb=# SELECT * FROM foo;
ERROR: relation "foo" does not exist

Concurrent Index
PPostgreSQL can create indexes without having to lock write access to tables.

See also:
Building Indexes Concurrently

Extensions
PostgreSQL can easily be extended. The contrib/ directory supplied with the source code contains various ex-
tensions that are described in Appendix F. Other extensions have been developed independently, such as PostGIS
or Slony-I.

Common Table Expression
WITH Queries (Common Table Expressions) divides complex queries into simpler queries, e.g .:

WITH regional_insolation AS (
SELECT region, SUM(amount) AS total_insolation
FROM orders
GROUP BY region

), top_regions AS (
SELECT region
FROM regional_insolation
WHERE total_insolation > (SELECT SUM(total_insolation)/10 FROM regional_

→˓insolation)
)

There is also a RECURSIVE modifier that refers the WITH query to its own output. The following is an example
of how to sum the numbers from 1 to 100:

WITH RECURSIVE t (n) AS (
WERTE (1)

UNION ALL
SELECT n + 1 FROM t WO <100

)
SELECT sum (n) FROM t;

Multi-Version Concurrency Control (MVCC)
Multi-Version Concurrency Control allows two or more sessions to access the same data at the same time without
compromising the integrity of the data.

Cross platform
PostgreSQL runs on common CPU architectures such as x86, PowerPC, Sparc, ARM, MIPS or PA-RISC. Most
operating systems are also supported: Linux, Windows, FreeBSD, OpenBSD, NetBSD, Mac OS, AIX, HP/UX and
Solaris.

See also:
explain.depesz.com

Web app that visualises PostgreSQL’s EXPLAIN and ANALYZE statements.

212 Chapter 3. Read, persist and provide data

https://www.postgresql.org/docs/current/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
https://github.com/postgres/postgres/tree/master/contrib
https://www.postgresql.org/docs/9.5/contrib.html
https://www.slony.info/
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/mvcc.html
https://explain.depesz.com/
https://www.postgresql.org/docs/current/sql-explain.html
https://www.postgresql.org/docs/current/sql-analyze.html


Python for Data Science, Release 24.1.0

Foreign Data Wrappers (FDW)

In 2003, SQL was expanded to include SQL/MED (SQL Management of External Data). PostgreSQL 9.1 supports
this read-only, 9.3 then also write. Since then, a number of Foreign Data Wrappers (FDW) have been developed for
PostgreSQL.

The following is just a small selection of the best-known FDWs:

Note: Most of these wrappers are not officially supported by the PostgreSQL Global Development Group (PGDG).

Generic SQL wrappers

ODBC
Native ODBC FDW for PostgreSQL 9.5

• GitHub

Multicorn
Multicorn makes it easy to develop FDWs. For example, SQLAlchemy uses Multicorn to save your data in
PostgreSQL.

• GitHub

• PGXN

• Docs

VirtDB
Native access to VirtDB (SAP ERP, Oracle RDBMS)

• GitHub

Specific SQL wrappers

postgres_fdw
With postgres_fdw data from other PostgreSQL servers can be accessed.

• Git

• PGXN

• Docs

Oracle
FDW for Oracle databases

• GitHub

• PGXN

• Docs

MySQL
FDW for MySQL from PostgreSQL9.3

• GitHub

• PGXN

3.8. PostgreSQL 213

https://github.com/CartoDB/odbc_fdw
https://multicorn.org/
http://www.sqlalchemy.org/
sqlalchem://github.com/Kozea/Multicorn
https://pgxn.org/dist/multicorn/
https://multicorn.org/foreign-data-wrappers/#sqlalchemy-foreign-data-wrapper
https://github.com/dbeck/virtdb-fdw
https://www.postgresql.org/docs/current/postgres-fdw.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=tree;f=contrib/postgres_fdw;hb=HEAD
https://pgxn.org/dist/postgres_fdw/
https://www.postgresql.org/docs/current/postgres-fdw.html
https://github.com/laurenz/oracle_fdw
https://pgxn.org/dist/oracle_fdw/
http://laurenz.github.io/oracle_fdw/
https://github.com/EnterpriseDB/mysql_fdw
https://pgxn.org/dist/mysql_fdw/


Python for Data Science, Release 24.1.0

SQLite
FDW for SQLite3

• GitHub

• PGXN

• Docs

NoSQL database wrappers

Cassandra
FDW für Cassandra

• GitHub

• rankactive

Neo4j
FWD for Neo4j, which also provides a cypher function for PostgreSQL

• GitHub

• Docs

Redis
FDW for Redis

• GitHub

Riak
FDW for Riak

• GitHub

File wrappers

CSV
Official extension for PostgreSQL 9.1

• Git

• Docs

JSON
FDW for JSON files

• GitHub

• Example

XML
FDW for XML files

• GitHub

• PGXN

214 Chapter 3. Read, persist and provide data

https://github.com/pgspider/sqlite_fdw
https://pgxn.org/dist/sqlite_fdw
https://github.com/pgspider/sqlite_fdw/blob/master/README.md
https://cassandra.apache.org//
https://github.com/rankactive/cassandra-fdw
https://rankactive.com/resources/postgresql-cassandra-fdw
https://neo4j.com/
https://github.com/sim51/neo4j-fdw
https://github.com/sim51/neo4j-fdw/blob/master/README.adoc
https://redis.io/
https://github.com/pg-redis-fdw/redis_fdw
https://github.com/basho/riak
https://github.com/kiskovacs/riak-multicorn-pg-fdw
https://git.postgresql.org/gitweb/?p=postgresql.git;a=tree;f=contrib/file_fdw;hb=HEAD
https://www.postgresql.org/docs/current/file-fdw.html
https://github.com/nkhorman/json_fdw
https://www.citusdata.com/blog/2013/05/30/run-sql-on-json-files-without-any-data-loads/
https://github.com/Kozea/Multicorn
https://pgxn.org/dist/multicorn/


Python for Data Science, Release 24.1.0

Geo wrappers

GDAL/OGR
FDW for the GDAL/OGR driver including databases like Oracle and SQLite as well as file formats like MapInfo,
CSV, Excel, OpenOffice, OpenStreetMap PBF and XML.

• GitHub

Geocode/GeoJSON
A collection of FDWs for PostGIS

• GitHub

Open Street Map PBF
FDW for Open Street Map PBF

• GitHub

Generic web wrappers

ICAL
FDW for ICAL

• GitHub

• Docs

IMAP
FDW for the Internet Message Access Protocol (IMAP)

• Docs

RSS
FDQ for RSS feeds

• Docs

See also:
• PostgreSQL wiki

• PGXN website

Procedural programming languages

With PostgreSQL, user-defined functions can be written in languages other than SQL and C.

There are currently four procedural languages available in the standard PostgreSQL distribution:

• PL/pgSQL

• PL/Tcl

• PL/Perl

• PL/Python

Additional procedural programming languages are available but are not included in the core distribution:

• PL/Java

• PL/Lua

3.8. PostgreSQL 215

https://gdal.org/
https://github.com/pramsey/pgsql-ogr-fdw
https://github.com/bosth/geofdw
https://wiki.openstreetmap.org/wiki/PBF_Format
https://github.com/vpikulik/postgres_osm_pbf_fdw
https://github.com/daamien/Multicorn/blob/master/python/multicorn/icalfdw.py
https://wiki.postgresql.org/images/7/7e/Conferences-write_a_foreign_data_wrapper_in_15_minutes-presentation.pdf
https://multicorn.org/foreign-data-wrappers/#imap-foreign-data-wrapper
https://multicorn.org/foreign-data-wrappers/#rss-foreign-data-wrapper
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://pgxn.org/
https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/pltcl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plpython.html
https://tada.github.io/pljava/
https://github.com/pllua/pllua


Python for Data Science, Release 24.1.0

• PL/R

• PL/sh

• PL/v8

See also:
External Procedural Languages

In addition, other languages can be defined, see also Writing A Procedural Language Handler.

DB-API 2.0

The Python API for database connectors is easy to use and understand. The two main concepts are:

Connection
Connection Objects allow the following methods:

connect(parameters...)
opens the connection to the database

.close()
closes the connection to the database

.commit()
transfers the outstanding transaction to the database

.rollback()
This method is optional as not all databases allow transactions to be rolled back.

.cursor ()
Return of a new cursor object via the connection.

Example:

import driver

conn = driver.connect(
database="example",
host="localhost",
port=5432
)

try:
# create the cursor
# use the cursor

except Exception:
conn.rollback()

else:
conn.commit()
conn.close()

Cursor
Cursor objects are used to manage the context of a .fetch*() method.

Cursors that are created in the same connection are not isolated from one another.

There are two attributes for cursor objects:

216 Chapter 3. Read, persist and provide data

http://www.joeconway.com/plr.html
https://github.com/petere/plsh
https://github.com/plv8/plv8
https://www.postgresql.org/docs/current/external-pl.html
https://www.postgresql.org/docs/current/plhandler.html
https://www.python.org/dev/peps/pep-0249/#connection-objects
https://www.python.org/dev/peps/pep-0249/#cursor-objects


Python for Data Science, Release 24.1.0

.description
contains the following seven elements:

1. name

2. type_code

3. display_size

4. internal_size

5. precision

6. scale

7. null_ok

The first two elements (name and type_code) are mandatory, the other five are optional and are set to None
if no meaningful values can be specified.

.rowcount
indicates the number of lines that the last call of .execute*() with SELECT, UPDATE or INSERT resulted
in.

Example:

cursor = conn.cursor()
cursor.execute(

"""
SELECT column1, column2
FROM tableA

"""
)
for column1, column2 in cursor.fetchall():

print(column1, column2)

See also:
PEP 249 – Python Database API Specification v2.0

Psycopg

Psycopg is a PostgreSQL adapter based on the C library for PostgreSQL libpq. Among other things, it offers:

• DB API 2.0 compatibility

• Multithreading with thread safety

• Connections pooling to be able to use a cache of existing database connections for queries.

• Asynchronous and Coroutines support

• Adaptation of the Python types in SQL

3.8. PostgreSQL 217

https://peps.python.org/pep-0249/
https://www.psycopg.org/
https://www.postgresql.org/docs/current/libpq.html
https://www.psycopg.org/docs/pool.html
https://www.psycopg.org/docs/advanced.html#asynchronous-support
https://www.psycopg.org/docs/advanced.html#support-for-coroutine-libraries
https://www.psycopg.org/docs/usage.html#adaptation-of-python-values-to-sql-types


Python for Data Science, Release 24.1.0

Install

With Spack you can provide psycopg2 in your kernel, e.g. with

$ spack env activate python-311
$ spack install py-psycopg2

Object-relational mapping

«Object-relational mapping (. . . ) in computer science is a programming technique for converting data
between incompatible type systems using object-oriented programming languages.»1

In the simplest case, classes are mapped to tables, with each object corresponding to a table row and each attribute to
a table column.

There are essentially three different methods of mapping inheritance hierarchies:

Single Table
One table is created for each inheritance hierarchy, with all attributes of the base class and all classes derived
from it being stored in a common table.

Joined Table or Class Table
A table is created for each subclass and a further table for each subclass derived from it.

Table per Class or Concrete Table
The attributes of the abstract base class are included in the tables for the specific subclasses. However, it is not
possible to determine instances of different classes with one query.

SQLAlchemy

SQLAlchemy is a Python-SQL-Toolkit and object-relational mapper.

SQLAlchemy is known for its ORM, whereby it provides different patterns for object-relational mapping, whereby
classes can be mapped to the database in different ways. The object model and the database schema are cleanly decou-
pled from the start.

SQLAlchemy differs fundamentally from other ORMs, as SQL and details of the object relation are not abstracted
away: all processes are represented as a collection of individual tools.

SQLAlchemy supports PostgreSQL as well as other dialects of relational databases:

Dialects Python package import Docs
postgresql psycopg2-binary psycopg2 Installation
mysql mysqlclient MySQLdb README
mssql pyodbc pyodbc Wiki
oracle cx_oracle cx_Oracle cx_Oracle

1 Wikipedia: relational mapping

218 Chapter 3. Read, persist and provide data

https://www.sqlalchemy.org/
https://www.psycopg.org/docs/install.html
https://github.com/PyMySQL/mysqlclient?tab=readme-ov-file
https://github.com/mkleehammer/pyodbc/wiki
https://oracle.github.io/python-cx_Oracle/
https://en.wikipedia.org/wiki/Object-relational_mapping


Python for Data Science, Release 24.1.0

Database connection

from sqlalchemy import create_engine

engine = create_engine("postgresql:///example", echo=True)

Data model

from sqlalchemy import Column, ForeignKey, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Address(Base):
__tablename__ = "address"

id = Column(Integer, primary_key=True)
street = Column(String)
zipcode = Column(String)
country = Column(String, nullable=False)

class Contact(Base):
__tablename__ = "contact"

id = Column(Integer, primary_key=True)

firstname = Column(String, nullable=False)
lastname = Column(String, nullable=False)
email = Column(String, nullable=False)
address_id = Column(Integer, ForeignKey(Address.id), nullable=False)
address = relationship("Address")

3.8. PostgreSQL 219



Python for Data Science, Release 24.1.0

Create tables

Base.metadata.create_all(engine)

Create Session

session = Session(engine)
address = Address(street="Birnbaumweg 10", zipcode="79115", country="Germany")

contact = Contact(
firstname="Veit", lastname="Schiele", email="veit@cusy.io", address=address

)

session.add(contact)
session.commit()

Read

contact = session.query(Contact).filter_by(email="veit@cusy.io").first()
print(contact.firstname)

contacts = session.query(Contact).all()
for contact in contacts:

print(contact.firstname)

contacts = session.query(Contact).filter_by(email="veit@cusy.io").all()
for contact in contacts:

print(contact.firstname)

Update

contact = session.query(Contact).filter_by(email="veit@cusy.io").first()
contact.email = "info@veit-schiele.de"

session.add(contact)
session.commit()

Delete

contact = (
session.query(Contact).filter_by(email="info@veit-schiele.de").first()

)

session.delete(contact)
session.commit()

220 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

Extensions

SQLAlchemy-Continuum
Versioning and revision extension for SQLAlchemy

SQLAlchemy-Utc
SQLAlchemy type for storing datetime.datetime values

SQLAlchemy-Utils
Various utility functions, new data types and utilities for SQLAlchemy

DEPOT
Framework for easy storage and retrieval of files in web applications

SQLAlchemy-ImageAttach
RSQLAlchemy extension for attaching images to entity objects

SQLAlchemy-Searchable
Full-text searchable models for SQLAlchemy

See also:
• Awesome SQLAlchemy

Alembic

Alembic is based on SQLAlchemy and serves as a database migration tool with the following functions:

• ALTER statements to a database to change the structure of tables and other constructs

• System for creating migration scripts. Optionally, the sequence of steps for the downgrade can also be specified.

• The scripts are executed in a specific order.

See also:
Auto Generating Migrations

Create migration environment

The Migration Environment is a directory that is specific to a particular application. It is created with the Alembic ini
command and then managed along with the application’s source code.

$ cd myrproject
$ alembic init alembic
Creating directory /path/to/myproject/alembic...done
Creating directory /path/to/myproject/alembic/versions...done
Generating /path/to/myproject/alembic.ini...done
Generating /path/to/myproject/alembic/env.py...done
Generating /path/to/myproject/alembic/README...done
Generating /path/to/myproject/alembic/script.py.mako...done
Please edit configuration/connection/logging settings in
'/path/to/myproject/alembic.ini' before proceeding.

The structure of such a migration environment can for example look like this:

3.8. PostgreSQL 221

https://sqlalchemy-continuum.readthedocs.io/en/latest/
https://github.com/spoqa/sqlalchemy-utc
https://sqlalchemy-utils.readthedocs.io/en/latest/
https://depot.readthedocs.io/en/latest/
https://sqlalchemy-imageattach.readthedocs.io/
https://sqlalchemy-searchable.readthedocs.io/en/latest/
https://github.com/dahlia/awesome-sqlalchemy
https://alembic.sqlalchemy.org/
https://alembic.sqlalchemy.org/en/latest/autogenerate.html


Python for Data Science, Release 24.1.0

myproject/
alembic

alembic.ini
env.py
README
script.py.mako
versions

2b1ae634e5cd_add_order_id.py
3512b954651e_add_account.py
3adcc9a56557_rename_username_field.py

Templates

Alembic includes a number of templates that can be displayed with list:

$ alembic list_templates
Available templates:

generic - Generic single-database configuration.
multidb - Rudimentary multi-database configuration.
pylons - Configuration that reads from a Pylons project environment.

Templates are used via the 'init' command, e.g.:

alembic init --template pylons ./scripts

Configure ini file

The file created with the generic template looks like this:

# A generic, single database configuration.

[alembic]
# path to migration scripts
script_location = alembic

# template used to generate migration files
# file_template = %%(rev)s_%%(slug)s

# timezone to use when rendering the date
# within the migration file as well as the filename.
# string value is passed to dateutil.tz.gettz()
# leave blank for localtime
# timezone =

# max length of characters to apply to the
# "slug" field
#truncate_slug_length = 40

# set to 'true' to run the environment during
(continues on next page)

222 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

# the 'revision' command, regardless of autogenerate
# revision_environment = false

# set to 'true' to allow .pyc and .pyo files without
# a source .py file to be detected as revisions in the
# versions/ directory
# sourceless = false

# version location specification; this defaults
# to alembic/versions. When using multiple version
# directories, initial revisions must be specified with --version-path
# version_locations = %(here)s/bar %(here)s/bat alembic/versions

# the output encoding used when revision files
# are written from script.py.mako
# output_encoding = utf-8

sqlalchemy.url = driver://user:pass@localhost/dbname

# Logging configuration
[loggers]
keys = root,sqlalchemy,alembic

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = WARN
handlers = console
qualname =

[logger_sqlalchemy]
level = WARN
handlers =
qualname = sqlalchemy.engine

[logger_alembic]
level = INFO
handlers =
qualname = alembic

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(levelname)-5.5s [%(name)s] %(message)s

(continues on next page)

3.8. PostgreSQL 223



Python for Data Science, Release 24.1.0

(continued from previous page)

datefmt = %H:%M:%S

%(here)s
Replacement variable for creating absolute paths

file_template
This is the naming scheme used to generate new migration files. The available variables include:

%%(rev)s
Revision ID

%%(slug)s
Abbreviated revision message

%%(year)d, %%(month).2d, %%(day).2d, %%(hour).2d, %%(minute).2d, %%(second).2d
Creation time

Create a migration script

A new revision can be created with:

$ alembic revision -m "create account table"
Generating /path/to/yourproject/alembic/versions/1975ea83b712_create_account_table.py...
→˓done

Then the file 1975ea83b712_create_account_table.py looks like this:

"""create account table

Revision ID: 1975ea83b712
Revises:
Create Date: 2018-12-08 11:40:27.089406

"""

# revision identifiers, used by Alembic.
revision = "1975ea83b712"
down_revision = None
branch_labels = None

import sqlalchemy as sa

from alembic import op

def upgrade():
pass

def downgrade():
pass

down_revision
Variable that tells Alembic in which order the migrations should be carried out, for example:

224 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

# revision identifiers, used by Alembic.
revision = "ae1027a6acf"
down_revision = "1975ea83b712"

upgrade, downgrade
for example:

def upgrade():
op.create_table(

"account",
sa.Column("id", sa.Integer, primary_key=True),
sa.Column("name", sa.String(50), nullable=False),
sa.Column("description", sa.Unicode(200)),

)

def downgrade():
op.drop_table("account")

create_table() and drop_table() are Alembic directives. You can get an overview of all Alembic directives
in the Operation Reference.

Run migration

First migration:

$ alembic upgrade head
INFO [alembic.context] Context class PostgresqlContext.
INFO [alembic.context] Will assume transactional DDL.
INFO [alembic.context] Running upgrade None -> 1975ea83b712

We can also refer directly to revision numbers:

$ alembic upgrade ae1

Relative migrations can also be initiated:

$ alembic upgrade +2

or:

$ alembic downgrade -1

or:

$ alembic upgrade ae10+2

3.8. PostgreSQL 225

https://alembic.sqlalchemy.org/en/latest/ops.html#ops


Python for Data Science, Release 24.1.0

Display Information

Current version

$ alembic current
INFO [alembic.context] Context class PostgresqlContext.
INFO [alembic.context] Will assume transactional DDL.
Current revision for postgresql://scott:XXXXX@localhost/test: 1975ea83b712 ->␣
→˓ae1027a6acf (head), Add a column

History

$ alembic history --verbose

Rev: ae1027a6acf (head)
Parent: 1975ea83b712
Path: /path/to/yourproject/alembic/versions/ae1027a6acf_add_a_column.py

add a column

Revision ID: ae1027a6acf
Revises: 1975ea83b712
Create Date: 2014-11-20 13:02:54.849677

Rev: 1975ea83b712
Parent: <base>
Path: /path/to/yourproject/alembic/versions/1975ea83b712_add_account_table.py

create account table

Revision ID: 1975ea83b712
Revises:
Create Date: 2014-11-20 13:02:46.257104

The history can also be displayed more specifically:

$ alembic history -r1975ea:ae1027

or:

$ alembic history -r-3:current

or:

$ alembic history -r1975ea:

226 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

ipython-sql

ipython-sql introduces the %sql or %%sql magics for iPython and Jupyter notebooks.

Installation

You can easily install ipython-sql in your Jupyter kernel with:

$ pipenv install ipython-sql

First steps

1. First, ipython-sql is activated in your notebook with

In [1]: %load_ext sql

2. The SQLAlchemy URL is used to connect to the database:

In [2]: %sql postgresql://

3. Then you can create a table, for example:

In [3]: %%sql postgresql://
....: CREATE TABLE accounts (login, name, email)
....: INSERT INTO accounts VALUES ('veit', 'Veit Schiele', veit@example.org);

4. You can query the contents of the accounts table with

In [4]: result = %sql select * from accounts

Configuration

Query results are loaded as a list, so very large amounts of data can occupy memory. Usually there is no automatic
limit, but with Autolimit you can limit the amount of results.

Note: displaylimit only limits the amount of results displayed, but not the amount of memory required.

With %config SqlMagic you can display the current configuration:

In [4]: %config SqlMagic
SqlMagic options
--------------
SqlMagic.autocommit=<Bool>

Current: True
Set autocommit mode

SqlMagic.autolimit=<Int>
Current: 0
Automatically limit the size of the returned result sets

SqlMagic.autopandas=<Bool>
(continues on next page)

3.8. PostgreSQL 227

https://github.com/catherinedevlin/ipython-sql
https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls


Python for Data Science, Release 24.1.0

(continued from previous page)

Current: False
Return Pandas DataFrames instead of regular result sets

...

Note: If autopandas is set to True, displaylimit is not applied. In this case, the max_rows option of pandas can
be used as described in the pandas documentation.

pandas

If pandas is installed, the DataFrame method can be used:

In [5]: result = %sql SELECT * FROM accounts

In [6]: dataframe = result.DataFrame()

In [7]: %sql --persist dataframe

In [8]: %sql SELECT * FROM dataframe;

--persist
Argument with the name of a DataFrame object, creates a table name in the database from this.

--append
Argument to add rows with this name to an existing table.

PostgreSQL features

Meta-commands from psql can also be used in ipython-sql:

-l, --connections
lists all active connections

-x, --close SESSION-NAME
close named connection

-c, --creator CREATOR-FUNCTION
specifies the creator function for a new connection

-s, --section SECTION-NAME
specifies section of dsn_file to be used in a connection

-p, --persist
creates a table in the database from a named DataFrame

--append
similar to --persist, but the contents are appended to the table

-a, --connection_arguments "{CONNECTION-ARGUMENTS}"
specifies a dict of connection arguments to be passed to the SQL driver

-f, --file PATH
executes SQL from the file under this path

See also:

228 Chapter 3. Read, persist and provide data

https://pandas.pydata.org/pandas-docs/version/0.18.1/options.html#frequently-used-options


Python for Data Science, Release 24.1.0

• pgspecial

Warning: Since ipython-sql processes -- options such as -persist, and at the same time accepts -- as a SQL
comment, the parser has to make some assumptions: for example, --persist is great in the first line is pro-
cessed as an argument and not as a comment.

PostGIS

PostGIS is an extension for PostgreSQL that includes geographic objects and functions. The extension implements i.a.
the Simple Feature Access specification of the Open Geospatial Consortium. Although PostgreSQL already supports
geometry types, these are insufficient for geographic tasks. Therefore, PostGIS creates its own data types that are better
suited for geographic tasks. The following geometry types are supported:

• OpenGIS with well-known text and well-known binary

• Extended Well-Known Text and Extended Well-Known Binary also with height information and/or measured
values

• SQL/MM with Circularstring, Compoundcurve, Curvepolygon, Multicurve and Multisurface

GEOS, on the other hand, contains the numerous spatial functions and operators for geographic data.

Finally, pgRouting contains routing functions based on PostGIS.

In the OpenStreetMap project, PostGIS is used to render maps with Mapnik.

Install PostGIS

For Ubuntu 22.04 you can simply install PostGIS with:

$ sudo apt install postgis

Then you can activate PostGIS.

1. Switch to the PostgreSQL user:

$ sudo -i -u postgres

2. Create test user and database:

$ createuser postgis
$ createdb postgis_db -O postgis

3. Establish a connection to the database:

$ psql -d postgis_db
psql (14.5 (Ubuntu 14.5-0ubuntu0.22.04.1))
Type "help" for help.

4. Activate the PostGIS extension in the database:

ppostgis_db = # CREATE EXTENSION postgis;
CREATE EXTENSION

5. Check that PostGIS is working:

3.8. PostgreSQL 229

https://pypi.org/project/pgspecial/
https://postgis.net/
https://www.ogc.org/standards/sfa
https://www.ogc.org/
https://trac.osgeo.org/geos/
https://pgrouting.org/
https://www.openstreetmap.org
https://mapnik.org/


Python for Data Science, Release 24.1.0

postgis_db=# SELECT PostGIS_version();
postgis_version

---------------------------------------
3.2 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
(1 row)

See also:
• PostGIS Installation

Optimising PostgreSQL for GIS database objects

In the standard installation, PostgreSQL is configured very cautiously so that it can run on as many systems as possi-
ble. However, GIS database objects are large compared to text data. Therefore, PostgreSQL should be configured to
work better with these objects. To do this, we configure the /etc/postgresql/14/main/postgresql.conf file as
follows:

1. shared_buffer should be changed to approx. 75% of the total working memory, but never fall below 128 kB:

shared_buffers = 768MB

2. work_mem should be increased to at least 16MB:

work_mem = 16MB

3. maintenance_work_mem should be increased to 128MB:

maintenance_work_mem = 128MB

4. Finally, random_page_cost should be set to 2.0.

random_page_cost = 2.0

PostgreSQL should be restarted for the changes to take effect:

$ sudo service postgresql restart

Loading geospatial data

Now let`s load some geospatial data into our database so that we can familiarise ourselves with the tools and processes
used to retrieve that data.

Natural Earth provides a great source of basic data for the whole world on various scales. And the best thing is that this
data is in the public domain:

1. Download the data

$ mkdir nedata
$ cd !$
cd nedata
$ wget https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/
→˓110m/cultural/ne_110m_admin_0_countries.zip

2. Unzip the file

230 Chapter 3. Read, persist and provide data

https://postgis.net/docs/postgis_installation.html
https://www.naturalearthdata.com/


Python for Data Science, Release 24.1.0

$ sudo apt install unzip
$ unzip ne_110m_admin_0_countries.zip
Archive: ne_110m_admin_0_countries.zip
inflating: ne_110m_admin_0_countries.README.html
extracting: ne_110m_admin_0_countries.VERSION.txt
extracting: ne_110m_admin_0_countries.cpg
inflating: ne_110m_admin_0_countries.dbf
inflating: ne_110m_admin_0_countries.prj
inflating: ne_110m_admin_0_countries.shp
inflating: ne_110m_admin_0_countries.shx

3. Load into our postgis_db database

The files .dbf, .prj, .shp and .shp form a so-called ShapeFile, a popular geospatial data format that is used
by GIS software. To load this into our database, we also need GDAL, the Geospatial Data Abstraction Library.
When we install GDAL we also get OGR, OpenGIS Simple Features Reference Implementation, a vector data
translation library that we can use to translate the shapefile into data.

1. GDAL can be easily installed with the package manager:

$ sudo apt install gdal-bin

2. Then we switch to the postgresql user:

$ sudo -i -u postgres

3. Now we convert the shapefile with ogr2ogr and import it into our database:

$ ogr2ogr -f PostgreSQL PG:dbname=postgis_db -progress \
-nlt PROMOTE_TO_MULTI \
/srv/jupyter/nedata/ne_110m_admin_0_countries.shp

0...10...20...30...40...50...60...70...80...90...100 - done.

-f PostgreSQL
indicates that the target is a PostgreSQL database

PG:dbname=postgis_db
specifies the PostgreSQL database name. In addition to the name, other options can also be specified,
in general:

PG:"dbname='db_ename' host='addr' port='5432' user='x' password='y'"

-progress
outputs a progress bar

-nlt PROMOTE_TO_MULTI
indicates that all object types should be loaded into the database as multipolygons

/home/veit/nedata/ne_110m_admin_0_countries.shp
specifies the path to the input file

See also:
• ogr2ogr

4. Check the import with ogrinfo

3.8. PostgreSQL 231

http://www.gdal.org/
https://gdal.org/programs/ogr2ogr.html


Python for Data Science, Release 24.1.0

$ ogrinfo -so PG:dbname=postgis_db ne_110m_admin_0_countries
Output
INFO: Open of `PG:dbname=postgis_db'

using driver `PostgreSQL' successful.

Layer name: ne_110m_admin_0_countries
Geometry: Multi Polygon
Feature Count: 177
...

5. Alternatively, we can also list individual tables:

$ psql -d postgis_db
postgis_db=# \dt

List of relations
Schema | Name | Type | Owner

--------+---------------------------+-------+----------
public | ne_110m_admin_0_countries | table | postgres
public | spatial_ref_sys | table | postgres
(2 rows)

6. Finally, we can log out of the database with

psql> \q

See also:
• PostGIS Reference

Database security

Database permissions

The PostgreSQL login via superuser postgres should only ever be allowed via Unix domain sockets and via
localhost. Access with peer authentication in the pg_hba.conf, however, can be granted:

# TYPE DATABASE USER ADDRESS METHOD
local all postgres peer
host all all 10.23.42.1/24 scram-sha-256

The database should be created by the database administrator and then configured in such a way that not everyone
(PUBLIC) can connect to it:

CREATE DATABASE myapp;
REVOKE ALL ON myapp FROM PUBLIC;

This means that only the superuser can connect to the myapp database.

232 Chapter 3. Read, persist and provide data

http://postgis.net/docs/reference.html
https://www.postgresql.org/docs/current/auth-peer.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html


Python for Data Science, Release 24.1.0

Save passwords

Passwords should never be in plain text, e.g. also not be saved in an .env file. When saving and transmitting passwords,
this should always be salted. For PostgreSQL there is the extension pgcrypto, which can be easily activated with

CREATE EXTENSION pgcrypto;

For this reason, secure passwords should be assigned when they are created, which can then get saved e.g. in Vault or
similar:

CREATE ROLE myapp_users;
CREATE ROLE myapp_reader IN ROLE myapp_users LOGIN PASSWORD '...';
CREATE ROLE myapp_writer IN ROLE myapp_users LOGIN PASSWORD '...';

Then users with the role myapp_users first get CONNECT rights and then
myapp_reader read rights and myapp_writer write rights:

GRANT CONNECT ON DATABASE to myapp_users;
GRANT SELECT ON diagnosis_key TO myapp_reader;
GRANT INSERT ON diagnosis_key TO myapp_writer;

The user myapp_reader can, however, read all data at once. This is also a point of attack that is better cut by a function:

CREATE OR REPLACE FUNCTION get_key_data(in_id UUID)
RETURNS JSONB
AS 'SELECT key_data FROM diagnosis_key WHERE id = in_id;'
LANGUAGE sql SECURITY DEFINER SET search_path = :schema, pg_temp;

Then the function myapp_owner is assigned, the authorisations for myapp_reader and myapp_writer are revoked
and finally the execution of the function myapp_reader is allowed:

ALTER FUNCTION get_key_data(UUID) OWNER TO myapp_owner;
REVOKE ALL ON FUNCTION get_key_dataUUID) FROM PUBLIC;
GRANT EXECUTE ON FUNCTION get_key_data(UUID) TO myapp_reader;

This means that myapp_reader can only read a single data record.

id

rhe id shouldn’t be written as serial, bigserial or similar. Counting numbers could be easily guessed by attackers.
Therefore the UUIDv4 data type is much more suitable. In PostgreSQL you can generate UUIDv4 with the uuid-ossp
extension or for PostgreSQL9.4 also the pgcrypto extension:

CREATE EXTENSION "uuid-ossp";
CREATE TABLE diagnosis_key (
id uuid primary key default uuid_generate_v4() NOT NULL,
...

);

or

CREATE EXTENSION "pgcrypto";
CREATE TABLE diagnosis_key (

(continues on next page)

3.8. PostgreSQL 233

https://en.wikipedia.org/wiki/Salt_(cryptography)
https://www.postgresql.org/docs/current/pgcrypto.html
https://www.vaultproject.io/
https://www.postgresql.org/docs/current/uuid-ossp.html
https://www.postgresql.org/docs/current/pgcrypto.html


Python for Data Science, Release 24.1.0

(continued from previous page)

id uuid primary key default gen_random_uuid() NOT NULL,
...

);

Time stamp

Occasionally, the date and time are stored as bigint, i.e. as a number, even though there is also a TIMESTAMP data
type. This would have the advantage that you can easily count on them, for example:

SELECT age(submission_timestamp);
SELECT submission_timestamp - '1 day'::interval;

In addition, the data could be deleted after a certain period of time, e.g. after thirty days with:

DELETE FROM diagnosis_key WHERE age(submission_timestamp) > 30;

Deletion can be accelerated if a separate partition is created for each day with the PostgreSQL extension pg_partman.

See also:
• Veil2 – Relational Security for Postgres

• PostgreSQL Secure Monitoring (Posemo)

PostgreSQL performance

You shouldn’t start with MVCC – Multiversion Concurrency Control if you want to optimise your PostgreSQL database:
many improvements can be made much easier since neither transaction logs nor large Linux kernel page sizes are likely
to be responsible. Usually we start with two metrics that can very well indicate the performance of your databases:

Cache and index hit rate

Cache hit ratio
Percentage of time that data can be served from RAM instead of hard disk space. For a web app with many small
requests, I recommend about 99%.

SELECT
'index hit rate' AS name,
(sum(idx_blks_hit)) / nullif(sum(idx_blks_hit + idx_blks_read),0) AS ratio

FROM pg_statio_user_indexes
UNION ALL
SELECT
'table hit rate' AS name,
sum(heap_blks_hit) / nullif(sum(heap_blks_hit) + sum(heap_blks_read),0) AS ratio

FROM pg_statio_user_tables;

If the cache hit rate is too low, you can simply increase the memory.

Index hit ratio
Frequency of use of the indices.

234 Chapter 3. Read, persist and provide data

https://github.com/pgpartman/pg_partman
https://marcmunro.github.io/veil2/html/index.html
https://github.com/alvar-freude/Posemo


Python for Data Science, Release 24.1.0

SELECT relname,
CASE idx_scan
WHEN 0 THEN 'Insufficient data'
ELSE (100 * idx_scan / (seq_scan + idx_scan))::text

END percent_of_times_index_used,
n_live_tup rows_in_table

FROM
pg_stat_user_tables

ORDER BY
n_live_tup DESC;

relname | percent_of_times_index_used | rows_in_table
-----------------------+-----------------------------+---------------
account | 11 | 5409
activity | 69 | 58276
application | 93 | 5345
...

Typically, we shouldn’t have more than 10,000 records in a table and the percentage of the index used should be
greater than 90%.

In our example, we see that the account table is missing relevant indices, as an index is only used in 11% of the
queries. The activity table is also missing some suitable indices, but it also has a lot of records, so it might
make sense to split it into several tables.

Clean up unused indices

Unused indices lead to a slower throughput when writing the data sets without making queries faster.

SELECT
schemaname || '.' || relname AS table,
indexrelname AS index,
pg_size_pretty(pg_relation_size(i.indexrelid)) AS index_size,
idx_scan as index_scans

FROM pg_stat_user_indexes ui
JOIN pg_index i ON ui.indexrelid = i.indexrelid
WHERE NOT indisunique AND idx_scan < 50 AND pg_relation_size(relid) > 5 * 8192
ORDER BY pg_relation_size(i.indexrelid) / nullif(idx_scan, 0) DESC NULLS FIRST,
pg_relation_size(i.indexrelid) DESC;

Indices that are not used can simply be removed. On the other hand the decision becomes more difficult for indices that
are only used very rarely: here a trade-off must be made between the write and the query speed.

Clean up unused data

Although PostgreSQL can hold a wide variety of data, it is not always useful to do so. Tables such as messages, logs
and events have a good chance of taking up most of the memory without directly benefiting the database application:
if this data is rather for monitoring or error analysis, it should be stored outside the database and rotated regularly.

3.8. PostgreSQL 235



Python for Data Science, Release 24.1.0

Analyse query performance with pg_stat_statements

pg_stat_statements records queries and keeps a number of statistics on them. Thus, at regular intervals, we check which
queries are the slowest on average and which put the greatest load on the system:

SELECT
(total_time / 1000 / 60) as total_minutes,
(total_time/calls) as average_time,
query

FROM pg_stat_statements
ORDER BY 1 DESC
LIMIT 50;
total_time | avg_time | query
------------------+-------------------+--------------------------------------------------
→˓----------
295.761165833319 | 10.1374053278061 | SELECT id FROM account WHERE email LIKE ?
219.138564283326 | 80.24530822355305 | SELECT * FROM account WHERE user_id = ? AND␣
→˓current = True
...

Typical response times should be ~1ms and in a few cases ~4-5ms. To start optimising performance, we usually weigh
the total time against the average time, so in the above example we would probably start with the second line as we see
the greater potential for savings here. To get a more accurate idea of the query, we analyse it more closely with:

EXPLAIN ANALYZE
SELECT *
FROM account
WHERE user_id = 123
AND current = True

QUERY PLAN
-----------------------------------------------------------------------------------------
→˓---------------------------------------------------------------
Aggregate (cost=4690.88..4690.88 rows=1 width=0) (actual time=519.288..519.289 rows=1␣
→˓loops=1)

-> Nested Loop (cost=0.00..4690.66 rows=433 width=0) (actual time=15.302..519.076␣
→˓rows=213 loops=1)

-> Index Scan using idx_account_userid on account (cost=0.00..232.52 rows=23␣
→˓width=4) (actual time=10.143..62.822 rows=1 loops=8)

Index Cond: (user_id = 123)
Filter: current
Rows Removed by Filter: 14

Total runtime: 219.428 ms
(1 rows)

So we see that although an index is used, 15 different rows are retrieved from it, of which 14 are then discarded. To
optimise this, we would create a conditional or a composite index. In the first case current = true would have to
be met, in the second case a composite index would be created with both values. A conditional index is usually more
useful with a small set of values, while the composite index is more beneficial with larger sets of values. In our example,
a conditional index clearly makes more sense. We can create this with:

CREATE INDEX CONCURRENTLY idx_account_userid_current ON account(user_id) WHERE current =␣
→˓True;

Now the query plan should also improve:

236 Chapter 3. Read, persist and provide data

https://www.postgresql.org/docs/current/pgstatstatements.html


Python for Data Science, Release 24.1.0

EXPLAIN ANALYZE
SELECT *
FROM account
WHERE user_id = 123
AND current = True

QUERY PLAN
-----------------------------------------------------------------------------------------
→˓-------------------------------------------------------
Aggregate (cost=4690.88..4690.88 rows=1 width=0) (actual time=519.288..519.289 rows=1␣
→˓loops=1)

-> Index Scan using idx_account_userid_current on account (cost=0.00..232.52␣
→˓rows=23 width=4) (actual time=10.143..62.822 rows=1 loops=8)

Index Cond: ((user_id = 123) AND (current = True))
Total runtime: .728 ms
(1 rows)

pgMonitor

pgMonitor is an environment to visualise the health and performance of a PostgreSQL cluster. It combines a suite of
tools to facilitate the collection of important metrics, including:

• number of connections

• Database size

• Replication lag

• Transaction wraparround

• Extra space taken up by your tables and indexes

• CPU, memory, I/O and uptime

It combines multiple open-source software packages to create a robust PostgreSQL monitoring environment, including:

PostgreSQL Exporter
an open-source data export to Prometheus that supports collecting metrics from any PostgreSQL server 9.1.

Prometheus
an open-source metrics collector that is highly customisable.

Grafana
an open-source data visualiser that allows you to generate many different kinds of charts and graphs.

See also:
• pgexporter

3.8. PostgreSQL 237

https://access.crunchydata.com/documentation/pgmonitor/latest/
https://github.com/prometheus-community/postgres_exporter
https://prometheus.io/
https://grafana.com/
https://pgexporter.github.io/


Python for Data Science, Release 24.1.0

Installation and configuration

Installation and configuration instructions for each package are provided:

1. PostgreSQL Exporter

2. Prometheus

3. Grafana

pganalyze

pganalyze analyses the query plans of PostgreSQL. Currently it collects information about

• schema with tables (columns, constraints, trigger definitions) and indices

• Statistics on tables indices, databases and queries

• Operating system (OS, RAM, storage)

See also:
• GitHub

• Docs

Installation

1. Create a monitoring user for pganalyze:

CREATE USER pganalyze WITH PASSWORD '...' CONNECTION LIMIT 5;
GRANT pg_monitor TO pganalyze;
CREATE SCHEMA pganalyze;
GRANT USAGE ON SCHEMA pganalyze TO pganalyze;
REVOKE ALL ON SCHEMA public FROM pganalyze;
CREATE OR REPLACE FUNCTION pganalyze.get_stat_replication() RETURNS SETOF pg_stat_
→˓replication AS
$$ /* pganalyze-collector */ SELECT * FROM pg_catalog.pg_stat_replication;
$$ LANGUAGE sql VOLATILE SECURITY DEFINER;

2. Check the connection:

PGPASSWORD=... psql -h localhost -d mydb -U pganalyze

3. Activate the pg_stat_statements:

ALTER SYSTEM SET shared_preload_libraries = 'pg_stat_statements';

4. Restart of the PostgreSQL daemon:

$ sudo service postgresql restart

5. Checking pg_stat_statements:

238 Chapter 3. Read, persist and provide data

https://access.crunchydata.com/documentation/pgmonitor/latest/exporter
https://access.crunchydata.com/documentation/pgmonitor/latest/prometheus
https://access.crunchydata.com/documentation/pgmonitor/latest/grafana
https://pganalyze.com/
https://github.com/pganalyze/collector
https://pganalyze.com/docs


Python for Data Science, Release 24.1.0

CREATE EXTENSION IF NOT EXISTS pg_stat_statements;
SELECT calls, query FROM pg_stat_statements LIMIT 1;
calls | query
-------+-------

8 | SELECT * FROM t WHERE field = ?
(1 row)

6. Installing the Collector:

$ curl -L https://packages.pganalyze.com/pganalyze_signing_key.asc | sudo apt-key␣
→˓add -
$ echo "deb [arch=amd64] https://packages.pganalyze.com/ubuntu/bionic/ stable main"␣
→˓| sudo tee /etc/apt/sources.list.d/pganalyze_collector.list
$ sudo apt-get update
$ sudo apt-get install pganalyze-collector

7. Creating the API key

For the next step you need the pganalyze api_key. You can create this at the site https://app.pganalyze.com/

8. Configure the collector:

[pganalyze]
api_key: ...

[server]
db_host: 127.0.0.1
db_port: 5432
db_name: postgres, *
db_username: pganalyze
db_password: ...

9. Testing the Collector configuration:

$ sudo pganalyze-collector --test --reload

See also:
• Installation Guide

Log analysis

In order to continuously monitor, classify and statistically evaluate the local log files, db_log_location must be
specified in pganalyze-collector.conf. pganalyze-collector provides help to find the log files:

$ pganalyze-collector --discover-log-location

The output can then look like this, for example:

db_log_location = /var/log/postgresql/postgresql-12-main.log

After this result has been entered in the pganalyze-collector.conf configuration file you can test it with:

$ pganalyze-collector --test

3.8. PostgreSQL 239

https://app.pganalyze.com/
https://pganalyze.com/docs/install/self_managed/01_create_monitoring_user


Python for Data Science, Release 24.1.0

The result can then look like this, for example:

2021/02/06 06:40:06 I [server1] Testing statistics collection...
2021/02/06 06:40:07 I [server1] Test submission successful (15.8 KB received)
2021/02/06 06:40:07 I [server1] Testing local log tailing...
2021/02/06 06:40:13 I [server1] Log test successful
2021/02/06 06:40:13 I Re-running log test with reduced privileges of "pganalyze" user␣
→˓(uid = 107, gid = 113)
2021/02/06 06:40:13 I [server1] Testing local log tailing...
2021/02/06 06:40:19 I [server1] Log test successful

If the test was successful, the Collector must be restarted for the confiugration to take effect:

$ systemctl restart pganalyze-collector

3.9 NoSQL databases

So far there is no uniform definition of NoSQL, but most NoSQL database systems usually have the following in
common:

• no relational data model

• distributed and horizontal scalability

• no or weak schema restrictions

• simple API

• no ACID, but Eventual consistency or BASE as the consistency model

NoSQL databases can be divided into

3.9.1 Key-value database systems

Key-value databases, also known as key value stores, store key/value pairs.

Database systems

Key/value database systems are e.g. Riak, Cassandra, Redis and MongoDB.

240 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

Home Riak Cassandra Redis MongoDB
GitHub basho/riak apache/cassandra redis/redis mongodb/mongo
Docs docs.riak.com cassan-

dra.apache.org/doc/
re-
dis.io/documentation

docs.mongodb.com

Application areas Session storage, Log
data, Sensor data,
CMS

Georedundancy,
high writing speed,
democratic peer-
to-peer (P2P)
architecture, data
with a defined life-
time

Session Cache, Full
Page Cache (FPC),
Queues, Pub/Sub

IoT, Mobile apps,
CMS, simple
geospatial data, . . .

Development lan-
guage

Erlang Java ANSI C C++

Licenses Apache License 2.0 Apache License 2.0 Redis Source Avail-
able License v2,
Server-Side Public
License v1

Server Side Public
License

Data model Essentially
Key/value pair

Column Family
correspond to ta-
bles, keyspaces
to databases; no
logical structure, no
scheme

Keys are stored as
strings, values as
strings, hashes, lists,
sets and sorted sets

Flexible scheme
with denormalised
model

Query langauge Keyfilter, MapRe-
duce, Link walking,
no ad hoc queries
possible

Cassandra Query
Language (CQL)

jQuery, MapReduce

Transactions, con-
currency

ACID Eventual Consis-
tency

in-memory, asyn-
chronous on disc
with Append Only
File Mode

Two-phase locking
(2PL)

Replication,
skaling

Multi-master repli-
cation

SimpleStrategy,
NetworkTopolo-
gyStrategy and
OldNetworkTopolo-
gyStrategy

Master-N-Slaves
replication, Shard-
ing using Consistent
hash function

Master-Slave
replication, Auto-
Sharding

Remarks See also Scylla,
a Cassandra-
compatible reimple-
mentation in C.

See also:
KeyDB

a fork with
multithread-
ing

Redict
a fork, li-
cenced under
LGPL-3.0

Valkey
a fork by
the Linux
Foundation

BSON with a maxi-
mum document size
of 16 MB.

3.9. NoSQL databases 241

https://riak.com/
https://cassandra.apache.org/
https://redis.io/
https://www.mongodb.com/
https://github.com/basho/riak
https://github.com/apache/cassandra
https://github.com/redis/redis
https://github.com/mongodb/mongo
https://docs.riak.com/
https://cassandra.apache.org/doc/latest/
https://cassandra.apache.org/doc/latest/
https://redis.io/documentation
https://redis.io/documentation
https://docs.mongodb.com/
https://docs.mongodb.com/manual/core/geospatial-indexes/
https://docs.mongodb.com/manual/core/geospatial-indexes/
https://cassandra.apache.org/doc/latest/cql/
https://cassandra.apache.org/doc/latest/cql/
https://www.scylladb.com/
https://github.com/JohnSully/KeyDB
https://redict.io/
https://www.linuxfoundation.org/press/linux-foundation-launches-open-source-valkey-community


Python for Data Science, Release 24.1.0

3.9.2 Column-oriented database systems

Column-oriented databases, also known as wide column stores, store data from several entries together with a time
stamp in columns. Columns with similar or related content can be combined in a Column family.

Database systems

Examples of column-oriented database systems are Cassandra, Hypertable and HBase.

Home Cassandra Hypertable HBase
GitHub apache/cassandra vicaya/hypertable apache/hbase
Docs cassandra.apache.org/doc/ hypertable.com/documentation hbase.apache.org/book.html
Appli-
cation
areas

Georedundancy, high writing speed,
democratic peer-to-peer (P2P) archi-
tecture, data with a defined lifetime

Hypertable’s Bigtable design solves hor-
izontal scaling problems through a dis-
tributed storage system for structured
data.

IoT, fraud detection,
recommendation
engines

Devel-
opment
lan-
guage

Java C++ Java

Licenses Apache License 2.0 GPL-3.0 License Apache-2.0 License
Data
model

Column Family correspond to ta-
bles, Keyspaces databases; no logi-
cal structure, no scheme

Associative arrays Tables divided into
regions

Query
lan-
gauge

Cassandra Query Language (CQL) Hypertable Query Language (HQL) Java Client API,
Thrift/REST API

Trans-
actions,
concur-
rency

Eventual Consistency MVCC – Multiversion Concurrency
Control

ACID per line,
MVCC – Multiver-
sion Concurrency
Control

Repli-
cation,
scaling

SimpleStrategy, NetworkTopolo-
gyStrategy and OldNetworkTopolo-
gyStrategy

File system level replication Master-Slave-
Replication

Re-
marks

is based on distributed file systems such
as Apache Hadoop, DFS or GlusterFS

242 Chapter 3. Read, persist and provide data

https://cassandra.apache.org/
https://hypertable.org/
https://hbase.apache.org/
https://github.com/apache/cassandra
https://github.com/vicaya/hypertable
https://github.com/apache/hbase
https://cassandra.apache.org/doc/latest/
https://hypertable.com/documentation/
https://hbase.apache.org/book.html
https://cassandra.apache.org/doc/latest/cql/
https://hypertable.com/documentation/reference_manual/hql/


Python for Data Science, Release 24.1.0

3.9.3 Document-oriented database systems

A document in this context is a structured compilation of certain data. The data of a document is stored as a Key/value
pair, whereby the value can also be a list or an array.

Database systems

Document-oriented database systems are, for example, MongoDB, CouchDB, Riak, OrientDB and ArangoDB.

Home MongoDB CouchDB Riak OrientDB ArangoDB
GitHub mon-

godb/mongo
apache/couchdb basho/riak orientechnolo-

gies/orientdb
arangodb/arangodb

Docs docs.mongodb.comdocs.couchdb.org docs.riak.com `www.orientdb.com/docs`_arangodb.com/documentation/
Application ar-
eas

IoT, Mobile
apps, CMS,
simple geospa-
tial data, . . .

Mobile, CRM,
CMS, . . .

Session storage,
Log data, Sensor
data, CMS

Master data
management,
social networks,
Time Series,
Key Value,
Chat, traffic
management

Fraud De-
tection, IoT,
identity man-
agement, e-
commerce,
network, logis-
tics, CMS

Development
language

C++ Erlang Erlang Java C++, JavaScript

Licenses Server Side Pub-
lic License

Apache License
2.0

Apache License
2.0

Apache License
2.0

Apache License
2.0

Data model Flexible scheme
with denor-
malised model

Flexible scheme Essentially
Key/Value pair

Multi-Model Multi-model:
documents,
graphs and
Key/value pair

Query lan-
gauge

jQuery, MapRe-
duce

REST, MapRe-
duce

Key filter,
MapReduce,
link walking, no
ad-hoc queries
possible

Gremlin ArangoDB
Query Lan-
guage (AQL)

Transactions,
concurrency

Two-phase lock-
ing (2PL) • Two-

phase
locking
(2PL),

• single
server:
ACID,

• dis-
tributed
systems:
BASE

ACID ACID ACID, MVCC
– Multiversion
Concurrency
Control

Replication,
skaling

Master-Slave
replikation,
Auto-Sharding

Master-master
replication

Multi-master
replication

Multi-Master-
Replikation,
Sharding

Master-slave
replication,
sharding

Remarks BSON with
a maximum
document size
of 16 MB.

3.9. NoSQL databases 243

https://www.mongodb.com/
https://couchdb.apache.org/
https://riak.com/
https://orientdb.dev
https://www.arangodb.com/
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://github.com/apache/couchdb
https://github.com/basho/riak
https://github.com/orientechnologies/orientdb
https://github.com/orientechnologies/orientdb
https://github.com/arangodb/arangodb
https://docs.mongodb.com/
https://docs.couchdb.org/
https://docs.riak.com/
https://arangodb.com/documentation/
https://docs.mongodb.com/manual/core/geospatial-indexes/
https://docs.mongodb.com/manual/core/geospatial-indexes/
https://orientdb.dev/docs/3.2.x/gettingstarted/Time-series-use-case.html
https://orientdb.dev/docs/3.2.x/gettingstarted/Key-Value-use-case.html
https://orientdb.dev/docs/3.2.x/gettingstarted/Chat-use-case.html
https://github.com/tinkerpop/gremlin/wiki
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/
https://www.arangodb.com/docs/stable/aql/


Python for Data Science, Release 24.1.0

3.9.4 Graph database systems

Graph databases specialise in networked information and the simplest and most efficient possible Graph traversal.

Graph model

A graph consists of a number of nodes and edges. Graphs are used to represent a variety of problems through nodes,
edges and their relationships, for example in navigation systems in which the paths are stored in the form of graphs.

Graph traversal

Graph traversal is mostly used to find nodes. There are different algorithms for such search queries in a graph, which
can be roughly divided into

• Breadth-first search, BFS and depth-first search, DFS

The breadth-first search begins with all neighboring nodes of the start node. In the next step, the neighbors of
the neighbors are then searched. The path length increases with each iteration.

The depth-first search follows a path until a node with no outgoing edges is found. The path is then traced back
to a node that has further outgoing edges. The search will then continue there.

• Algorithmic traversal

Examples of algorithmic traversal are

– Hamiltonian path (traveling salesman)

– Eulerian path

– Dijkstra’s algorithm

• Randomised traversal

The graph is not run through according to a certain scheme, but the next node is selected at random. This allows
a search result to be presented much faster, especially with large graphs, but this is not always the best.

Database systems

Typical graph databases are Neo4j, OrientDB and ArangoDB.

244 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

Home Neo4j OrientDB ArangoDB
GitHub neo4j/neo4j orientechnolo-

gies/orientdb
arangodb/arangodb

Docs neo4j.com/docs/ orientdb.dev/docs/ arangodb.com/documentation/
Application areas CMS, social networks,

GIS systems, ERP, . . .
Master data management,
social networks, time
series, key value, traffic
management

Fraud Detection, IoT,
identity management„
e-commerce, network,
logistics, CMS

Development language Java Java C++, JavaScript
Licenses AGPL and commercially Apache License 2.0 Apache License 2.0
Data model Property graph model Multi-Model Multi-model: documents,

graphs and Key/value pair
Query langauge REST, Cypher, Gremlin Extended SQL, Gremlin ArangoDB Query Lan-

guage (AQL)`_
Transactions, concur-
rency • Two-phase locking

(2PL)
• single Server: ACID
• distributed systems:

BASE

ACID ACID, MVCC – Multiver-
sion Concurrency Control

Replication, skaling Master-slave with master
failover

Multi-master replication,
Sharding

Master-slave replication,
sharding

Remarks

See also:
• Apache TinkerPop Home

• TinkerPop Documentation

• github.com/apache/tinkerpop

• Practical Gremlin – An Apache TinkerPop Tutorial

• gremlinpython

3.9.5 Object database systems

Many programming languages suggest object-oriented programming, so storing these objects seems natural. It there-
fore makes sense to design the entire process from implementation to storage uniformly and simply. In detail, the
advantages are:

Natural modeling and representation of problems
Problems can be modeled in ways that are very close to the human way of thinking.

Clearer, more readable and more understandable
The data and the functions operating on them are combined into one unit, making the programs clearer, more
readable and easier to understand.

Modular and reusable
Program parts can be easily and flexibly reused.

Expandable
Programs can be easily expanded and adapted to changed requirements.

3.9. NoSQL databases 245

https://neo4j.com
https://orientdb.dev
https://www.arangodb.com/
https://github.com/neo4j/neo4j
https://github.com/orientechnologies/orientdb
https://github.com/orientechnologies/orientdb
https://github.com/arangodb/arangodb
https://neo4j.com/docs/
https://orientdb.dev/docs/3.2.x/index.html
https://arangodb.com/documentation/
https://orientdb.dev/docs/3.2.x/gettingstarted/Time-series-use-case.html
https://orientdb.dev/docs/3.2.x/gettingstarted/Time-series-use-case.html
https://orientdb.dev/docs/3.2.x/gettingstarted/Key-Value-use-case.html
https://neo4j.com/docs/1.4/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
https://orientdb.dev/docs/3.2.x/sql/index.html
https://github.com/tinkerpop/gremlin/wiki
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/docs/current/
https://github.com/apache/tinkerpop
https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://pypi.org/project/gremlinpython/


Python for Data Science, Release 24.1.0

Object-relational impedance mismatch

Object-oriented programming and relational data storage are problematic for various reasons. Inheritance is an im-
portant concept in OOP for implementing complex models. In the relational paradigm, however, there is nothing like
it. Object-relational mappers, ORM, such as SQLAlchemy, were developed to convert corresponding class hierarchies
into a relational model. In principle there are two different approaches for an ORM, whereby in both cases a table is
created for a class:

Vertical partitioning
The table only contains the attributes of the corresponding class and a foreign key for the table of the superclass.
An entry is then created for each object in the table belonging to the class and in the tables of all superclasses.
When accessing the tables, joins must be used, which can lead to significant performance losses in complex
models.

Horizontal partitioning
Each table contains the attributes of the associated class and all superclasses. If the superclass is changed,
however, the tables of all derived classes must also be updated.

Basically, when combining OOP and relational data management, two data models must always be created. This makes
this architecture significantly more complex, more error-prone and more time-consuming to maintain.

Database systems

Examples of object database systems are ZODB.

Home ZODB
GitHub zopefoundation/ZODB
Docs www.zodb.org/en/latest/tutorial.html
Application areas Plone, Pyramid, BTrees, volatile data
Development language Python
Licenses Zope Public License (ZPL) 2.1
Data model PersistentList, PersistentMapping, BTree
Query langauge
Transactions, concurrency ACID
Replication, skaling ZODB Replication Services (ZRS)
Remarks

3.9.6 XML database systems

XML databases are able to validate XML documents against an XML schema or a DTD. In addition, they support at
least XPATH, XQuery and XSLT .

Database systems

Examples of XML database systems are eXist and MonetDB.

246 Chapter 3. Read, persist and provide data

hhttp://www.zodb.org/
https://github.com/zopefoundation/ZODB
http://www.zodb.org/en/latest/tutorial.html
https://pypi.org/project/zc.zrs/


Python for Data Science, Release 24.1.0

Home eXist MonetDB BaseX
GitHub eXist-db/exist MonetDB/MonetDB Ba-

seXdb/basex
Docs exist-

db.org/exist/apps/doc/documentation
www.monetdb.org/Documentation docs.basex.org

Application areas CMS CMS, Date-Warehouse, Data mining CMS
Development lan-
guage

Java C Java

Licenses LGPL-2.1 License Mozilla Public License 2.0 BSD-3-Clause
License

Data model XML XML, column-oriented data structure XML
Query langauge XQuery, XPATH SQL XQuery,

XPATH
Transactions,
concurrency

Optimistic Concurrency ACID, XQuery
Locks

Replication,
skaling

Master-slave replication Transaction replication

Remarks With R, analyses can be carried out directly
at the database level.

Major concepts and technologies of NoSQL databases are

• MapReduce

• CAP theorem

• Eventual consistency and BASE

• Consistent hash function

• MVCC – Multiversion Concurrency Control

• Vector clock

• Paxos

3.10 Application Programming Interface (API)

APIs can be used to provide the data. FastAPI is a library that can generate APIs and documentation based on OpenAPI
and JSON Schema. gRPC, on the other hand, is a modern open source RPC framework that uses HTTP/2 and QUIC.

To determine the design of your API, you can follow Zalando’s API Styleguide. Later, you can use Zally to automatically
check the quality of your API. You can also define your own rules for Zally, see Rule Development Manual.

See also:
• REST API Design – Resource Modeling

• Richardson Maturity Model – steps toward the glory of REST

• Irresistible APIs – Designing web APIs that developers will love

• REST in Practice

• Build APIs You Won’t Hate

• Representational State Transfer (REST)

3.10. Application Programming Interface (API) 247

https://exist-db.org/
https://www.monetdb.org/
https://basex.org/
https://github.com/eXist-db/exist
https://github.com/MonetDB/MonetDB
https://github.com/BaseXdb/basex
https://github.com/BaseXdb/basex
https://exist-db.org/exist/apps/doc/documentation
https://exist-db.org/exist/apps/doc/documentation
https://www.monetdb.org/Documentation
https://docs.basex.org/wiki/Main_Page
https://www.openapis.org/
http://json-schema.org/
https://opensource.zalando.com/restful-api-guidelines/
https://github.com/zalando/zally
https://github.com/zalando/zally/blob/master/documentation/rule-development.md
https://www.thoughtworks.com/insights/blog/rest-api-design-resource-modeling
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.manning.com/books/irresistible-apis
https://www.oreilly.com/library/view/rest-in-practice/9781449383312/
https://leanpub.com/build-apis-you-wont-hate
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm


Python for Data Science, Release 24.1.0

3.10.1 FastAPI

FastAPI is a web framework for building APIs with Python 3.6+ based type hints.

Key features are:

• very high performance thanks to pydantic for the data part and Starlette for the web part.

• fast and easy to code

• validation for most Python data types, including

– JSON objects (dict)

– JSON array (list)

– string (str), defining min and max length

– numbers (int, float) with min and max values, etc.

– URLs

– email with python-email-validator

– UUID

– . . . and others

• robust, production-ready code with automatic interactive documentation

• based on the open standards for APIs: OpenAPI formerly known as Swagger) and JSON Schema

See also:
• Home

• GitHub

Installation

Requirements

$ pipenv install fastapi
Adding fastapi to Pipfile's [packages]...
✓✓✓ Installation Succeeded
Locking [dev-packages] dependencies...
✓✓✓ Success!
Locking [packages] dependencies...
✓✓✓ Success!
...

248 Chapter 3. Read, persist and provide data

https://pydantic-docs.helpmanual.io/
https://www.starlette.io/
https://github.com/JoshData/python-email-validator
https://www.openapis.org/
http://json-schema.org/
https://fastapi.tiangolo.com/
https://github.com/tiangolo/fastapi


Python for Data Science, Release 24.1.0

Optional requirements

For production you also need an ASGI server, such as uvicorn:

$ pipenv install uvicorn
Adding uvicorn to Pipfile's [packages]...
✓✓✓ Installation Succeeded
Locking [dev-packages] dependencies...
✓✓✓ Success!
Locking [packages] dependencies...
✓✓✓ Success!
Updated Pipfile.lock (051f02)!
...

Pydantic can use the optional dependencies

ujson
for faster JSON parsing.

email_validator
for email validation.

Starlette can use the optional dependencies

httpx
if you want to use the TestClient.

aiofiles
if you want to use FileResponse or StaticFiles.

jinja2
if you want to use the default template configuration.

python-multipart
if you want to support form parsing, with request.form().

itsdangerous
required for SessionMiddleware support.

pyyaml
for Starlette’s SchemaGenerator support.

graphene
for GraphQLApp support.

ujson
if you want to use UJSONResponse.

orjson
if you want to use ORJSONResponse.

They can be installed, e.g. with:

$ pipenv install fastapi[ujson]

Alternatively you can install all of these with:

$ pipenv install fastapi[all]

3.10. Application Programming Interface (API) 249

https://asgi.readthedocs.io/en/latest/
http://www.uvicorn.org/
https://github.com/ultrajson/ultrajson
https://github.com/JoshData/python-email-validator
https://github.com/Tinche/aiofiles
https://jinja.palletsprojects.com/
https://kludex.github.io/python-multipart/
https://itsdangerous.palletsprojects.com/
https://pyyaml.org/wiki/PyYAMLDocumentation
https://graphene-python.org/
https://github.com/ultrajson/ultrajson
https://github.com/ijl/orjson


Python for Data Science, Release 24.1.0

Example

1. Create

Create a file main.py with:

from typing import Optional

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():

return {"Hello": "World"}

@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):

return {"item_id": item_id, "q": q}

2. Run

Run the server with:

$ pipenv run uvicorn main:app --reload
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO: Started reloader process [89155] using statreload
INFO: Started server process [89164]
INFO: Waiting for application startup.
INFO: Application startup complete.

3. Check

Open your browser at http://127.0.0.1:8000/ and you will see:

You will also get an interactive API documentation provided by Swagger UI at http://127.0.0.1:8000/docs:

You will also get an alternative automatic documentation provided by ReDoc at http://127.0.0.1:8000/redoc:

250 Chapter 3. Read, persist and provide data

http://127.0.0.1:8000/
https://github.com/swagger-api/swagger-ui
http://127.0.0.1:8000/docs
https://github.com/Redocly/redoc
http://127.0.0.1:8000/redoc


Python for Data Science, Release 24.1.0

3.10. Application Programming Interface (API) 251



Python for Data Science, Release 24.1.0

252 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

4. Update

Now we modify the file main.py to receive a body from a PUT request:

from typing import Optional

from pydantic import BaseModel

from fastapi import FastAPI

app = FastAPI()

class Item(BaseModel):
name: str
price: float
is_offer: Optional[bool] = None

@app.get("/")
def read_root():

return {"Hello": "World"}

@app.get("/items/{item_id}")
def read_item(item_id: int, q: Optional[str] = None):

return {"item_id": item_id, "q": q}

@app.put("/items/{item_id}")
def update_item(item_id: int, item: Item):

return {"item_name": item.name, "item_id": item_id}

The server should reload the file automatically because we added --reload to the uvicorn command. Also the inter-
active API documentation will show the new body with PUT. If you click on the button Try it out you will fill in the
parameter for item_id. Then click on the Execute button and the your browser will send the parameter to the API and
show them on the screen, for example as response body:

{
"item_name": "string",
"item_id": 1234

}

3.10. Application Programming Interface (API) 253



Python for Data Science, Release 24.1.0

Tips

Project structure

If you want to use

• SQLModel for Python database interaction (ORM)

• Pydantic for data validation

• PostgreSQL for data storage

the data structure could look like this:

fastapi-example
LICENSE
README.rst
alembic.ini
app

__init__.py
alembic

README
env.py
script.py.mako
versions

3512b954651e_initialize_models.py
api

__init__.py
deps.py
main.py
routes

__init__.py
items.py
utils.py

core
__init__.py
config.py
db.py

crud.py
main.py
models.py
tests

__init__.py
api

__init__.py
routes

__init__.py
test_items.py

conftest.py
crud

__init__.py
test_items.py

pyproject.toml

254 Chapter 3. Read, persist and provide data

https://sqlmodel.tiangolo.com/
https://docs.pydantic.dev/
https://www.postgresql.org/


Python for Data Science, Release 24.1.0

Extensions

Administration

SQLAlchemy Admin for Starlette/FastAPI
Flexible admin interface for SQLAlchemy models.

Piccolo Admin
Simple but powerful admin interface over Piccolo tables that lets you easily add, edit and filter your data

Authentication

AuthX
Ready-to-use and customisable authentication and Oauth2 management

FastAPI Security
Authentication and authorisation

FastAPI simple security
API key-based security package focused on ease of use

3.10. Application Programming Interface (API) 255

https://github.com/aminalaee/sqladmin
https://github.com/piccolo-orm/piccolo_admin
https://github.com/yezz123/AuthX
https://github.com/jacobsvante/fastapi-security
https://github.com/mrtolkien/fastapi_simple_security


Python for Data Science, Release 24.1.0

FastAPI Users
Quickly adds a customisable registration and authentication system

ORMs

FastAPI-SQLAlchemy
Easy integration between FastAPI, SQLAlchemy and application

FastAPIwee
Easy way to create a REST API based on PeeWee models

GINO
Lightweight asynchronous ORM built on SQLAlchemy Core for Python asyncio, supporting PostgreSQL with
asyncpg, and MySQL with aiomysql (→ example)

ORM
async ORM, which builds on SQLAlchemy Core, Databases and TypeSystem

256 Chapter 3. Read, persist and provide data

https://github.com/fastapi-users/fastapi-users
https://github.com/mfreeborn/fastapi-sqlalchemy
https://github.com/Ignisor/FastAPIwee
https://github.com/coleifer/peewee
https://github.com/python-gino/gino
https://github.com/MagicStack/asyncpg
https://github.com/aio-libs/aiomysql
https://github.com/leosussan/fastapi-gino-arq-uvicorn
https://github.com/encode/orm
https://github.com/encode/databases
https://github.com/encode/typesystem


Python for Data Science, Release 24.1.0

ormar
Asynchronous mini-ORM, with which you only need to maintain one set of models and migrate them with
Alembic if necessary (→ example); it is also supported by fastapi-users, fastapi-crudrouter and fastapi-pagination

Piccolo
Fast, user-friendly ORM and query builder that supports Asyncio (→ examples)

Prisma Client Python
Building on the TypeScript ORM Prisma with support for PostgreSQL, MySQL, SQLite, MongoDB and SQL
Server (→ Example)

Tortoise ORM
Easy-to-use asyncio ORM inspired by Django (→ examples); Aerich is a database migration tool for Tortoise
ORM.

SQLModel
Library for the interaction of SQL databases with Python objects

3.10. Application Programming Interface (API) 257

https://collerek.github.io/ormar/latest/fastapi/
https://collerek.github.io/ormar/fastapi/
https://github.com/fastapi-users/fastapi-users
https://github.com/awtkns/fastapi-crudrouter
https://github.com/uriyyo/fastapi-pagination
https://github.com/piccolo-orm/piccolo
https://github.com/piccolo-orm/piccolo_examples
https://github.com/RobertCraigie/prisma-client-py
https://github.com/prisma/prisma
https://github.com/RobertCraigie/prisma-client-py/tree/main/examples/fastapi-basic
https://github.com/tortoise/tortoise-orm
https://tortoise.github.io/examples/fastapi.html
https://github.com/tortoise/aerich
https://github.com/tiangolo/sqlmodel


Python for Data Science, Release 24.1.0

SQL Query Builders

FastAPI Filter
Querystring filters for the Api endpoints and the Swagger user interface. The supported backends are
SQLAlchemy and MongoEngine.

asyncpgsa
Python wrapper around asyncpg for use with SQLAlchemy

Databases
Simple asyncio support for the database drivers asyncpg, aiopg, aiomysql, asyncmy and aiosqlite

ODMs

Beanie
Asynchronous Python object document mapper (ODM) for MongoDB, based on Motor and Pydantic

258 Chapter 3. Read, persist and provide data

https://fastapi-filter.netlify.app/
https://github.com/CanopyTax/asyncpgsa
https://github.com/MagicStack/asyncpg
https://github.com/encode/databases
https://github.com/MagicStack/asyncpg
https://github.com/aio-libs/aiopg
https://github.com/aio-libs/aiomysql
https://github.com/long2ice/asyncmy
https://github.com/omnilib/aiosqlite
https://github.com/roman-right/beanie
https://motor.readthedocs.io/en/stable/
https://pydantic-docs.helpmanual.io/


Python for Data Science, Release 24.1.0

MongoEngine
Python Object-Document Mapper for working with MongoDB

ODMantic
Asynchronous ODM (Object Document Mapper) for MongoDB based on Python type hints and pydantic

Code generators

fastapi-code-generator
Code generator creates a FastAPI application from an openapi file, using datamodel-code-generator to generate
the pydantic model

FastAPI-based API Client Generator
mypy- and IDE-friendly API client from an OpenAPI specification using the OpenAPI Generator

3.10. Application Programming Interface (API) 259

https://github.com/MongoEngine/mongoengine
https://github.com/art049/odmantic/
https://pydantic-docs.helpmanual.io/
https://github.com/koxudaxi/fastapi-code-generator
https://github.com/koxudaxi/datamodel-code-generator
https://github.com/dmontagu/fastapi_client
https://github.com/OpenAPITools/openapi-generator


Python for Data Science, Release 24.1.0

Utilities

Caching

FastAPI Cache
Lightweight cache system

fastapi-cache
Caching of fastapi responses and function results, with backends supporting redis, memcache and dynamodb

E-mail

Fastapi-mail
Easy mail system for sending e-mails and attachments, individually or in large quantities

GraphQL

Strawberry GraphQL
Python GraphQL library based on data classes

260 Chapter 3. Read, persist and provide data

https://github.com/comeuplater/fastapi_cache
https://github.com/long2ice/fastapi-cache
https://github.com/sabuhish/fastapi-mail
https://github.com/strawberry-graphql/strawberry


Python for Data Science, Release 24.1.0

Logging

ASGI Correlation ID middleware
Middleware to load or generate correlation IDs for each incoming request

starlette context
Middleware for Starlette that allows you to store and access the contextual data of a request

Prometheus

Prometheus FastAPI Instrumentator
Configurable and modular Prometheus instrumentator

starlette_exporter
Prometheus export programme for Starlette and FastAPI

Starlette Prometheus
Prometheus integration for Starlette

3.10. Application Programming Interface (API) 261

https://github.com/snok/asgi-correlation-id
https://github.com/tomwojcik/starlette-context
https://github.com/trallnag/prometheus-fastapi-instrumentator
https://github.com/stephenhillier/starlette_exporter
https://github.com/perdy/starlette-prometheus


Python for Data Science, Release 24.1.0

Templating

fastapi-jinja
Integration of the Jinja template language

fastapi-chameleon
Integration of the template language Chameleon

Pagination

FastAPI Pagination
Easy-to-use pagination for FastAPI with integration in sqlalchemy, gino, databases and ormar, among others

Websockets

fastapi-socketio
Easy integration of socket.io in into your FastAPI application

262 Chapter 3. Read, persist and provide data

https://github.com/AGeekInside/fastapi-jinja
https://github.com/mikeckennedy/fastapi-chameleon
https://github.com/uriyyo/fastapi-pagination
https://github.com/pyropy/fastapi-socketio
https://socket.io/


Python for Data Science, Release 24.1.0

FastAPI Websocket Pub/Sub
Fast and permanent pub/sub channel via websockets

FASTAPI Websocket RPC
Fast and permanent bidirectional JSON RPC channel via websockets

Other tools

Pydantic-SQLAlchemy
Creating Pydantic models from SQLAlchemy models

Fastapi Camelcase
Provision of a class of request and response bodies for FastAPI

fastapi_profiler
FastAPI middleware based on pyinstrument for performance testing

3.10. Application Programming Interface (API) 263

https://github.com/permitio/fastapi_websocket_pubsub
https://github.com/permitio/fastapi_websocket_rpc
https://github.com/tiangolo/pydantic-sqlalchemy
https://github.com/nf1s/fastapi-camelcase
https://github.com/sunhailin-Leo/fastapi_profiler
https://github.com/joerick/pyinstrument


Python for Data Science, Release 24.1.0

fastapi-versioning
API versioning for FastAPI web applications

Jupter Notebook REST API
Run Jupyter notebooks as REST API endpoint

manage-fastapi
Project generator and manager for FastAPI

msgpack-asgi
Automatic negotiation of MessagePack content in ASGI applications

fastapi-plugins
Production-ready plug-ins for the FastAPI framework, including for caching with memcached or Redis, scheduler,
configuration and logging

fastapi-serviceutils
Optimised logging, exception handling and configuration

264 Chapter 3. Read, persist and provide data

https://github.com/DeanWay/fastapi-versioning
https://github.com/Invictify/Jupter-Notebook-REST-API
https://github.com/ycd/manage-fastapi
https://github.com/florimondmanca/msgpack-asgi
https://github.com/madkote/fastapi-plugins
https://github.com/skallfass/fastapi_serviceutils


Python for Data Science, Release 24.1.0

3.10.2 gRPC

gRPC is a modern, open source, high-performance remote procedure call (RPC) framework. By default, gRPC uses
Protocol Buffers (Protobuf) as the Interface Definition Language (IDL) for describing both the service interface and the
structure of the payload messages. In gRPC, a client application can directly call a method on a server application on
a different machine as if it were a local object, making it easier for you to create distributed applications and services.
As in many RPC systems, gRPC is based on the idea of defining a service, specifying the methods that can be called
remotely with their parameters and return types. The server implements the interface and runs a gRPC server to handle
client calls; the client has a stub that provides the same methods as the server.

The following are the main design principles of gRPC:

• gRPC can be created on all common development platforms and in many different languages.

• It is designed to work on devices with low CPU and memory capabilities, such as Android1 and iOS devices,
MicroPython boards and browsers23.

• It is licensed under Apache License 2.0 and uses open standards such as HTTP/2 and Quick UDP Internet Con-
nections (QUIC).

• gRPC is interoperable and can therefore also be used in the LoRaWan (Long Range Wide Area Network), for
example.

• The individual layers can be developed independently of each other. For example, the transport layer (OSI layer
4) can be developed independently of the application layer (OSI layer 7).

• gRPC supports various serialisation formats, including Protocol Buffers (Protobuf), JSON4, XML/HTML and
Thrift)

• Asynchronous and synchronous (blocking) processing are supported in most languages.

• Streaming of messages in a single RPC call is supported.

• gRPC allows protocol extensions for security, healtch checks, load balancing, failover, etc.
1 gRPC in Android Java
2 gRPC-Web is Generally Available
3 gRPC-Web Client Runtime Library
4 gRPC + JSON

3.10. Application Programming Interface (API) 265

https://grpc.io/docs/platforms/android/java/quickstart/
https://grpc.io/blog/grpc-web-ga/
https://www.npmjs.com/package/grpc-web
https://grpc.io/blog/grpc-with-json/


Python for Data Science, Release 24.1.0

C++ Service

Python client

Android-Java client
gRPC server

gRPC Python-Stub
Proto-Response

gRPC Android-Java-Stub

Proto-Response

Proto-Request

Proto-Request

Starting with an interface definition in a .proto file, gRPC provides Protocol Compiler plugins that generate Client-
and Server-side APIs. Both synchronous and asynchronous communication is supported in most languages. gRPC
also supports streaming of messages in a single RPC call. The gRPC protocol abstractly specifies the communication
between clients and servers:

1. First the stream is started by the client with a mandatory Call Header

1. followed by optional Initial-Metadata

2. followd by optional Payload Messages.

The contents of Call Header and Initial Metadata are sent as HTTP/2 headers compressed with HPACK.

2. The server answers with an optional Initial-Metadata

1. followed by Payload Messages

2. and terminated with mandatory Status and optional Status-Metadata.

Payload Messages are serialised into a byte stream fragmented into HTTP/2 frames. Status and
Trailing-Metadata are sent as HTTP/2 trailing headers.

Unlike FastAPI , however, the gRPC API cannot simply be tested on the command line with cURL. If necessary, you
can use grpcurl. This requires that the gRPC server supports the GRPC Server Reflection Protocol. Usually Reflection
should only be available in the development phase. Then you can call grpcurl, e.g. with:

$ grpcurl localhost:9111 list

See also:
• Home

• GitHub

• gRPC Blog

266 Chapter 3. Read, persist and provide data

https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/fullstorydev/grpcurl
https://grpc.github.io/grpc/core/md_doc_server-reflection.html
https://grpc.io/
https://github.com/grpc/grpc
https://grpc.io/blog/


Python for Data Science, Release 24.1.0

gRPC-Example

By default, gRPC uses Protocol Buffers (Protobuf) for serialising data, although it also works with other data formats
such as JSON.

Define the data structure

The first step when working with protocol buffers is to define the structure for the data you want to serialise in a .
proto file. Protocol buffer data is structured as messages, where each message is a small logical record of information
containing a series of name-value pairs called fields. Here’s a simple example accounts.proto:

Listing 2: accounts.proto

// SPDX-FileCopyrightText: 2021 Veit Schiele
//
// SPDX-License-Identifier: BSD-3-Clause

syntax = "proto3";

message Account {

Warning: You shouldn’t simply use uint32 for user or group IDs, as these would be far too easy to guess. You can
use an RFC 4122-compliant implementation for this purpose. You can find a corresponding protobuf configuration
in rfc4122.proto.

After you have defined your data structure, you use the protocol buffer compiler protoc to generate descriptors in your
preferred languages. These provide simple accessors for each field, as well as methods to serialise the whole structure.
For example, if your language is Python, running the compiler on the example above will generate declarators you can
then use in your application to populate, serialise, and retrieve protocol buffer messages.

Define the gRPC service

gRPC services are also defined in the .proto files, with RPC method parameters and return types specified as protocol
buffer messages:

Listing 3: accounts.proto

uint32 account_id = 1;
string account_name = 2;

}

message CreateAccountRequest {
string account_name = 1;

}

message CreateAccountResult {
Account account = 1;

}

message GetAccountsRequest {
(continues on next page)

3.10. Application Programming Interface (API) 267

https://datatracker.ietf.org/doc/html/rfc4122.html


Python for Data Science, Release 24.1.0

(continued from previous page)

repeated Account account = 1;
}

message GetAccountsResult {
Account account = 1;

}

service Accounts {
rpc CreateAccount (CreateAccountRequest) returns (CreateAccountResult);
rpc GetAccounts (GetAccountsRequest) returns (stream GetAccountsResult);

}

Generate the gRPC Code

$ pipenv install grpcio grpcio-tools
$ pipenv run python -m grpc_tools.protoc --python_out=. --grpc_python_out=. accounts.
→˓proto

This generates two files:

accounts_pb2.py
contains classes for the messages defined in accounts.proto.

accounts_pb2_grpc.py
contains the defined classes AccountsStub for calling RPCs, AccountsServicer for the API definition of the
service and a function add_AccountsServicer_to_server for the server.

Create server

For this we write the file accounts_server.py:

Listing 4: accounts_server.py

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

import logging
from concurrent import futures

import accounts_pb2 as accounts_messages
import accounts_pb2_grpc as accounts_service
import grpc

class AccountsService(accounts_service.AccountsServicer):
def CreateAccount(self, request, context):

metadata = dict(context.invocation_metadata())
print(metadata)
account = accounts_messages.Account(

account_name=request.account_name, account_id=1
(continues on next page)

268 Chapter 3. Read, persist and provide data



Python for Data Science, Release 24.1.0

(continued from previous page)

)
return accounts_messages.CreateAccountResult(account=account)

def GetAccounts(self, request, context):
for account in request.account:

account = accounts_messages.Account(
account_name=account.account_name,
account_id=account.account_id,

)
yield accounts_messages.GetAccountsResult(account=account)

def serve():
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
accounts_service.add_AccountsServicer_to_server(AccountsService(), server)
server.add_insecure_port("[::]:8081")
server.start()
server.wait_for_termination()

if __name__ == "__main__":
logging.basicConfig()
serve()

Create client

For this we create accounts_client.py:

Listing 5: accounts_client.py

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

import logging

import accounts_pb2 as accounts_messages
import accounts_pb2_grpc as accounts_service
import grpc

def run():
channel = grpc.insecure_channel("localhost:8081")
stub = accounts_service.AccountsStub(channel)
response = stub.CreateAccount(

accounts_messages.CreateAccountRequest(account_name="tom"),
)
print("Account created:", response.account.account_name)

if __name__ == "__main__":
(continues on next page)

3.10. Application Programming Interface (API) 269



Python for Data Science, Release 24.1.0

(continued from previous page)

logging.basicConfig()
run()

Run client and server

1. Starting the server:

$ pipenv run python accounts_server.py

2. Starting the client from another terminal:

$ pipenv run python accounts_client.py
Account created: tom

Test gRPC

pytest-grpc

gRPC can be tested automatically with pytest-grpc.

1. First, we install

$ pipenv install pytest-grpc
Installing pytest-grpc...
Adding pytest-grpc to Pipfile's [packages]...
✓✓✓ Installation Succeeded
...

2. Then we create a Test Fixture for our gRPC-Example with:

Listing 6: tests/test_accounts.py

# SPDX-License-Identifier: BSD-3-Clause

from pathlib import Path

import grpc
import pytest
from accounts_pb2 import CreateAccountRequest, GetAccountsRequest

@pytest.fixture(scope="module")
def grpc_add_to_server():

from accounts_pb2_grpc import add_AccountsServicer_to_server

return add_AccountsServicer_to_server

@pytest.fixture(scope="module")
def grpc_servicer():

(continues on next page)

270 Chapter 3. Read, persist and provide data

https://pypi.org/project/pytest-grpc
https://python-basics-tutorial.readthedocs.io/en/latest/test/unittest.html#term-Test-Fixture


Python for Data Science, Release 24.1.0

(continued from previous page)

from accounts_server import AccountsService

return AccountsService()

@pytest.fixture(scope="module")

See also:
• pytest fixtures

3. Afterwards we can write tests, for example:

return AccountsStub(grpc_channel)

def test_create_account(grpc_stub):
value = "test-data"
nl = "\n"

4. Authentication can also be tested, for example with:

# SPDX-FileCopyrightText: 2021 Veit Schiele
#

assert response.name == f"test-{request.name}"

@pytest.fixture(scope="module")
def grpc_server(_grpc_server, grpc_addr, my_ssl_key_path, my_ssl_cert_path):

"""
Overwrites default `grpc_server` fixture with ssl credentials
"""
credentials = grpc.ssl_server_credentials(

[(my_ssl_key_path.read_bytes(), my_ssl_cert_path.read_bytes())]
)

_grpc_server.add_secure_port(grpc_addr, server_credentials=credentials)
_grpc_server.start()
yield _grpc_server
_grpc_server.stop(grace=None)

@pytest.fixture(scope="module")
def my_channel_ssl_credentials(my_ssl_cert_path):

# If we're using self-signed certificate it's necessarily to pass root␣
→˓certificate to channel
return grpc.ssl_channel_credentials(root_certificates=my_ssl_cert_path.read_

→˓bytes())

@pytest.fixture(scope="module")
(continues on next page)

3.10. Application Programming Interface (API) 271

https://docs.pytest.org/en/latest/explanation/fixtures.html


Python for Data Science, Release 24.1.0

(continued from previous page)

def grpc_channel(my_channel_ssl_credentials, create_channel):
"""
Overwrites default `grpc_channel` fixture with ssl credentials
"""
with create_channel(my_channel_ssl_credentials) as channel:

yield channel

@pytest.fixture(scope="module")
def grpc_authorized_channel(my_channel_ssl_credentials, create_channel):

"""
Channel with authorization header passed
"""
grpc_channel_credentials = grpc.access_token_call_credentials("some_token")
composite_credentials = grpc.composite_channel_credentials(

my_channel_ssl_credentials, grpc_channel_credentials
)
with create_channel(composite_credentials) as channel:

yield channel

@pytest.fixture(scope="module")
def my_authorized_stub(grpc_stub_cls, grpc_channel):

"""
Stub with authorized channel
"""
return grpc_stub_cls(grpc_channel)

5. Afterwards we can test against a real gRPC server with:

$ pipenv run pytest --fixtures tests/

or directly against the Python code:

$ pipenv run pytest --fixtures tests/ --grpc-fake-server
============================= test session starts ==============================
platform darwin -- Python 3.7.3, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
rootdir: /Users/veit/cusy/trn/Python4DataScience/docs/data/grpc
plugins: grpc-0.8.0
collected 2 items

tests/test_accounts.py .F [100%]
...

See also:
• GitHub

• Example

272 Chapter 3. Read, persist and provide data

https://github.com/kataev/pytest-grpc
https://github.com/kataev/pytest-grpc/blob/master/example/test_example.py


Python for Data Science, Release 24.1.0

Wireshark

Wireshark is an open source tool for analysing network protocols. In the following, we will show you how to use the
gRPC and Protobuf dissectors. They make it easier for you to decode gRPC messages that are serialised in Protobuf
or JSON format. You can also use them to analyse server, client and bidirectional gRPC streaming.

Note: Usually, Wireshark can only analyse gRPC messages in plain text. For dissecting a TLS session, Wireshark
needs the secret key, the export of which is currently only supported by Go gRPC1.

See also:
• Analyzing gRPC messages using Wireshark

3.11 Glossary

ACID
ACID is an acronym for Atomicity Consistency Isolation Durability. They are a prerequisite for the reliability
of database transactions.

Atomicity
A transaction is a series of database operations that are either carried out completely or not at all.

Consistency
Transaction that leaves a consistent state after completion. The integrity conditions defined in the database
schema are checked before the transaction is completed.

Isolation
Concurrent transactions must not influence each other. This is usually achieved with Locking, which re-
stricts the concurrency.

Durability
After a successful transaction, data must be permanently stored in the database and can be secured, for
example, by writing a transaction log.

BASE
BASE is an acronym for Basically Available, Soft State, Eventually Consistent and originated as the opposite of
ACID.

A very optimistic concept of consistency is used that does not require Locking. Locks are problematic in several
ways, since access is not possible as long as data records are locked by other transactions. In addition, the
agreement to set a lock is already very complex.

Data consistency is seen as a state that can be achieved at some point. This is the idea of Eventual Consistency.

With BASE, competing access is avoided through MVCC – Multiversion Concurrency Control However, there
is a wide range of solutions for the various distributed database systems:

• Causal Consistency

is comparable to the consistency in ACID.

• Read Your Writes

• Session Consistency
1 How to Export TLS Master keys of gRPC

3.11. Glossary 273

https://www.wireshark.org/
https://grpc.io/docs/languages/go/
https://grpc.io/blog/wireshark/
https://gitlab.com/wireshark/wireshark/-/wikis/How-to-Export-TLS-Master-keys-of-gRPC


Python for Data Science, Release 24.1.0

• Monotonic Read Consistency

• Monotonic Write Consistency

CAP theorem
CAP is an acronym for Consistency, Availability and Partition Tolerance. The findings of the CAP theorem play
a central role in the selection of a distributed database system.

The CAP theorem states that in distributed systems the three requirements of consistency, availability and failure
tolerance are not fully compatible and only a maximum of two out of three can be achieved. Therefore it must
be decided individually for each application whether a CA, CP or AP application should be implemented.

Cassandra
Cassandra is a Column-oriented database systems, and was originally developed by Facebook to optimise
searches in email. Today it is further developed under the umbrella of the Apache Software Foundation.

Cassandra’s data model has neither a logical structure nor a schema. For the modeling it is recommended «First
write your queries then model your data». Then usually a Column Family is created for each expected request.
The data is denormalised, but each column family responds to a specific type of query.

In Cassandra, the consistency can be specified for each request. This allows specific requests to be very con-
sistent while others sacrifice consistency for speed. There are, for example, the following four levels for write
consistency:

ANY
ensures that the data is stored in at least one node.

ONE
ensures that the data is stored in the commit log of at least one replica.

QUORUM
ensures that the data is stored in a quorum of replicas.

ALL
ensures that the data is saved on all replicas.

Cassandra provides two different APIs: Thrift and CQL (Cassandra Query Language).

Column Family
Column families correspond to tables in relational databases. They group columns with the same or similar
content, for example

profile = {
cusy: {

name: "cusy GmbH",
email: "info@cusy.io",
website: "cusy.io"

},
veit: {

name: "Veit Schiele",
email: "veit.schiele@cusy.io",

}
}

Consistent hash function
Consistent hash functions minimise the number of reallocations, since not all keys have to be reallocated when
a change occurs, only the size of a hash table is changed.

Consistency
The state of a database is said to be consistent if the stored data meets all requirements for Semantic integrity.

274 Chapter 3. Read, persist and provide data

https://www.apache.org/
https://thrift.apache.org/
https://cassandra.apache.org/doc/latest/cql/


Python for Data Science, Release 24.1.0

CouchDB
CouchDB an acronym for Cluster of unreliable commodity hardware Data Base. This is a Document-oriented
database systems.

Eventual Consistency
«Consistency as a state transition that is reached at some point.»

The term was developed for BASE as an alternative to ACID.

Graph traversal
Graph traversal is mostly used to find nodes. There are different algorithms for such search queries in a graph,
which can be roughly divided into

• Breadth-first search, BFS and depth-first search, DFS

The breadth-first search begins with all neighboring nodes of the start node. In the next step, the neighbors
of the neighbors are then searched. The path length increases with each iteration.

The depth-first search follows a path until a node with no outgoing edges is found. The path is then traced
back to a node that has further outgoing edges. The search will then continue there.

• Algorithmic traversal

Examples of algorithmic traversal are

– Hamiltonian path (traveling salesman)

– Eulerian path

– Dijkstra’s algorithm

• Randomised traversal

The graph is not run through according to a certain scheme, but the next node is selected at random. This
allows a search result to be presented much faster, especially with large graphs, but this is not always the
best.

Graph model
A graph consists of a number of nodes and edges. Graphs are used to represent a variety of problems through
nodes, edges and their relationships, for example in navigation systems in which the paths are stored in the form
of graphs.

Graph partitioning
With graph partitioning, graphs are divided into smaller subgraphs. However, there is no mathematically exact
method to minimise the number of intersected edges, but only a few heuristic algorithms, for example clustering
algorithms, which combine strongly networked subgraphs to abstract nodes.

One speaks of overlapping partitioning in the case of graphs that cannot be completely divided and exist in several
subgraphs.

HBase
HBase is a Column-oriented database systems, which is based on distributed file systems and is designed for
real-time access to large databases.

Hypertable
Hypertable is a Column-oriented database systems and is based on distributed file systems. The data model is
that of a multi-dimensional table that can be searched using keys. The first dimension is the so-called row key,
the second is the Column family, the third dimension is the column qualifier and the fourth dimension is time.

Key/value pair
A value is always assigned to a specific key, which can consist of a structured or arbitrary character string. These
keys can be divided into namespaces and databases. In addition to strings, the values can also contain lists, sets
or hashes.

3.11. Glossary 275



Python for Data Science, Release 24.1.0

Locking
Locking is the term used to describe the blocking of data for concurrent transactions.

There are different lock procedures, depending on the type of access:

• Optimistic concurrency

• Pessimistic locking

• Two-phase locking (2PL)

MapReduce
MapReduce is a framework introduced by Google Inc. in 2004, which is used for the concurrent computations
of enormous amounts of data on computer clusters. It was inspired by the map and reduce functions, which are
often used in functional programming, even if the semantics deviate slightly from them.

MongoDB
MongoDB is a schema-free Document-oriented database systems, that manages documents in BSON format.

MVCC – Multiversion Concurrency Control
MVCC controls concurrent accesses to data records (read, insert, change, delete) by different, unchangeable
versions of these data records. The various versions are arranged in a chronological order, with each version
referring to its previous version. MVCC has developed into a central basic technology for NoSQL databases in
particular, which makes it possible to coordinate competing accesses even without locking data records.

Optimistic concurrency
Optimistic concurrency, also called optimistic locking, is a form of locking, which assumes that there are few
write accesses to the database and read accesses do not trigger a lock. In the event of changes, a check is first
made to determine whether the time stamp has remained unchanged since the data was read.

Paxos
Paxos is a family of protocols for building consensus on a network of unreliable or fallible processors.

Pessimistic locking
Pessimistic locking assumes a lot of write accesses to the database. Read access is therefore also blocked. The
data is only released again when the changes have been saved.

Property graph model
PGM

Nodes and edges consist of objects with properties embedded in them. Not only a value (label) is stored in an
edge or a node, but a Key/value pair.

Riak
In essence, Riak is a decentralised Key/value pair with a flexible MapReduce engine.

Redis
Redis is a Key-value database systems, that usually stores all data in RAM.

Semantic integrity
Semantic integrity is always given when the entries are correct and consistent. Then we talk of consistent data.
If this is not the case, the data is inconsistent. In SQL, the semantic integrity can be checked with TRIGGER and
CONSTRAINT

Two-phase locking (2PL)
The two-phase locking protocol distinguishes between two phases of transactions:

1. The growth phase in which locks can only be set but not released.

2. The shrinkage phase, in which locks can only be released but not requested.

The two-phase lock protocol knows three lock states:

276 Chapter 3. Read, persist and provide data

https://bsonspec.org/


Python for Data Science, Release 24.1.0

SLOCK, shared lock or read lock
is set with read access to data

XLOCK, exclusive lock or write lock
is set with write access to data

UNLOCK
removes the locks SLOCK and XLOCK.

Vector clock
A vector clock is a software component used to assign unique time stamps to messages. It allows a causal order
to be assigned to the events in distributed systems on the basis of a time stamp and, in particular, to determine
the concurrency of events.

XPATH
XPATH processes the tree structure of an XML document and generates extracts from XML documents. In
order to receive complete XML documents as a result, these must be created with XQuery or XSLT , for example.
XPATH is not a complete query language as it is limited to selections and extractions.

XPATH has been part of XQuery since version 1.1 and from version 2.0 onwards, XPATH is extended by XQuery.

XQuery
XQuery stands for XML Query Language and is mainly a functional language in which nested expressions can
also be evaluated during a query.

XSLT
XSLT is an acronym for Extensible Stylesheet Language Transformation. It can be used to transform XML
documents.

3.11. Glossary 277



Python for Data Science, Release 24.1.0

278 Chapter 3. Read, persist and provide data



CHAPTER

FOUR

DATA CLEANSING AND VALIDATION

In the following, we want to give you a practical overview of various libraries and methods for data cleansing and
validation with Python. Besides well-known libraries like NumPy and Pandas, we also use several small, specialised
libraries like dedupe, fuzzywuzzy, voluptuous, bulwark, tdda and hypothesis. We prefer these more lightweight solutions
to large, universal systems like Great Expectations or MobyDQ.

279

https://en.wikipedia.org/wiki/Data_cleansing
https://greatexpectations.io/
https://ubisoft.github.io/mobydq/


Python for Data Science, Release 24.1.0

4.1 Overview

Table 1: GitHub-Insights

Name Stars Mitwirkende Commit-Aktivität Lizenz

fuzzywuzzy

dedupe

Bulwark
Hypothesis

TDDA

Voluptuous

scikit-learn

pandera

Validr

marshmallow

datacleaner

Probatus

popmon

Pandas Profil-
ing

pandas-
validation

PandasSchema

Opulent-
Pandas

signpost

4.1.1 Managing missing data with pandas

Missing data often occurs in data analyses. pandas simplifies working with missing data as much as possible. For
example, all descriptive statistics of pandas objects exclude missing data by default. pandas uses the floating point
value NaN (Not a Number) for numerical data to represent missing data.

Methods for handling NA objects:

280 Chapter 4. Data cleansing and validation

https://github.com/seatgeek/fuzzywuzzy
https://github.com/dedupeio/dedupe
https://github.com/ZaxR/bulwark
https://github.com/HypothesisWorks/hypothesis
https://github.com/tdda/tdda
https://github.com/alecthomas/voluptuous
https://github.com/scikit-learn/scikit-learn
https://github.com/pandera-dev/pandera
https://github.com/guyskk/validr
https://github.com/marshmallow-code/marshmallow
https://github.com/rhiever/datacleaner
https://github.com/ing-bank/probatus
https://github.com/ing-bank/popmon
https://github.com/ydataai/pandas-profiling
https://github.com/ydataai/pandas-profiling
https://github.com/jmenglund/pandas-validation
https://github.com/jmenglund/pandas-validation
https://github.com/multimeric/PandasSchema
https://github.com/danielvdende/opulent-pandas
https://github.com/danielvdende/opulent-pandas
https://github.com/ilsedippenaar/signpost


Python for Data Science, Release 24.1.0

Argu-
ment

Description

dropna filters axis labels based on whether values for each label have missing data, with different thresholds for
the amount of missing data to tolerate

fillna fills missing data with a value or with an interpolation method such as ffill or bfill
isna returns boolean values indicating which values are missing/NA
notna negates isna and returns True for non-NA values and False for NA values

This notebook introduces some ways to manage missing data using Pandas DataFrames. For more information, see the
Pandas documentation: Working with missing data and Missing data cookbook.

See also
• Dora

• Badfish

[1]: import pandas as pd

[2]: df = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/iot_example_

→˓with_nulls.csv"
)

1. Check the data

In pandas, a convention borrowed from the R programming language was adopted and missing data was referred to as
NA, which stands for not available. In statistical applications, NA data can be either data that does not exist or data that
exists but has not been observed (for example due to problems in data collection). When cleaning data for analysis, it is
often important to analyse the missing data itself to identify problems in data collection or potential biases in the data
due to the missing data. First we display the first 20 data records:

[3]: df.head(20)

[3]: timestamp username temperature heartrate \
0 2017-01-01T12:00:23 michaelsmith 12.0 67
1 2017-01-01T12:01:09 kharrison 6.0 78
2 2017-01-01T12:01:34 smithadam 5.0 89
3 2017-01-01T12:02:09 eddierodriguez 28.0 76
4 2017-01-01T12:02:36 kenneth94 29.0 62
5 2017-01-01T12:03:04 bryanttodd 13.0 86
6 2017-01-01T12:03:51 andrea98 17.0 81
7 2017-01-01T12:04:35 scott28 16.0 76
8 2017-01-01T12:05:05 hillpamela 5.0 82
9 2017-01-01T12:05:41 moorejeffrey 25.0 63
10 2017-01-01T12:06:21 njohnson NaN 63
11 2017-01-01T12:06:53 gsutton 29.0 80
12 2017-01-01T12:07:41 jessica48 22.0 83
13 2017-01-01T12:08:08 hornjohn 16.0 73
14 2017-01-01T12:08:35 gramirez 24.0 73
15 2017-01-01T12:09:05 schmidtsamuel NaN 78
16 2017-01-01T12:09:48 derrick47 NaN 63

(continues on next page)

4.1. Overview 281

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/cookbook.html#cookbook-missing-data
https://github.com/NathanEpstein/Dora
https://github.com/harshnisar/badfish


Python for Data Science, Release 24.1.0

(continued from previous page)

17 2017-01-01T12:10:23 beckercharles 12.0 61
18 2017-01-01T12:10:57 ipittman 11.0 69
19 2017-01-01T12:11:34 sabrina65 22.0 82

build latest note
0 4e6a7805-8faa-2768-6ef6-eb3198b483ac 0.0 interval
1 7256b7b0-e502-f576-62ec-ed73533c9c84 0.0 wake
2 9226c94b-bb4b-a6c8-8e02-cb42b53e9c90 0.0 NaN
3 NaN 0.0 update
4 122f1c6a-403c-2221-6ed1-b5caa08f11e0 NaN NaN
5 0897dbe5-9c5b-71ca-73a1-7586959ca198 0.0 interval
6 1c07ab9b-5f66-137d-a74f-921a41001f4e 1.0 NaN
7 7a60219f-6621-e548-180e-ca69624f9824 NaN interval
8 a8b87754-a162-da28-2527-4bce4b3d4191 1.0 NaN
9 585f1a3c-0679-0ffe-9132-508933c70343 0.0 wake
10 e09b6001-125d-51cf-9c3f-9cb686c19d02 NaN NaN
11 607c9f6e-2bdf-a606-6d16-3004c6958436 1.0 update
12 03e1a07b-3e14-412c-3a69-6b45bc79f81c NaN update
13 NaN 0.0 interval
14 NaN 0.0 wake
15 b9890c1e-79d5-8979-63ae-6c08a4cd476a 0.0 NaN
16 b60bd7de-4057-8a85-f806-e6eec1350338 NaN interval
17 b1dacc73-c8b7-1d7d-ee02-578da781a71e 0.0 test
18 1aef7db8-9a3e-7dc9-d7a5-781ec0efd200 NaN user
19 8075d058-7dae-e2ec-d47e-58ec6d26899b 1.0 NaN

Then we look at what data type the columns are:

[4]: df.dtypes

[4]: timestamp object
username object
temperature float64
heartrate int64
build object
latest float64
note object
dtype: object

We can also display the values and their frequency, for example for the column note:

[5]: df.note.value_counts()

[5]: note
wake 16496
user 16416
interval 16274
sleep 16226
update 16213
test 16068
Name: count, dtype: int64

282 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

2. Remove all null values (including the indication n/a)

2.1 . . .with pandas.read_csv

pandas.read_csv usually already filters out many values that it recognises as NA or NaN. Further values can be specified
with na_values.

[6]: df = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/iot_example_

→˓with_nulls.csv",
na_values=["n/a"],

)

2.2 . . .with pandas.DataFrame.dropna

Missing values can be deleted with pandas.DataFrame.dropna.

To analyse the extent of the deletions, we display the extent of the DataFrame before and after the deletion with pan-
das.DataFrame.shape:

[7]: df.shape

[7]: (146397, 7)

[8]: df2 = df.dropna()

df2.shape

[8]: (46116, 7)

So we would lose more than 2/3 of the records with pandas.DataFrame.dropna.

In the next experiment, we want to analyse whether whole rows or columns contain no data. Here, how='all' removes
rows or columns that do not contain values; axis=1 says that empty rows should be removed.

[9]: df.dropna(how="all", axis=1).shape

[9]: (146397, 7)

This, too, does not bring us any further.

2.3 Find all columns where all data is present

[10]: complete_columns = list(df.columns)

[11]: complete_columns

[11]: ['timestamp',
'username',
'temperature',
'heartrate',
'build',
'latest',
'note']

4.1. Overview 283

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html


Python for Data Science, Release 24.1.0

2.4 Find all columns where the most data is available

[12]: list(df.dropna(thresh=int(df.shape[0] * 0.9), axis=1).columns)

[12]: ['timestamp', 'username', 'heartrate']

thresh requires a certain number of NA values, in our case 90% before axis=1 lashes a column.

2.5 Find all columns where data is missing

With pandas.DataFrame.isnull we can find missing values and with pandas.DataFrame.any we find out if an element is
valid, usually via a column.

[13]: incomplete_columns = list(df.columns[df.isnull().any()])

[14]: incomplete_columns

[14]: ['temperature', 'build', 'latest', 'note']

With num_missing we can now output the number of missing values per column:

[15]: for col in incomplete_columns:
num_missing = df[df[col].isnull() == True].shape[0]
print(f"number missing for column {col}: {num_missing}")

number missing for column temperature: 32357
number missing for column build: 32350
number missing for column latest: 32298
number missing for column note: 48704

We can also output these values as a percentage:

[16]: for col in incomplete_columns:
percent_missing = df[df[col].isnull() == True].shape[0] / df.shape[0]
print(f"percent missing for column {col}: {percent_missing}")

percent missing for column temperature: 0.22102228870810195
percent missing for column build: 0.22097447352063226
percent missing for column latest: 0.22061927498514314
percent missing for column note: 0.332684412931959

2.6 Replace missing data

To be able to check our changes in the latest column, we use pandas.Series.value_counts. The method returns a
series containing the number of unique values:

[17]: df.latest.value_counts()

[17]: latest
0.0 75735
1.0 38364
Name: count, dtype: int64

Now we replace the missing values in the column latest with 0 with DataFrame.fillna:

284 Chapter 4. Data cleansing and validation

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.isnull.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html


Python for Data Science, Release 24.1.0

[18]: df.latest = df.latest.fillna(0)

[19]: df.latest.value_counts()

[19]: latest
0.0 108033
1.0 38364
Name: count, dtype: int64

2.7 Replace missing data using backfill

To make the records follow each other in their chronological order, we first set the index for timestamp with set_index:

[20]: df = df.set_index("timestamp")

[21]: df.head(20)

[21]: username temperature heartrate \
timestamp
2017-01-01T12:00:23 michaelsmith 12.0 67
2017-01-01T12:01:09 kharrison 6.0 78
2017-01-01T12:01:34 smithadam 5.0 89
2017-01-01T12:02:09 eddierodriguez 28.0 76
2017-01-01T12:02:36 kenneth94 29.0 62
2017-01-01T12:03:04 bryanttodd 13.0 86
2017-01-01T12:03:51 andrea98 17.0 81
2017-01-01T12:04:35 scott28 16.0 76
2017-01-01T12:05:05 hillpamela 5.0 82
2017-01-01T12:05:41 moorejeffrey 25.0 63
2017-01-01T12:06:21 njohnson NaN 63
2017-01-01T12:06:53 gsutton 29.0 80
2017-01-01T12:07:41 jessica48 22.0 83
2017-01-01T12:08:08 hornjohn 16.0 73
2017-01-01T12:08:35 gramirez 24.0 73
2017-01-01T12:09:05 schmidtsamuel NaN 78
2017-01-01T12:09:48 derrick47 NaN 63
2017-01-01T12:10:23 beckercharles 12.0 61
2017-01-01T12:10:57 ipittman 11.0 69
2017-01-01T12:11:34 sabrina65 22.0 82

build latest note
timestamp
2017-01-01T12:00:23 4e6a7805-8faa-2768-6ef6-eb3198b483ac 0.0 interval
2017-01-01T12:01:09 7256b7b0-e502-f576-62ec-ed73533c9c84 0.0 wake
2017-01-01T12:01:34 9226c94b-bb4b-a6c8-8e02-cb42b53e9c90 0.0 NaN
2017-01-01T12:02:09 NaN 0.0 update
2017-01-01T12:02:36 122f1c6a-403c-2221-6ed1-b5caa08f11e0 0.0 NaN
2017-01-01T12:03:04 0897dbe5-9c5b-71ca-73a1-7586959ca198 0.0 interval
2017-01-01T12:03:51 1c07ab9b-5f66-137d-a74f-921a41001f4e 1.0 NaN
2017-01-01T12:04:35 7a60219f-6621-e548-180e-ca69624f9824 0.0 interval
2017-01-01T12:05:05 a8b87754-a162-da28-2527-4bce4b3d4191 1.0 NaN
2017-01-01T12:05:41 585f1a3c-0679-0ffe-9132-508933c70343 0.0 wake

(continues on next page)

4.1. Overview 285

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.set_index.html


Python for Data Science, Release 24.1.0

(continued from previous page)

2017-01-01T12:06:21 e09b6001-125d-51cf-9c3f-9cb686c19d02 0.0 NaN
2017-01-01T12:06:53 607c9f6e-2bdf-a606-6d16-3004c6958436 1.0 update
2017-01-01T12:07:41 03e1a07b-3e14-412c-3a69-6b45bc79f81c 0.0 update
2017-01-01T12:08:08 NaN 0.0 interval
2017-01-01T12:08:35 NaN 0.0 wake
2017-01-01T12:09:05 b9890c1e-79d5-8979-63ae-6c08a4cd476a 0.0 NaN
2017-01-01T12:09:48 b60bd7de-4057-8a85-f806-e6eec1350338 0.0 interval
2017-01-01T12:10:23 b1dacc73-c8b7-1d7d-ee02-578da781a71e 0.0 test
2017-01-01T12:10:57 1aef7db8-9a3e-7dc9-d7a5-781ec0efd200 0.0 user
2017-01-01T12:11:34 8075d058-7dae-e2ec-d47e-58ec6d26899b 1.0 NaN

We then use pandas.DataFrame.groupby to group the records by username and then fill the missing data with the
backfill method of pandas.core.groupby.DataFrameGroupBy.fillna. limit defines the maximum number of con-
secutive NaN values:

[22]: df.temperature = df.groupby("username").temperature.fillna(
method="backfill", limit=3

)

[23]: for col in incomplete_columns:
num_missing = df[df[col].isnull() == True].shape[0]
print(f"number missing for column {col}: {num_missing}")

number missing for column temperature: 22633
number missing for column build: 32350
number missing for column latest: 0
number missing for column note: 48704

Arguments of the function fillna:

Argument Description
value Scalar value or dict-like object used to fill in missing values.
Method interpolation; by default ffill if the function is called without further arguments
axis Axis to be filled; default axis=0
inplace changes the calling object without creating a copy
limit for padding in forward and backward direction, maximum number of consecutive periods to pad

4.1.2 Detecting and filtering outliers

Filtering or transforming outliers is largely a matter of applying array operations. Consider a DataFrame with some
normally distributed data:

[1]: import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randn(1000, 4))

df.describe()

286 Chapter 4. Data cleansing and validation

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.core.groupby.DataFrameGroupBy.fillna.html


Python for Data Science, Release 24.1.0

[1]: 0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.022943 0.034915 0.018331 0.018969
std 1.046883 0.987310 0.972618 1.009193
min -3.870700 -2.833648 -3.466318 -3.491794
25% -0.664047 -0.621664 -0.603689 -0.671775
50% 0.012635 0.026107 0.028248 0.017063
75% 0.736662 0.697112 0.636774 0.743254
max 3.700035 3.006204 2.751574 3.405041

Suppose you want to find values in one of the columns whose absolute value is greater than 3:

[2]: col = df[1]

col[col.abs() > 3]

[2]: 365 3.006204
Name: 1, dtype: float64

To select all rows where value is greater than 3 or less than -3 in one of the columns, you can apply pan-
das.DataFrame.any to a Boolean DataFrame, using any(axis=1) to check if a value is in a row:

[3]: df[(df.abs() > 3).any(axis=1)]

[3]: 0 1 2 3
67 -0.065879 1.783196 0.554033 -3.000936
123 0.246540 -0.588655 1.366174 -3.491794
209 -3.615275 -1.539901 -1.109978 1.557272
326 -3.543526 -0.123145 -1.166289 -0.793547
357 1.168551 -0.951635 -0.892777 3.405041
361 3.116807 -0.184181 0.694654 -1.116010
365 -0.274058 3.006204 0.638351 -0.117403
384 -3.006891 0.871370 -0.888511 -0.498219
388 1.104036 0.127207 1.306627 3.164983
504 -0.344477 1.190462 -3.466318 -1.577547
711 3.700035 0.449643 -0.130976 -0.231090
841 -3.870700 0.165213 -0.401433 1.267149
956 3.188822 -0.048598 0.921613 -0.281664
957 -0.326832 -0.324983 0.384806 -3.062165

On this basis, the values can be limited to an interval between -3 and 3. For this we use the instruction np.sign(df),
which generates values 1 and -1, depending on whether the values in df are positive or negative:

[4]: df[df.abs() > 3] = np.sign(df) * 3

df.describe()

[4]: 0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.023974 0.034909 0.018797 0.018954
std 1.037146 0.987292 0.971056 1.005623
min -3.000000 -2.833648 -3.000000 -3.000000
25% -0.664047 -0.621664 -0.603689 -0.671775
50% 0.012635 0.026107 0.028248 0.017063

(continues on next page)

4.1. Overview 287

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.any.html


Python for Data Science, Release 24.1.0

(continued from previous page)

75% 0.736662 0.697112 0.636774 0.743254
max 3.000000 3.000000 2.751574 3.000000

4.1.3 String comparisons

In this notebook we use the popular library for string comparisons fuzzywuzzy. It is based on the built-in Python library
difflib. For more information on the various methods available and their differences, see the blog post FuzzyWuzzy:
Fuzzy String Matching in Python.

See also
• textacy

1. Installation

With Spack you can provide fuzzywuzzy and the optional python-levenshtein library in your kernel:

$ spack env activate python-311
$ spack install py-fuzzywuzzy+speedup

Alternatively, you can install the two libraries with other package managers, for example

$ pipenv install fuzzywuzzy[speedup]

2. Imort

[1]: from fuzzywuzzy import fuzz, process

3. Example

[2]: berlin = [
"Berlin, Germany",
"Berlin, Deutschland",
"Berlin",
"Berlin, DE"]

String similarity

The similarity of the first two strings 'Berlin, Germany' and 'Berlin, Deutschland' seems low:

[3]: fuzz.ratio(berlin[0], berlin[1])

[3]: 65

288 Chapter 4. Data cleansing and validation

https://github.com/seatgeek/fuzzywuzzy
https://docs.python.org/3/library/difflib.html
https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
https://github.com/chartbeat-labs/textacy


Python for Data Science, Release 24.1.0

Partial string similarity

Inconsistent partial strings are a common problem. To get around this, fuzzywuzzy uses a heuristic called best partial.

[4]: fuzz.partial_ratio(berlin[0], berlin[1])

[4]: 60

Token sorting

In token sorting, the string in question is given a token, the tokens are sorted alphabetically and then reassembled into
a string, for example:

[5]: fuzz.ratio(berlin[1], berlin[2])

[5]: 48

[6]: fuzz.token_set_ratio(berlin[1], berlin[2])

[6]: 100

Further information

[7]: fuzz.ratio?

Extract from a list

[8]: choices = [
"Germany",
"Deutschland",
"France",
"United Kingdom",
"Great Britain",
"United States",

]

[9]: process.extract("DE", choices, limit=2)

[9]: [('Deutschland', 90), ('Germany', 45)]

[10]: process.extract("Vereinigtes Königreich", choices)

[10]: [('United Kingdom', 51),
('United States', 41),
('Germany', 39),
('Great Britain', 35),
('Deutschland', 31)]

[11]: process.extractOne("frankreich", choices)

[11]: ('France', 62)

4.1. Overview 289



Python for Data Science, Release 24.1.0

[12]: process.extractOne("U.S.", choices)

[12]: ('United States', 86)

Known ports

FuzzyWuzzy is also ported to other languages! Here are some known ports:

• Java: xpresso

• Java: xdrop fuzzywuzzy

• Rust: fuzzyrusty

• JavaScript: fuzzball.js

• C++: tmplt fuzzywuzzy

• C#: FuzzySharp

• Go: go-fuzzywuzzy

• Pascal: FuzzyWuzzy.pas

• Kotlin: FuzzyWuzzy-Kotlin

• R: fuzzywuzzyR

4.1.4 Deduplicating data

In this notebook, we deduplicate data using the Dedupe library, which uses a flat neural network to learn from a little
training.

See also
• csvdedupe offers a command line interface for Dedupe.

In addition, the same developers have created parserator, which you can use to extract text functions and train your own
text extraction.

1. Load sample data

[1]: import pandas as pd

[2]: customers = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/customer_data_

→˓duped.csv",
encoding="utf-8",

)

290 Chapter 4. Data cleansing and validation

https://github.com/WantedTechnologies/xpresso
https://github.com/xdrop/fuzzywuzzy
https://github.com/logannc/fuzzywuzzy-rs
https://github.com/nol13/fuzzball.js
https://github.com/Tmplt/fuzzywuzzy
https://github.com/BoomTownRoi/BoomTown.FuzzySharp
https://github.com/paul-mannino/go-fuzzywuzzy
https://github.com/DavidMoraisFerreira/FuzzyWuzzy.pas
https://github.com/willowtreeapps/fuzzywuzzy-kotlin
https://github.com/mlampros/fuzzywuzzyR
https://docs.dedupe.io/
https://github.com/dedupeio/csvdedupe
https://github.com/datamade/parserator


Python for Data Science, Release 24.1.0

2. Deduplicate with pandas

[3]: customers

[3]: name job \
0 Patricia Schaefer Programmer, systems
1 Olivie Dubois Ingénieur recherche et développement en agroal...
2 Mary Davies-Kirk Public affairs consultant
3 Miroslawa Eckbauer Dispensing optician
4 Richard Bauer Accountant, chartered certified
... ... ...
2075 Maurice Stey Systems developer
2076 Linda Alexander Commrcil horiculuri
2077 Diane Bailly Pharmacien
2078 Jorge Riba Cerdán Hotel manager
2079 Ryan Thompson Brewing technologist

company street_address \
0 Estrada-Best 398 Paul Drive
1 Moreno rue Lucas Benard
2 Baker Ltd Flat 3\nPugh mews
3 Ladeck GmbH Mijo-Lübs-Straße 12
4 Hoffman-Rocha 6541 Rodriguez Wall
... ... ...
2075 Linke Margraf GmbH & Co. OHG Laila-Scheibe-Allee 2/0
2076 Webb, Ballald and Vasquel 5594 Persn Ciff
2077 Voisin 527, rue Dijoux
2078 Amador-Diego Rambla de Adriana Barceló 854 Puerta 3
2079 Smith-Sullivan 136 Rodriguez Point

city state email \
0 Christianview Delaware lambdavid@gmail.com
1 Saint Anastasie-les-Bains AR berthelotjacqueline@mahe.fr
2 Stanleyfurt ZA middletonconor@hotmail.com
3 Neubrandenburg Berlin sophia01@yahoo.de
4 Carlosmouth Texas tross@jensen-ware.org
... ... ... ...
2075 Luckenwalde Hamburg gutknechtevelyn@niemeier.com
2076 Mooneybury Maryland ahleythoa@ail.co
2077 Duval-les-Bains CH aruiz@reynaud.fr
2078 Huesca Asturias manuelamosquera@yahoo.com
2079 Bradfordborough North Dakota lcruz@gmail.com

user_name
0 ndavidson
1 manonallain
2 colemanmichael
3 romanjunitz
4 adam78
... ...
2075 dkreusel
2076 kennethrchn
2077 dorothee41

(continues on next page)

4.1. Overview 291



Python for Data Science, Release 24.1.0

(continued from previous page)

2078 eugenia17
2079 cnewton

[2080 rows x 8 columns]

2.2 Show data types

For this we use pandas.DataFrame.dtypes:

[4]: customers.dtypes

[4]: name object
job object
company object
street_address object
city object
state object
email object
user_name object
dtype: object

2.3 Determine missing values

pandas.isnull shows for an array-like object whether values are missing:

• NaN in numeric arrays

• None or NaN in object arrays

• NaT in datetimelike

See also
• notna for the boolean inverse of pandas.isna

• Series.isna for the missing values in a series

• DataFrame.isna for the missing values in a DataFrame

• Index.isna for the missing values in an index

[5]: for col in customers.columns:
print(col, customers[col].isnull().sum())

name 0
job 0
company 0
street_address 0
city 0
state 0
email 0
user_name 0

292 Chapter 4. Data cleansing and validation

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dtypes.html
https://pandas.pydata.org/docs/reference/api/pandas.isnull.html
https://pandas.pydata.org/docs/reference/api/pandas.notna.html
https://pandas.pydata.org/docs/reference/api/pandas.isna.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.isna.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.isna.html
https://pandas.pydata.org/docs/reference/api/pandas.Index.isna.html


Python for Data Science, Release 24.1.0

2.4 Determine duplicate records

[6]: customers.duplicated()

[6]: 0 False
1 False
2 False
3 False
4 False

...
2075 False
2076 False
2077 False
2078 False
2079 False
Length: 2080, dtype: bool

customers.duplicated() does not yet give us the desired indication of whether there are duplicate records. In the
following, we will output all data records for which True is returned:

[7]: customers[customers.duplicated()]

[7]: Empty DataFrame
Columns: [name, job, company, street_address, city, state, email, user_name]
Index: []

Apparently there are no duplicated records.

2.5 Delete duplicated data

Deleting duplicated records with drop_duplicates should therefore not change anything and leave the number of
records at 2080:

[8]: customers.drop_duplicates()

[8]: name job \
0 Patricia Schaefer Programmer, systems
1 Olivie Dubois Ingénieur recherche et développement en agroal...
2 Mary Davies-Kirk Public affairs consultant
3 Miroslawa Eckbauer Dispensing optician
4 Richard Bauer Accountant, chartered certified
... ... ...
2075 Maurice Stey Systems developer
2076 Linda Alexander Commrcil horiculuri
2077 Diane Bailly Pharmacien
2078 Jorge Riba Cerdán Hotel manager
2079 Ryan Thompson Brewing technologist

company street_address \
0 Estrada-Best 398 Paul Drive
1 Moreno rue Lucas Benard
2 Baker Ltd Flat 3\nPugh mews
3 Ladeck GmbH Mijo-Lübs-Straße 12

(continues on next page)

4.1. Overview 293



Python for Data Science, Release 24.1.0

(continued from previous page)

4 Hoffman-Rocha 6541 Rodriguez Wall
... ... ...
2075 Linke Margraf GmbH & Co. OHG Laila-Scheibe-Allee 2/0
2076 Webb, Ballald and Vasquel 5594 Persn Ciff
2077 Voisin 527, rue Dijoux
2078 Amador-Diego Rambla de Adriana Barceló 854 Puerta 3
2079 Smith-Sullivan 136 Rodriguez Point

city state email \
0 Christianview Delaware lambdavid@gmail.com
1 Saint Anastasie-les-Bains AR berthelotjacqueline@mahe.fr
2 Stanleyfurt ZA middletonconor@hotmail.com
3 Neubrandenburg Berlin sophia01@yahoo.de
4 Carlosmouth Texas tross@jensen-ware.org
... ... ... ...
2075 Luckenwalde Hamburg gutknechtevelyn@niemeier.com
2076 Mooneybury Maryland ahleythoa@ail.co
2077 Duval-les-Bains CH aruiz@reynaud.fr
2078 Huesca Asturias manuelamosquera@yahoo.com
2079 Bradfordborough North Dakota lcruz@gmail.com

user_name
0 ndavidson
1 manonallain
2 colemanmichael
3 romanjunitz
4 adam78
... ...
2075 dkreusel
2076 kennethrchn
2077 dorothee41
2078 eugenia17
2079 cnewton

[2080 rows x 8 columns]

Now we want to delete only those records whose user_name is identical:

[9]: customers.drop_duplicates(["user_name"])

[9]: name job \
0 Patricia Schaefer Programmer, systems
1 Olivie Dubois Ingénieur recherche et développement en agroal...
2 Mary Davies-Kirk Public affairs consultant
3 Miroslawa Eckbauer Dispensing optician
4 Richard Bauer Accountant, chartered certified
... ... ...
2074 Rhonda James Recruitment consultant
2076 Linda Alexander Commrcil horiculuri
2077 Diane Bailly Pharmacien
2078 Jorge Riba Cerdán Hotel manager
2079 Ryan Thompson Brewing technologist

(continues on next page)

294 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

(continued from previous page)

company street_address \
0 Estrada-Best 398 Paul Drive
1 Moreno rue Lucas Benard
2 Baker Ltd Flat 3\nPugh mews
3 Ladeck GmbH Mijo-Lübs-Straße 12
4 Hoffman-Rocha 6541 Rodriguez Wall
... ... ...
2074 Turner, Bradley and Scott 28382 Stokes Expressway
2076 Webb, Ballald and Vasquel 5594 Persn Ciff
2077 Voisin 527, rue Dijoux
2078 Amador-Diego Rambla de Adriana Barceló 854 Puerta 3
2079 Smith-Sullivan 136 Rodriguez Point

city state email \
0 Christianview Delaware lambdavid@gmail.com
1 Saint Anastasie-les-Bains AR berthelotjacqueline@mahe.fr
2 Stanleyfurt ZA middletonconor@hotmail.com
3 Neubrandenburg Berlin sophia01@yahoo.de
4 Carlosmouth Texas tross@jensen-ware.org
... ... ... ...
2074 Port Gabrielaport New Hampshire zroberts@hotmail.com
2076 Mooneybury Maryland ahleythoa@ail.co
2077 Duval-les-Bains CH aruiz@reynaud.fr
2078 Huesca Asturias manuelamosquera@yahoo.com
2079 Bradfordborough North Dakota lcruz@gmail.com

user_name
0 ndavidson
1 manonallain
2 colemanmichael
3 romanjunitz
4 adam78
... ...
2074 heathscott
2076 kennethrchn
2077 dorothee41
2078 eugenia17
2079 cnewton

[2029 rows x 8 columns]

This deleted 51 records.

4.1. Overview 295



Python for Data Science, Release 24.1.0

3. dedupe

Alternatively, we can detect the duplicated data with the Dedupe library, which uses a flat neural network to learn from
a small training.

See also
csvdedupe provides a command line tool for dedupe.

In addition, the same developers have created parserator, which you can use to extract text functions and train your own
text extraction.

3.1 Configure Dedupe

Now we define the fields to be taken care of during deduplication and create a new deduper object:

[10]: import os

import dedupe

customers = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/customer_data_

→˓duped.csv",
encoding="utf-8",

)

[11]: variables = [
{"field": "name", "type": "String"},
{"field": "job", "type": "String"},
{"field": "company", "type": "String"},
{"field": "street_address", "type": "String"},
{"field": "city", "type": "String"},
{"field": "state", "type": "String", "has_missing": True},
{"field": "email", "type": "String", "has_missing": True},
{"field": "user_name", "type": "String"},

]

deduper = dedupe.Dedupe(variables)

If the value of a field is missing, this missing value should be represented as a None object. However, by
'has_missing': True, a new, additional field is created to indicate whether the data was present or not, and the
missing data is given a null.

See also
• Missing Data

[12]: deduper

[12]: <dedupe.api.Dedupe at 0x7fd414e1a3a0>

[13]: customers.shape

[13]: (2080, 8)

296 Chapter 4. Data cleansing and validation

https://docs.dedupe.io/
https://github.com/dedupeio/csvdedupe
https://github.com/datamade/parserator
https://docs.dedupe.io/en/latest/Variable-definition.html#missing-data


Python for Data Science, Release 24.1.0

4. Create training data

[14]: deduper.prepare_training(customers.T.to_dict())

prepare_training initialises active learning with our data and, optionally, with existing training data.

T mirrors the DataFrame across its diagonal by writing rows as columns and vice versa. For this, pan-
das.DataFrame.transpose is used.

5. Active learning

Use dedupe.console_label to train your dedupe instance. When Dedupe finds a record pair, you will be asked to
label it as a duplicate. You can use the y, n and u keys to label duplicates. Press f when you are finished.

[15]: dedupe.console_label(deduper)

name : Frédérique Lejeune-Daniel
job : Technicien chimiste
company : Schmitt
street_address : chemin Denise Ferrand
city : Saint CharlotteVille
state : IE
email : jchretien@costa.com
user_name : joseph60

name : Frédérique Lejeune-Daniel
job : Tecce cse
company : Sctmitt
street_address : chemin Denise Ferrand
city : Saint ChalotteVille
state : IE
email : jchretien@costacom
user_name : joseph60

0/10 positive, 0/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished

y

name : Jose Carlos Pérez Arias
job : Engineer, maintenance (IT)
company : Marquez PLC
street_address : Pasadizo Ángel Sureda 715 Piso 3
city : La Rioja
state : Córdoba
email : cifuentesraquel@peralta.com
user_name : gonzalo63

name : Jose Carlos Pérez Arias
job : Egieer, maiteace (IT)
company : Marquez PLC
street_address : Psdizo Ángel Sured 715 Piso
city : La Rioja

(continues on next page)

4.1. Overview 297

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transpose.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transpose.html


Python for Data Science, Release 24.1.0

(continued from previous page)

state : Córdob
email : ifuenteraque@perata.om
user_name : gonzalo6

1/10 positive, 0/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished / (p)revious

y

name : Julio Agustín Amaya
job : Tax adviser
company : Piñol, Belmonte and Codina
street_address : Callejón de Gregorio Bustamante 28 Piso 7
city : Las Palmas
state : Salamanca
email : usolana@jáuregui-pedraza.com
user_name : gloriaolmo

name : Julio Agustín Amaya
job : Tax aviser
company : Piñolk Belmonke and Codina
street_address : Calleón de Gregorio Bustamante 28 Piso 7
city : La Pala
state : Salamanca
email : usolana@jáuregui-pedraza.om
user_name : gloriaolmo

2/10 positive, 0/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished / (p)revious

y

name : Monique Marty
job : Maoqiie
company : Arnfud
street_address : 70, rue de Carre
city : CheallierBour
state : EC
email : frederiquerichard@cohen.com
user_name : marquesseastie

name : Monique Marty
job : Maroquinier
company : Arnaud
street_address : 70, rue de Carre
city : ChevallierBourg
state : EC
email : frederiquerichard@cohen.com
user_name : marquessebastien

3/10 positive, 0/10 negative
Do these records refer to the same thing?

(continues on next page)

298 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

(continued from previous page)

(y)es / (n)o / (u)nsure / (f)inished / (p)revious

y

name : Susan Aubry
job : Direeur d'gee bire
company : Payet George2 S2A2S2
street_address : , rue Inè Valentn
city : Nicolas
state : FI
email : milletedith@sf.f
user_name : tthierry

name : Susan Aubry
job : Directeur d'agence bancaire
company : Payet Georges S.A.S.
street_address : 67, rue Inès Valentin
city : Nicolas
state : FI
email : milletedith@sfr.fr
user_name : tthierry

4/10 positive, 0/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished / (p)revious

f

Finished labeling

The last training dataset compared make it clear that we did not delete this duplicate with our drop_duplicates
example above - marquesseastie and marquessebastien were recognised as different.

Dedupe.train adds the record pairs you marked to the training data and updates the matching model.

With index_predicates=True, deduplication also takes into account predicates based on the indexing of the data.

When you are done, save your training data with Dedupe.write_settings.

[16]: settings_file = "csv_example_learned_settings"
if os.path.exists(settings_file):

print("reading from", settings_file)
with open(settings_file, "rb") as f:

deduper = dedupe.StaticDedupe(f)
else:

deduper.train(index_predicates=True)
with open(settings_file, "wb") as sf:

deduper.write_settings(sf)

With dedupe.Dedupe.partition, records that all refer to the same entity are identified and returned as tuples that
are a sequence of record IDs and confidence values. For more details on the confidence value, see dedupe.Dedupe.
cluster.

[17]: dupes = deduper.partition(customers.T.to_dict())

4.1. Overview 299



Python for Data Science, Release 24.1.0

[18]: dupes

[18]: [((84, 1600), (1.0, 1.0)),
((136, 1360), (1.0, 1.0)),
((670, 1170), (1.0, 1.0)),
((856, 1781), (1.0, 1.0)),
((902, 942), (1.0, 1.0)),
((1395, 1560), (1.0, 1.0)),
((1594, 1706), (1.0, 1.0)),
((0,), (1.0,)),
((1,), (1.0,)),
...]

We can also output only individual entries:

[19]: dupes[1]

[19]: ((136, 1360), (1.0, 1.0))

We can then display these with pandas.DataFrame.iloc:

[20]: customers.iloc[[136,1360]]

[20]: name job company \
136 Frédérique Lejeune-Daniel Technicien chimiste Schmitt
1360 Frédérique Lejeune-Daniel Tecce cse Sctmitt

street_address city state email \
136 chemin Denise Ferrand Saint CharlotteVille IE jchretien@costa.com
1360 chemin Denise Ferrand Saint ChalotteVille IE jchretien@costacom

user_name
136 joseph60
1360 joseph60

4.1.5 pandas DataFrame Validation with Bulwark

Bulwark is a package for property-based testing of pandas dataframes. The project was heavily influenced by the no
longer supported Engarde library.

1. Installation

$ pipenv install bulwark
Installing bulwark...
Adding bulwark to Pipfile's [packages]...
✓✓✓ Installation Succeeded
Locking [dev-packages] dependencies...
✓✓✓ Success!
Updated Pipfile.lock (0d075a)!

300 Chapter 4. Data cleansing and validation

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html
https://bulwark.readthedocs.io/en/stable/index.html
https://github.com/engarde-dev/engarde


Python for Data Science, Release 24.1.0

2. Use

2.1 Checks

With the bulwark.checks module you can check many common assumptions, e.g.

• has_columns checks whether certain columns exist in such-and-such a way and in the correct order

• has_dtypes checks the data types of columns

• has_no_infs checks if there are no numpy.inf in the DataFrame

• has_no_nans checks if there are no numpy.nan in the DataFrame

• has_set_within_vals checks if the values specified in a dict are a subset of the associated column

• has_unique_index checks if the index is unique

• is_monotonic checks whether values of a column are ascending or descending

• one_to_many checks whether there is an n:1 relationship between two columns

The checks are then very simple, e.g. the check whether there are no numpy.nan in the column pipe with

import bulwark.checks as ck

df.pipe(ck.has_no_nans())

2.2 Decorators

For each check, bulwark.creates decorators, e.g. @dc.IsShape((-1, 10)) or @dc.IsMonotonic(strict=True).

CustomCheck

You can also create your own custom functions, for example:

[1]: import bulwark.checks as ck
import bulwark.decorators as dc
import numpy as np
import pandas as pd

def len_longer_than(df, l):
if len(df) <= l:

raise AssertionError("df is not as long as expected.")
return df

@dc.CustomCheck(len_longer_than, 10)
def append_a_df(df, df2):

return pd.concat([df, df2], ignore_index=True)

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

(continues on next page)

4.1. Overview 301

https://bulwark.readthedocs.io/en/v0.4.2/bulwark.html#module-bulwark.checks
https://numpy.org/doc/stable/reference/constants.html#numpy.inf
https://numpy.org/doc/stable/reference/constants.html#numpy.nan
https://bulwark.readthedocs.io/en/v0.4.2/bulwark.html#module-bulwark.decorators


Python for Data Science, Release 24.1.0

(continued from previous page)

append_a_df(df, df2)

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[1], line 21

18 df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
19 df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

---> 21 append_a_df(df, df2)

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/bulwark/
→˓decorators.py:81, in CustomCheck.__call__.<locals>.decorated(*args, **kwargs)

78 df = f(*args, **kwargs)
79 if self.enabled:
80 # differs from BaseDecorator

---> 81 ck.custom_check(df, self.check_func, **self.check_func_params)
82 return df

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/bulwark/
→˓checks.py:588, in custom_check(df, check_func, *args, **kwargs)
576 """Assert that `check(df, *args, **kwargs)` is true.
577
578 Args:

(...)
585
586 """
587 try:

--> 588 check_func(df, *args, **kwargs)
589 except AssertionError as e:
590 msg = "{} is not true.".format(check_func.__name__)

Cell In[1], line 9, in len_longer_than(df, l)
7 def len_longer_than(df, l):
8 if len(df) <= l:

----> 9 raise AssertionError("df is not as long as expected.")
10 return df

AssertionError: len_longer_than is not true.

MultiCheck

With MultiCheck you can run several tests at the same time and see all the errors at once, for example:

[2]: @dc.MultiCheck(
checks={

ck.has_no_nans: {"columns": None},
len_longer_than: {"l": 6}

},
warn=False,

)
def append_a_df(df, df2):

(continues on next page)

302 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

(continued from previous page)

return pd.concat([df, df2], ignore_index=True)

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

append_a_df(df, df2)

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[2], line 15

12 df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
13 df2 = pd.DataFrame({"a": [1, np.nan, 3, 4], "b": [4, 5, 6, 7]})

---> 15 append_a_df(df, df2)

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/bulwark/
→˓decorators.py:24, in BaseDecorator.__call__.<locals>.decorated(*args, **kwargs)

22 df = f(*args, **kwargs)
23 if self.enabled:

---> 24 self.check_func(df, **self.check_func_params)
25 return df

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/bulwark/
→˓checks.py:570, in multi_check(df, checks, warn)
568 return df
569 elif error_msgs:

--> 570 raise AssertionError("\n".join(str(i) for i in error_msgs))
572 return df

AssertionError: (4, 'a')

4.1.6 Hypothesis: Property-based testing

In this notebook we use property-based testing to find problems in our code. Hypothesis is a library similar to Haskell’s
Quickcheck. We’ll get to know it in more detail later, along with other test libraries: Hypothesis. Hypothesis can also
provide mock objects and tests for numpy data types.

4.1. Overview 303

https://hypothesis.readthedocs.io/en/latest/
https://hackage.haskell.org/package/QuickCheck
https://jupyter-tutorial.readthedocs.io/en/latest/notebook/testing/hypothesis.html


Python for Data Science, Release 24.1.0

1. Imports

[1]: import re

from hypothesis import assume, given
from hypothesis.strategies import emails, integers, tuples

2. Find range

[2]: def calculate_range(tuple_obj):
return max(tuple_obj) - min(tuple_obj)

3. Test with strategies and given

With hypothesis.strategies you can create different test data. For this, Hypothesis provides strategies for most types
and arguments restrict the possibilities to suit your needs. In the example below, we use the integers strategy, which is
applied to the function with the Python-Decorator @given. More specifically, it takes our test function and converts it
into a parameterised one to run over wide ranges of matching data:

[3]: @given(tuples(integers(), integers(), integers()))
def test_calculate_range(tup):

result = calculate_range(tup)
assert isinstance(result, int)
assert result > 0

[4]: test_calculate_range()

---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In[4], line 1
----> 1 test_calculate_range()

Cell In[3], line 2, in test_calculate_range()
1 @given(tuples(integers(), integers(), integers()))

----> 2 def test_calculate_range(tup):
3 result = calculate_range(tup)
4 assert isinstance(result, int)

[... skipping hidden 1 frame]

Cell In[3], line 5, in test_calculate_range(tup)
3 result = calculate_range(tup)
4 assert isinstance(result, int)

----> 5 assert result > 0

AssertionError:
Falsifying example: test_calculate_range(

tup=(0, 0, 0),
)

Now we correct the test with >= and check it again:

304 Chapter 4. Data cleansing and validation

https://hypothesis.readthedocs.io/en/latest/data.html
https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.integers
https://docs.python.org/3/glossary.html#term-decorator


Python for Data Science, Release 24.1.0

[5]: @given(tuples(integers(), integers()))
def test_calculate_range(tup):

result = calculate_range(tup)
assert isinstance(result, int)
assert result >= 0

[6]: test_calculate_range()

3. Check against regular expressions

Regular expressions can be used to check strings for certain syntactical rules. In Python, you can use re.match to check
regular expressions.

Note
On the website regex101 you can first try out your regular expressions.

As an example, let’s try to find out the username and the domain from email addresses:

[7]: def parse_email(email):
result = re.match(

"(?P<username>\w+).(?P<domain>[\w\.]+)",
email,

).groups()
return result

Now we write a test test_parse_email to check our method. As input values we use the emails strategy of Hypoth-
esis. As result we expect for example:

('0', 'A.com')
('F', 'j.EeHNqsx')
...

In the test, we assume on the one hand that two entries are always returned and that a dot (.) occurs in the second entry.

[8]: @given(emails())
def test_parse_email(email):

result = parse_email(email)
# print(result)
assert len(result) == 2
assert "." in result[1]

[9]: test_parse_email()

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[9], line 1
----> 1 test_parse_email()

Cell In[8], line 2, in test_parse_email()
1 @given(emails())

----> 2 def test_parse_email(email):
3 result = parse_email(email)

(continues on next page)

4.1. Overview 305

https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/3/library/re.html#re.match
https://regex101.com/
https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.emails


Python for Data Science, Release 24.1.0

(continued from previous page)

4 # print(result)

[... skipping hidden 1 frame]

Cell In[8], line 3, in test_parse_email(email)
1 @given(emails())
2 def test_parse_email(email):

----> 3 result = parse_email(email)
4 # print(result)
5 assert len(result) == 2

Cell In[7], line 5, in parse_email(email)
1 def parse_email(email):
2 result = re.match(
3 "(?P<username>\w+).(?P<domain>[\w\.]+)",
4 email,

----> 5 ).groups()
6 return result

AttributeError: 'NoneType' object has no attribute 'groups'
Falsifying example: test_parse_email(

email='=@A.ac',
)

With Hypothesis, two examples were found that make it clear that our regular expression in the parse_email method
is not yet sufficient: 0/0@A.ac and /@A.ac. After we have adapted our regular expression accordingly, we can call the
test again:

[10]: def parse_email(email):
result = re.match(

"(?P<username>[\.\w\-\!~#$%&\|{}\+\/\^\`\=\*']+).(?P<domain>[\w\.\-]+)",
email,

).groups()
return result

[11]: test_parse_email()

4.1.7 TDDA: Test-Driven Data Analysis

TDDA uses file inputs (such as NumPy arrays or Pandas DataFrames) and a set of constraints that are stored as a JSON
file.

• Reference Tests supports the creation of reference tests based on either unittest or pytest.

• Constraints is used to retrieve constraints from a (pandas) DataFrame, write them out as JSON and check whether
records satisfy the constraints in the constraints file. It also supports tables in a variety of relational databases.

• Rexpy is a tool for automatically deriving regular expressions from a column in a pandas DataFrame or from a
(Python) list of examples.

306 Chapter 4. Data cleansing and validation

https://github.com/tdda/tdda
https://tdda.readthedocs.io/en/latest/referencetest.html
https://tdda.readthedocs.io/en/tdda-1.0.13/constraints.html
https://tdda.readthedocs.io/en/v1.0.30/rexpy.html


Python for Data Science, Release 24.1.0

1. Imports

[1]: import numpy as np
import pandas as pd

from tdda.constraints import discover_df, verify_df

[2]: df = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/iot_example.csv

→˓"
)

2. Check data

With pandas.DataFrame.sample we display ten random data sets:

[3]: df.sample(10)

[3]: timestamp username temperature heartrate \
34835 2017-01-15T10:01:00 jwilliams 6 89
120063 2017-02-18T11:25:06 ericliu 28 77
130072 2017-02-22T11:12:22 lee99 9 79
79530 2017-02-02T07:23:17 jamie46 5 82
53587 2017-01-22T22:02:38 daniellemacias 26 63
112089 2017-02-15T07:04:50 carlosyoung 23 63
91218 2017-02-06T23:19:13 gutierreznathan 11 72
105807 2017-02-12T18:57:19 gutierrezashley 28 72
51928 2017-01-22T05:58:03 uschwartz 29 81
70436 2017-01-29T15:52:55 crystalunderwood 23 82

build latest note
34835 8aee9cf7-84c6-6935-22ff-9b034d9aa1f4 0 update
120063 c1179197-abcc-ee64-2851-cb2ed21baa1a 0 wake
130072 184d2848-9367-71cb-be72-6bbd57074857 0 NaN
79530 1c56c556-2ba0-11fb-5a27-29289487b748 1 wake
53587 acd9a855-077c-dda7-c73f-7621f3179f17 0 sleep
112089 71dfc6de-147e-00f1-da89-6e4489a33aba 0 user
91218 166e2a51-ae08-bd1f-3cee-3c65a0d5740b 0 NaN
105807 9b1984e4-a620-68f6-c639-2db7774fe27c 0 user
51928 54bf638e-68e1-9514-02df-acbc5417443a 0 user
70436 8f003e04-509d-e412-0979-0c9f9526f1e8 1 NaN

And with pandas.DataFrame.dtypes we display the data types for the individual columns:

[4]: df.dtypes

[4]: timestamp object
username object
temperature int64
heartrate int64
build object
latest int64

(continues on next page)

4.1. Overview 307

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dtypes.html


Python for Data Science, Release 24.1.0

(continued from previous page)

note object
dtype: object

3. Creating a constraints object

With discover_constraints a constraints object can be created.

[5]: constraints = discover_df(df)

[6]: constraints

[6]: <tdda.constraints.base.DatasetConstraints at 0x161ac2c50>

[7]: constraints.fields

[7]: Fields([('timestamp', <tdda.constraints.base.FieldConstraints at 0x161ac1350>),
('username', <tdda.constraints.base.FieldConstraints at 0x161ac1650>),
('temperature',
<tdda.constraints.base.FieldConstraints at 0x136bc2790>),
('heartrate', <tdda.constraints.base.FieldConstraints at 0x161ac1f10>),
('build', <tdda.constraints.base.FieldConstraints at 0x161ac2350>),
('latest', <tdda.constraints.base.FieldConstraints at 0x161ac2990>),
('note', <tdda.constraints.base.FieldConstraints at 0x161ac2d50>)])

4. Writing the constraints into a file

[8]: with open("../../data/ignore-iot_constraints.tdda", "w") as f:
f.write(constraints.to_json())

If we take a closer look at the file, we can see that, for example, a string with 19 characters is expected for the timestamp
column and temperature expects integers with values from 5-29.

[9]: !cat ../../data/ignore-iot_constraints.tdda

{
"creation_metadata": {

"local_time": "2023-07-26 18:18:37",
"utc_time": "2023-07-26 16:16:37",
"creator": "TDDA 2.0.09",
"host": "fay.local",
"user": "veit",
"n_records": 146397,
"n_selected": 146397

},
"fields": {

"timestamp": {
"type": "string",
"min_length": 19,
"max_length": 19,
"max_nulls": 0,

(continues on next page)

308 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

(continued from previous page)

"no_duplicates": true
},
"username": {

"type": "string",
"min_length": 3,
"max_length": 21,
"max_nulls": 0

},
"temperature": {

"type": "int",
"min": 5,
"max": 29,
"sign": "positive",
"max_nulls": 0

},
"heartrate": {

"type": "int",
"min": 60,
"max": 89,
"sign": "positive",
"max_nulls": 0

},
"build": {

"type": "string",
"min_length": 36,
"max_length": 36,
"max_nulls": 0,
"no_duplicates": true

},
"latest": {

"type": "int",
"min": 0,
"max": 1,
"sign": "non-negative",
"max_nulls": 0

},
"note": {

"type": "string",
"min_length": 4,
"max_length": 8,
"allowed_values": [

"interval",
"sleep",
"test",
"update",
"user",
"wake"

]
}

}
}

4.1. Overview 309



Python for Data Science, Release 24.1.0

5. Checking data frames

To do this, we first read in a new csv file with pandas and then have ten data records output as examples:

[10]: new_df = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/iot_example_

→˓with_nulls.csv"
)
new_df.sample(10)

[10]: timestamp username temperature heartrate \
985 2017-01-01T21:31:32 qmartinez 9.0 85
102620 2017-02-11T12:30:15 laurenwilliams 19.0 85
59859 2017-01-25T10:06:55 xwright 22.0 66
110018 2017-02-14T11:13:49 wibarra NaN 68
1736 2017-01-02T04:47:11 joshuaperez NaN 79
85078 2017-02-04T12:37:57 oaustin 23.0 63
145979 2017-02-28T20:00:11 hholder 21.0 77
37789 2017-01-16T14:12:06 kennethdavis 8.0 62
114849 2017-02-16T09:27:34 bobby64 20.0 67
107275 2017-02-13T09:05:58 okirby 29.0 64

build latest note
985 76f24b19-9d9e-17b8-4d02-c6e6f00e9f13 1.0 NaN
102620 5ea80d05-56b2-5632-8480-cf3ef40d34a4 0.0 user
59859 NaN 0.0 test
110018 9d04e55f-c9e1-2ab9-666b-9de0f739431a 0.0 test
1736 3d320343-34f9-bf79-ec39-aaafa061c39c 1.0 NaN
85078 ccf940cd-9b59-e444-1a68-5f7f7590d5db 0.0 NaN
145979 NaN 0.0 NaN
37789 9bc9bc15-bf2a-7098-bf85-73fa42e30df2 0.0 user
114849 2c5dc517-d725-bc66-7d6d-25716025476a 0.0 sleep
107275 NaN 1.0 interval

We see several fields that are output as NaN. Now, to analyse this systematically, we apply verify_df to our new
DataFrame. Here, passes returns the number of passed constraints, and failures returns the number of failed
constraints.

[11]: v = verify_df(new_df, '../../data/ignore-iot_constraints.tdda')

[12]: v

[12]: <tdda.constraints.pd.constraints.PandasVerification at 0x1636e7450>

[13]: v.passes

[13]: 30

[14]: v.failures

[14]: 3

We can also display which constraints passed and failed in which columns:

310 Chapter 4. Data cleansing and validation

https://tdda.readthedocs.io/en/v1.0.31/constraints.html#tdda.constraints.verify_df


Python for Data Science, Release 24.1.0

[15]: print(str(v))

FIELDS:

timestamp: 0 failures 5 passes type min_length max_length max_nulls no_
→˓duplicates

username: 0 failures 4 passes type min_length max_length max_nulls

temperature: 1 failure 4 passes type min max sign max_nulls

heartrate: 0 failures 5 passes type min max sign max_nulls

build: 1 failure 4 passes type min_length max_length max_nulls no_duplicates

latest: 1 failure 4 passes type min max sign max_nulls

note: 0 failures 4 passes type min_length max_length allowed_values

SUMMARY:

Constraints passing: 30
Constraints failing: 3

Alternatively, we can also display these results in tabular form:

[16]: v.to_frame()

[16]: field failures passes type min min_length max max_length \
0 timestamp 0 5 True NaN True NaN True
1 username 0 4 True NaN True NaN True
2 temperature 1 4 True True NaN True NaN
3 heartrate 0 5 True True NaN True NaN
4 build 1 4 True NaN True NaN True
5 latest 1 4 True True NaN True NaN
6 note 0 4 True NaN True NaN True

sign max_nulls no_duplicates allowed_values
0 NaN True True NaN
1 NaN True NaN NaN
2 True False NaN NaN
3 True True NaN NaN
4 NaN False True NaN
5 True False NaN NaN
6 NaN NaN NaN True

4.1. Overview 311



Python for Data Science, Release 24.1.0

4.1.8 Data validation with Voluptuous (schema definitions)

In this notebook we use Voluptuous to define schemas for our data. We can then use schema checking at various points
in our cleanup to ensure that we meet the criteria. Finally, we can use schema checking exceptions to flag, set aside or
remove impure or invalid data.

See also
• Validr

• marshmallow

1. Imports

[1]: import logging

from datetime import datetime

import pandas as pd

from voluptuous import ALLOW_EXTRA, All, Range, Required, Schema
from voluptuous.error import Invalid, MultipleInvalid

• Required marks the node of a schema as required and optionally specifies a default value, see also volup-
tuous.schema_builder.Required.

• Range limits the value to a range where either min or max can be omitted; see also voluptuous.validators.Range.

• ALL is used for cross-field validations: checks the basic structure of the data in a first pass and only in the second
pass the cross-field validation is applied; see also voluptuous.validators.All.

• ALLOW_EXTRA allows additional dictionary keys.

• MultipleInvalid is based on Invalid, see also voluptuous.error.MultipleInvalid.

• Invalid marks data as invalid, see also voluptuous.error.Invalid.

2. Logger

[2]: logger = logging.getLogger(0)
logger.setLevel(logging.WARNING)

3. Read sample data

[3]: sales = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/sales_data.csv"

)

312 Chapter 4. Data cleansing and validation

https://github.com/alecthomas/voluptuous
https://github.com/guyskk/validr
https://marshmallow.readthedocs.io/en/latest/
http://alecthomas.github.io/voluptuous/docs/_build/html/voluptuous.html?highlight=required#voluptuous.schema_builder.Required
http://alecthomas.github.io/voluptuous/docs/_build/html/voluptuous.html?highlight=required#voluptuous.schema_builder.Required
http://alecthomas.github.io/voluptuous/docs/_build/html/voluptuous.html?highlight=required#voluptuous.validators.Range
http://alecthomas.github.io/voluptuous/docs/_build/html/voluptuous.html?highlight=required#voluptuous.validators.All
http://alecthomas.github.io/voluptuous/docs/_build/html/voluptuous.html?highlight=required#voluptuous.error.MultipleInvalid
http://alecthomas.github.io/voluptuous/docs/_build/html/voluptuous.html?highlight=required#voluptuous.error.Invalid


Python for Data Science, Release 24.1.0

4. Examine data

[4]: sales.head()

[4]: Unnamed: 0 timestamp city store_id sale_number \
0 0 2018-09-10 05:00:45 Williamburgh 6 1530
1 1 2018-09-12 10:01:27 Ibarraberg 1 2744
2 2 2018-09-13 12:01:48 Sarachester 2 1908
3 3 2018-09-14 20:02:19 Caldwellbury 14 771
4 4 2018-09-16 01:03:21 Erikaland 11 1571

sale_amount associate
0 1167.0 Gary Lee
1 258.0 Daniel Davis
2 266.0 Michael Roth
3 -108.0 Michaela Stewart
4 -372.0 Mark Taylor

[5]: sales.shape

[5]: (213, 7)

[6]: sales.dtypes

[6]: Unnamed: 0 int64
timestamp object
city object
store_id int64
sale_number int64
sale_amount float64
associate object
dtype: object

5. Define schema

In the column sale_amount all values should be between 2.5 and 1450.99:

[7]: schema = Schema(
{

Required("sale_amount"): All(float, Range(min=2.50, max=1450.99)),
},
extra=ALLOW_EXTRA,

)

To be able to use the elements of one column as keys and the elements of another column as values, we sim-
ply make the desired column the index of the DataFrame and transpose it with the function .T(); see also pan-
das.DataFrame.transpose.

[8]: error_count = 0
for s_id, sale in sales.T.to_dict().items():

try:
schema(sale)

except MultipleInvalid as e:
(continues on next page)

4.1. Overview 313

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transpose.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transpose.html


Python for Data Science, Release 24.1.0

(continued from previous page)

logging.warning(
"issue with sale: %s (%s) - %s", s_id, sale["sale_amount"], e

)
error_count += 1

WARNING:root:issue with sale: 3 (-108.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 4 (-372.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 5 (-399.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 6 (-304.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 7 (-295.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 10 (-89.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 13 (-303.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 15 (-432.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 19 (-177.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 20 (-154.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 22 (-130.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 23 (1487.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 25 (-145.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 28 (1471.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 31 (-259.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 38 (-241.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 40 (-4.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 41 (1581.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 45 (1529.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 46 (-238.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 48 (-284.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 51 (-164.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 55 (-184.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 56 (-304.0) - value must be at least 2.5 for dictionary␣

(continues on next page)

314 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓value @ data['sale_amount']
WARNING:root:issue with sale: 59 (1579.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 60 (-455.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 63 (1551.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 65 (-397.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 69 (-400.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 70 (1482.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 71 (-321.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 74 (-47.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 76 (-68.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 86 (1454.0) - value must be at most 1450.99 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 101 (-213.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 103 (-144.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 104 (-265.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 107 (-349.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 111 (-78.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 112 (-310.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 116 (1570.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 120 (1490.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 123 (-179.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 124 (-391.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 129 (1504.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 130 (-91.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 132 (-372.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 141 (1512.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 142 (-449.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 149 (1494.0) - value must be at most 1450.99 for␣

(continues on next page)

4.1. Overview 315



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 152 (-405.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 155 (1599.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 156 (1527.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 157 (-462.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 162 (-358.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 164 (-78.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 167 (-358.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 171 (-391.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 178 (-304.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 180 (-9.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 187 (1475.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 194 (-433.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 195 (-329.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 196 (-147.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 203 (-319.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 206 (-132.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 207 (-20.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']
WARNING:root:issue with sale: 209 (1539.0) - value must be at most 1450.99 for␣
→˓dictionary value @ data['sale_amount']
WARNING:root:issue with sale: 211 (-167.0) - value must be at least 2.5 for dictionary␣
→˓value @ data['sale_amount']

[9]: error_count

[9]: 69

Currently, however, we do not yet know whether

• we have a wrongly defined schema

• possibly negative values are returned or incorrectly marked

• higher values are combined purchases or special sales

316 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

6. Adding a custom validation

[10]: def ValidDate(fmt="%Y-%m-%d %H:%M:%S"):
return lambda v: datetime.strptime(v, fmt)

[11]: schema = Schema(
{

Required("timestamp"): All(ValidDate()),
},
extra=ALLOW_EXTRA,

)

[12]: error_count = 0
for s_id, sale in sales.T.to_dict().items():

try:
schema(sale)

except MultipleInvalid as e:
logging.warning(

"issue with sale: %s (%s) - %s", s_id, sale["timestamp"], e
)
error_count += 1

[13]: error_count

[13]: 0

7. Valid date structures are not yet valid dates

[14]: def ValidDate(fmt="%Y-%m-%d %H:%M:%S"):
def validation_func(v):

try:
assert datetime.strptime(v, fmt) <= datetime.now()

except AssertionError:
raise Invalid("date is in the future! %s" % v)

return validation_func

[15]: schema = Schema(
{

Required("timestamp"): All(ValidDate()),
},
extra=ALLOW_EXTRA,

)

[16]: error_count = 0
for s_id, sale in sales.T.to_dict().items():

try:
schema(sale)

except MultipleInvalid as e:
logging.warning(

(continues on next page)

4.1. Overview 317



Python for Data Science, Release 24.1.0

(continued from previous page)

"issue with sale: %s (%s) - %s", s_id, sale["timestamp"], e
)
error_count += 1

[17]: error_count

[17]: 0

4.1.9 Normalisation and Preprocessing

sklearn.preprocessing can be used in many ways to clean data:

• Standardisation with StandardScaler, MinMaxScaler, MaxAbsScaler or RobustScaler.

• Centring of kernel matrices with KernelCenterer.

• Non-linear transformations with QuantileTransformer, PowerTransformer

• Normalisation with normalize.

• Encoding of categorical features with OrdinalEncoder, OneHotEncoder.

• Discretisation (also known as quantisation or binning) with KBinsDiscretizer.

• Binarisation of features with Binarizer

• Imputation of missing values with SimpleImputer, IterativeImputer or KNNImputer where the added values can
be marked with MissingIndicator.

See also
• statsmodels

Example

In the following example, we fill in mean values and do some scaling:

1. Imports

[1]: from datetime import datetime

import numpy as np
import pandas as pd

from sklearn import preprocessing
from sklearn.impute import SimpleImputer

[2]: hvac = pd.read_csv(
"https://raw.githubusercontent.com/kjam/data-cleaning-101/master/data/HVAC_with_

→˓nulls.csv"
)

318 Chapter 4. Data cleansing and validation

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://en.wikipedia.org/wiki/Discretization_of_continuous_features
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html
https://www.statsmodels.org/stable/index.html


Python for Data Science, Release 24.1.0

2. Check data quality

Display data types with pandas.DataFrame.dtypes:

[3]: hvac.dtypes

[3]: Date object
Time object
TargetTemp float64
ActualTemp int64
System int64
SystemAge float64
BuildingID int64
10 float64
dtype: object

Return dimensions of the DataFrame as a tuple with pandas.DataFrame.shape:

[4]: hvac.shape

[4]: (8000, 8)

Return first n rows with pandas.DataFrame.head:

[5]: hvac.head()

[5]: Date Time TargetTemp ActualTemp System SystemAge BuildingID 10
0 6/1/13 0:00:01 66.0 58 13 20.0 4 NaN
1 6/2/13 1:00:01 NaN 68 3 20.0 17 NaN
2 6/3/13 2:00:01 70.0 73 17 20.0 18 NaN
3 6/4/13 3:00:01 67.0 63 2 NaN 15 NaN
4 6/5/13 4:00:01 68.0 74 16 9.0 3 NaN

3. Attribute the mean value to missing values

For this we use the mean strategy of sklearn.impute.SimpleImputer:

[6]: imp = SimpleImputer(missing_values=np.nan, strategy="mean")

[7]: hvac_numeric = hvac[["TargetTemp", "SystemAge"]]

[8]: imp = imp.fit(hvac_numeric.loc[:10])

For more information on fit, see the Scikit Learn documentation.

fit_transform then transforms the adapted data:

[9]: transformed = imp.fit_transform(hvac_numeric)

[10]: transformed

[10]: array([[66. , 20. ],
[67.50773481, 20. ],
[70. , 20. ],

(continues on next page)

4.1. Overview 319

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dtypes.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.shape.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.head.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn-impute-simpleimputer
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer.fit
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer.fit_transform


Python for Data Science, Release 24.1.0

(continued from previous page)

...,
[67.50773481, 4. ],
[65. , 23. ],
[66. , 21. ]])

[11]: hvac["TargetTemp"], hvac["SystemAge"] = transformed[:, 0], transformed[:, 1]

Now we display the first rows with the changed data records:

[12]: hvac.head()

[12]: Date Time TargetTemp ActualTemp System SystemAge BuildingID 10
0 6/1/13 0:00:01 66.000000 58 13 20.000000 4 NaN
1 6/2/13 1:00:01 67.507735 68 3 20.000000 17 NaN
2 6/3/13 2:00:01 70.000000 73 17 20.000000 18 NaN
3 6/4/13 3:00:01 67.000000 63 2 15.386643 15 NaN
4 6/5/13 4:00:01 68.000000 74 16 9.000000 3 NaN

4. Scale

To standardise data sets that look like standard normally distributed data, we can use sklearn.preprocessing.scale. This
can be used to determine the factors by which a value increases or decreases. We can use this to scale the current
temperature.

[13]: hvac["ScaledTemp"] = preprocessing.scale(hvac["ActualTemp"])

[14]: hvac["ScaledTemp"].head()

[14]: 0 -1.293272
1 0.048732
2 0.719733
3 -0.622270
4 0.853934
Name: ScaledTemp, dtype: float64

sklearn.preprocessing.MinMaxScaler scales the terms so that they lie between a certain minimum and maximum value,
often between zero and one. This has the advantage of making the scaling more robust to very small standard deviations
of features.

[15]: min_max_scaler = preprocessing.MinMaxScaler()

[16]: temp_minmax = min_max_scaler.fit_transform(hvac[["ActualTemp"]])

[17]: temp_minmax

[17]: array([[0.12],
[0.52],
[0.72],
...,
[0.56],
[0.32],
[0.44]])

320 Chapter 4. Data cleansing and validation

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


Python for Data Science, Release 24.1.0

Now we also add temp_minmax as a new column:

[18]: hvac["MinMaxScaledTemp"] = temp_minmax[:,0]
hvac["MinMaxScaledTemp"].head()

[18]: 0 0.12
1 0.52
2 0.72
3 0.32
4 0.76
Name: MinMaxScaledTemp, dtype: float64

[19]: hvac.head()

[19]: Date Time TargetTemp ActualTemp System SystemAge BuildingID 10 \
0 6/1/13 0:00:01 66.000000 58 13 20.000000 4 NaN
1 6/2/13 1:00:01 67.507735 68 3 20.000000 17 NaN
2 6/3/13 2:00:01 70.000000 73 17 20.000000 18 NaN
3 6/4/13 3:00:01 67.000000 63 2 15.386643 15 NaN
4 6/5/13 4:00:01 68.000000 74 16 9.000000 3 NaN

ScaledTemp MinMaxScaledTemp
0 -1.293272 0.12
1 0.048732 0.52
2 0.719733 0.72
3 -0.622270 0.32
4 0.853934 0.76

4.1.10 Assigning satellite data to geo-locations

Example: Tracking the International Space Station with Dask

In this notebook we will use two APIs:

1. Google Maps Geocoder

2. Open Notify API for ISS location

We will use them to track ISS location and next transit time with respect to a list of cities. To create our charts and
parallelise data intelligently, we will use Dask, specifically Dask Delayed.

1. Imports

[1]: import logging
import sys

from datetime import datetime
from math import radians
from operator import itemgetter
from time import sleep

import numpy as np
import requests

(continues on next page)

4.1. Overview 321

https://developers.google.com/maps/documentation/geocoding/overview
http://api.open-notify.org/


Python for Data Science, Release 24.1.0

(continued from previous page)

from dask import delayed
from sklearn.metrics import DistanceMetric

2. Logger

[2]: logger = logging.getLogger()
logger.setLevel(logging.INFO)

3. Latitude and longitude pairs from a list of cities

See also
• Location APIs

[3]: def get_lat_long(address):
resp = requests.get(

"https://eu1.locationiq.org/v1/search.php",
params={"key": "92e7ba84cf3465", "q": address, "format": "json"},

)
if resp.status_code != 200:

print("There was a problem with your request!")
print(resp.content)
return

data = resp.json()[0]
return {

"name": data.get("display_name"),
"lat": float(data.get("lat")),
"long": float(data.get("lon")),

}

[4]: get_lat_long("Berlin, Germany")

[4]: {'name': 'Berlin, 10117, Germany', 'lat': 52.5170365, 'long': 13.3888599}

[5]: locations = []
for city in [

"Seattle, Washington",
"Miami, Florida",
"Berlin, Germany",
"Singapore",
"Wellington, New Zealand",
"Beirut, Lebanon",
"Beijing, China",
"Nairobi, Kenya",
"Cape Town, South Africa",
"Buenos Aires, Argentina",

]:
locations.append(get_lat_long(city))
sleep(2)

322 Chapter 4. Data cleansing and validation

https://locationiq.com/


Python for Data Science, Release 24.1.0

[6]: locations

[6]: [{'name': 'Seattle, King County, Washington, USA',
'lat': 47.6038321,
'long': -122.3300624},

{'name': 'Miami, Miami-Dade County, Florida, USA',
'lat': 25.7741728,
'long': -80.19362},

{'name': 'Berlin, 10117, Germany', 'lat': 52.5170365, 'long': 13.3888599},
{'name': 'Singapore', 'lat': 1.357107, 'long': 103.8194992},
{'name': 'Wellington, Wellington City, Wellington, 6011, New Zealand',
'lat': -41.2887953,
'long': 174.7772114},

{'name': 'Beirut, Beirut Governorate, Lebanon',
'lat': 33.8959203,
'long': 35.47843},

{'name': 'Beijing, Dongcheng District, Beijing, 100010, China',
'lat': 39.906217,
'long': 116.3912757},
{'name': 'Nairobi, Kenya', 'lat': -1.2832533, 'long': 36.8172449},
{'name': 'Cape Town, City of Cape Town, Western Cape, 8001, South Africa',
'lat': -33.928992,
'long': 18.417396},
{'name': 'Autonomous City of Buenos Aires, Comuna 6, Autonomous City of Buenos Aires,␣
→˓Argentina',
'lat': -34.6075682,
'long': -58.4370894}]

4. Retrieve ISS data and determine transit times of cities

[7]: def get_spaceship_location():
resp = requests.get("http://api.open-notify.org/iss-now.json")
location = resp.json()["iss_position"]
return {

"lat": float(location.get("latitude")),
"long": float(location.get("longitude")),

}

[8]: def great_circle_dist(lon1, lat1, lon2, lat2):
dist = DistanceMetric.get_metric("haversine")
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])

X = [[lat1, lon1], [lat2, lon2]]
kms = 6367
return (kms * dist.pairwise(X)).max()

[9]: def iss_dist_from_loc(issloc, loc):
distance = great_circle_dist(

issloc.get("long"), issloc.get("lat"), loc.get("long"), loc.get("lat")
)
logging.info("ISS is ~%dkm from %s", int(distance), loc.get("name"))

(continues on next page)

4.1. Overview 323



Python for Data Science, Release 24.1.0

(continued from previous page)

return distance

[10]: def iss_pass_near_loc(loc):
resp = requests.get(

"http://api.open-notify.org/iss-pass.json",
params={"lat": loc.get("lat"), "lon": loc.get("long")},

)
data = resp.json().get("response")[0]
td = datetime.fromtimestamp(data.get("risetime")) - datetime.now()
m, s = divmod(int(td.total_seconds()), 60)
h, m = divmod(m, 60)
logging.info(

"ISS will pass near %s in %02d:%02d:%02d", loc.get("name"), h, m, s
)
return td.total_seconds()

[11]: iss_dist_from_loc(get_spaceship_location(), locations[2])

INFO:root:ISS is ~12639km from Berlin, 10117, Germany

[11]: 12639.759939298825

[12]: iss_pass_near_loc(locations[2])

INFO:root:ISS will pass near Berlin, 10117, Germany in 00:25:14

[12]: 1514.253889

5. Creating a delayed pipeline

[13]: output = []

for loc in locations:
issloc = delayed(get_spaceship_location)()
dist = delayed(iss_dist_from_loc)(issloc, loc)
output.append((loc.get("name"), dist))

closest = delayed(lambda x: sorted(x, key=itemgetter(1))[0])(output)

[14]: closest

[14]: Delayed('lambda-5ab5a78f-cb72-4168-bce1-f9983fdb8a2e')

324 Chapter 4. Data cleansing and validation



Python for Data Science, Release 24.1.0

6. Show DAG

[15]: closest.visualize()

[15]:

7. compute()

[16]: closest.compute()

INFO:root:ISS is ~4685km from Miami, Miami-Dade County, Florida, USA
INFO:root:ISS is ~15205km from Beirut, Beirut Governorate, Lebanon
INFO:root:ISS is ~5919km from Seattle, King County, Washington, USA
INFO:root:ISS is ~6279km from Autonomous City of Buenos Aires, Comuna 6, Autonomous City␣
→˓of Buenos Aires, Argentina
INFO:root:ISS is ~12625km from Berlin, 10117, Germany
INFO:root:ISS is ~13137km from Cape Town, City of Cape Town, Western Cape, 8001, South␣
→˓Africa
INFO:root:ISS is ~16194km from Singapore
INFO:root:ISS is ~16298km from Nairobi, Kenya
INFO:root:ISS is ~13905km from Beijing, Dongcheng District, Beijing, 100010, China
INFO:root:ISS is ~8405km from Wellington, Wellington City, Wellington, 6011, New Zealand

[16]: ('Miami, Miami-Dade County, Florida, USA', 4685.887400314564)

4.1. Overview 325



Python for Data Science, Release 24.1.0

326 Chapter 4. Data cleansing and validation



CHAPTER

FIVE

VISUALISE DATA

We have outsourced the visualisation of data to a separate tutorial: PyViz Tutorial.

327

https://pyviz-tutorial.readthedocs.io/de/latest/index.html


Python for Data Science, Release 24.1.0

328 Chapter 5. Visualise data



CHAPTER

SIX

PERFORMANCE

Python can be used to write and test code quickly because it is an interpreted language that types dynamically. However,
these are also the reasons it is slow when performing simple tasks repeatedly, for example in loops.

When developing code, there can often be trade-offs between different implementations. However, at the beginning of
the development of an algorithm, it is usually counterproductive to worry about the efficiency of the code.

«We should forget about small efficiencies, say about 97% of the time: premature optimization is the root
of all evil. Yet we should not pass up our opportunities in that critical 3%.»1

6.1 k-Means example

In the following, I show examples of the k-means algorithm to form a previously known number of groups from a set
of objects. This can be achieved in the following three steps:

1. Choose the first k elements as cluster centres

2. Assign each new element to the cluster with the least increase in variance.

3. Update the cluster centre

Steps 2 and 3 are repeated until the assignments no longer change.

A possible implementation with pure Python could look like this:

Listing 1: py_kmeans.py

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

def dist(x, y):
"""Calculate the distance"""
return sum((xi - yi) ** 2 for xi, yi in zip(x, y))

def find_labels(points, centers):
"""Assign points to a cluster."""
labels = []
for point in points:

distances = [dist(point, center) for center in centers]
(continues on next page)

1 Donald Knuth, founder of Literate Programming, in Computer Programming as an Art (1974)

329

https://en.wikipedia.org/wiki/K-means_clustering
http://www.literateprogramming.com/


Python for Data Science, Release 24.1.0

(continued from previous page)

labels.append(distances.index(min(distances)))
return labels

def compute_centers(points, labels):
"""Calculate the cluster centres."""
n_centers = len(set(labels))
n_dims = len(points[0])

centers = [[0 for i in range(n_dims)] for j in range(n_centers)]
counts = [0 for j in range(n_centers)]

for label, point in zip(labels, points):
counts[label] += 1
centers[label] = [a + b for a, b in zip(centers[label], point)]

return [[x / count for x in center] for center, count in zip(centers, counts)]

def kmeans(points, n_clusters):
"""Calculates the cluster centres repeatedly until nothing changes."""
centers = points[-n_clusters:].tolist()
while True:

old_centers = centers
labels = find_labels(points, centers)
centers = compute_centers(points, labels)
if centers == old_centers:

break
return labels

We can create sample data with:

from sklearn.datasets import make_blobs

points, labels_true = make_blobs(
n_samples=1000, centers=3, random_state=0, cluster_std=0.60

)

And finally, we can perform the calculation with:

kmeans(points, 10)

330 Chapter 6. Performance



Python for Data Science, Release 24.1.0

6.2 Performance measurements

Once you have worked with your code, it can be useful to examine its efficiency more closely. The iPython Profiler or
scalene can be used for this.

See also:
• airspeed velocity (asv) is a tool for benchmarking Python packages during their lifetime. Runtime, memory

consumption and even user-defined values can be recorded and displayed in an interactive web frontend.

• Python Speed Center

• Tracing the Python GIL

6.2.1 iPython Profiler

IPython provides access to a wide range of functions to measure times and create profiles. The following magic IPython
commands are explained here:

Command Description
%time Time to execute a single statement
%timeit Average time it took to execute a single statement repeatedly
%prun Run code with the profiler
%lprun Run code with the line-by-line profiler
%memit Measure the memory usage of a single statement
%mprun Executes the code with the line-by-line memory profiler

The last four commands are not contained in IPython itself, but in the modules line_profiler and memory_profiler.

See also
• Penn Machine Learning Benchmarks

%timeit and %time

We saw the %timeit line and %%timeit cell magic in the introduction of the magic functions in IPython magic
commands. They can be used to measure the timing of the repeated execution of code snippets:

[1]: %timeit sum(range(100))

321 ns ± 1.6 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

Note that %timeit executes the execution multiple times in a loop. If the number of loops is not specified with -n,
%timeit automatically adjusts the number so that sufficient measurement accuracy is achieved:

[2]: %%timeit
total = 0
for i in range(1000):

for j in range(1000):
total += i * (-1) ** j

99.1 ms ± 310 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

6.2. Performance measurements 331

https://asv.readthedocs.io/en/stable/
https://speed.python.org/
https://www.maartenbreddels.com/perf/jupyter/python/tracing/gil/2021/01/14/Tracing-the-Python-GIL.html
https://github.com/pyutils/line_profiler
https://github.com/pythonprofilers/memory_profiler
https://github.com/EpistasisLab/pmlb


Python for Data Science, Release 24.1.0

Sometimes repeating an operation is not the best option, for example when we have a list that we want to sort. Here we
may be misled by repeated surgery. Sorting a presorted list is much faster than sorting an unsorted list, so repeating it
distorts the result:

[3]: import random

L = [random.random() for i in range(100000)]
%timeit L.sort()

205 µs ± 4.34 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Then the %time function might be a better choice. %time should also be the better choice for long-running commands,
when short system-related delays are unlikely to affect the result:

[4]: import random

L = [random.random() for i in range(100000)]
%time L.sort()

CPU times: user 10.4 ms, sys: 302 µs, total: 10.7 ms
Wall time: 10.6 ms

Sorting an already sorted list:

[5]: %time L.sort()

CPU times: user 373 µs, sys: 5 µs, total: 378 µs
Wall time: 379 µs

Note how much faster the pre-sorted list is to be sorted, but also note how much longer the timing with %time takes
compared to %timeit, even for the pre-sorted list. This is due to the fact that %timeit is doing some clever things to
keep system calls from interfering with the timing. This prevents, for example, the garbage collection of Python objects
that are no longer used and that could otherwise affect the time measurement. Because of this, the %timeit results are
usually noticeably faster than the %time results.

Profiling for scripts: %prun

A program is made up of many individual instructions, and sometimes it is more important to measure those instructions
in context than to measure them yourself. Python includes a built-in Code-Profiler. However, IPython offers a much
more convenient way to use this profiler in the form of the magic function %prun.

As an example, let’s define a simple function that does some calculations:

[6]: def sum_of_lists(N):
total = 0
for i in range(5):

L = [j ^ (j >> i) for j in range(N)]
total += sum(L)

return total

[7]: %prun sum_of_lists(1000000)

332 Chapter 6. Performance

https://docs.python.org/3/library/profile.html


Python for Data Science, Release 24.1.0

In the notebook the output looks something like this:

14 function calls in 9.597 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
5 8.121 1.624 8.121 1.624 <ipython-input-15-f105717832a2>:4(

→˓<listcomp>)
5 0.747 0.149 0.747 0.149 {built-in method builtins.sum}
1 0.665 0.665 9.533 9.533 <ipython-input-15-f105717832a2>:1(sum_of_

→˓lists)
1 0.065 0.065 9.597 9.597 <string>:1(<module>)
1 0.000 0.000 9.597 9.597 {built-in method builtins.exec}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'␣

→˓objects}

The result is a table that shows the execution time for each function call, sorted by total time. In this case, most of the
time is consumed with list comprehension within sum_of_lists. This gives us clues as to where we could improve
the efficiency of the algorithm.

Profiling line by line: %lprun

Profiling with %prun is useful, but sometimes a line-by-line profile report is more insightful. This isn’t built into Python
or IPython, but there is a package available, line_profiler, that enables this. This can be provided in your kernel with

$ spack env activate python-374
$ spack install py-line-profiler ^python@3.7.4%gcc@9.1.0

Alternatively, you can install line-profiler with other package managers, for example

$ pipenv install line_profiler

Now you can load IPython with the line_profiler extension:

[8]: %load_ext line_profiler

The %lprun command profiles each function line by line. In this case, you must explicitly specify which functions are
of interest for creating the profile:

[9]: %lprun -f sum_of_lists sum_of_lists(5000)

The result looks something like this:

Timer unit: 1e-06 s

Total time: 0.015145 s
File: <ipython-input-6-f105717832a2>
Function: sum_of_lists at line 1

Line # Hits Time Per Hit % Time Line Contents
==============================================================

1 def sum_of_lists(N):
2 1 1.0 1.0 0.0 total = 0

(continues on next page)

6.2. Performance measurements 333

https://github.com/rkern/line_profiler


Python for Data Science, Release 24.1.0

(continued from previous page)

3 6 11.0 1.8 0.1 for i in range(5):
4 5 14804.0 2960.8 97.7 L = [j ^ (j >> i) for j in␣

→˓range(N)]
5 5 329.0 65.8 2.2 total += sum(L)
6 1 0.0 0.0 0.0 return total

The time is given in microseconds and we can see which line the function spends most of its time on. We may then be
able to modify the script in such a way that the efficiency of the function can be increased.

More information about %lprun and the available options can be found in the IPython help function %lprun?.

Create a storage profile: %memit and %mprun

Another aspect of profiling is the amount of memory that an operation uses. This can be evaluated with another IPython
extension, the memory_profiler. This can be provided in your kernel with

$ spack env activate python-311
$ spack install py-memory-profiler

Alternatively you can install memory-profiler with other package managers, for example

$ pipenv install memory_profiler

[10]: %load_ext memory_profiler

[11]: %memit sum_of_lists(1000000)

peak memory: 176.50 MiB, increment: 76.33 MiB

We see that this feature occupies approximately 100 MB of memory.

For a line-by-line description of memory usage, we can use the %mprun magic. Unfortunately, this magic only works
for functions that are defined in separate modules and not for the notebook itself. So we first use the %%file magic to
create a simple module called mprun_demo.py that contains our sum_of_lists function.

[12]: %%file mprun_demo.py
from memory_profiler import profile

@profile
def my_func():

a = [1] * (10 ** 6)
b = [2] * (2 * 10 ** 7)
del b
return a

Writing mprun_demo.py

[13]: from mprun_demo import my_func
%mprun -f my_func my_func()

Filename: /Users/veit/cusy/trn/Python4DataScience/docs/performance/mprun_demo.py

Line # Mem usage Increment Occurrences Line Contents
(continues on next page)

334 Chapter 6. Performance



Python for Data Science, Release 24.1.0

(continued from previous page)

=============================================================
3 123.8 MiB 123.8 MiB 1 @profile
4 def my_func():
5 131.5 MiB 7.7 MiB 1 a = [1] * (10 ** 6)
6 284.1 MiB 152.6 MiB 1 b = [2] * (2 * 10 ** 7)
7 284.1 MiB 0.0 MiB 1 del b
8 284.1 MiB 0.0 MiB 1 return a

Here the Increment column shows how much each row affects the total memory consumption: Note that when we
calculate b we need about 160 MB of additional memory; however, this is not released again by deleting b.

More information about %memit, %mprun and their options can be found in the IPython help with %memit?.

pyheatmagic

pyheatmagic is an extension that allows the IPython magic command %%heat to display Python code as a heatmap with
Py-Heat.

It can be easily installed in the kernel with

$ pipenv install py-heat-magic Installing py-heat-magic... ...

Loading the extension in IPython

[14]: %load_ext heat

Display the heat map

[15]: %%heat

def powfun(a, b):
"""Method to raise a to power b using pow() function."""
return pow(a, b)

def powop(a, b):
"""Method to raise a to power b using ** operator."""
return a**b

def powmodexp(a, b):
"""Method to raise a to power b using modular exponentiation."""
base = a
res = 1
while b > 0:

if b & 1:
(continues on next page)

6.2. Performance measurements 335

https://github.com/csurfer/pyheatmagic
https://github.com/csurfer/pyheat


Python for Data Science, Release 24.1.0

(continued from previous page)

res *= base
base *= base
b >>= 1

return res

def main():
"""Test function."""
a, b = 2377757, 773
pow_function = powfun(a, b)
pow_operator = powop(a, b)
pow_modular_exponentiation = powmodexp(a, b)

if __name__ == "__main__":
main()

336 Chapter 6. Performance



Python for Data Science, Release 24.1.0

Alternatively, the heatmap can also be saved as a file, for example with

%%heat -o pow-heatmap.png

6.2.2 scalene

scalene creates profiles for CPU and memory very quickly. The overhead is usually very low at 10–20%.

See also
• GitHub

• PyPI

• scalene-paper.pdf

Installation

Linux, MacOS and WSL:

$ pipenv install scalene

Use

1. An example programme for profiling

[1]: import numpy as np

def profile_me():
for i in range(6):

x = np.array(range(10**7))
y = np.array(np.random.uniform(0, 100, size=(10**8)))

2. Load scalene

[2]: %load_ext scalene

Scalene extension successfully loaded. Note: Scalene currently only
supports CPU+GPU profiling inside Jupyter notebooks. For full Scalene
profiling, use the command line version.

NOTE: in Jupyter notebook on MacOS, Scalene cannot profile child
processes. Do not run to try Scalene with multiprocessing in Jupyter
Notebook.

3. Profile with only one line of code

[ ]: %scrun profile_me()
import numpy as np

def profile_me():
(continues on next page)

6.2. Performance measurements 337

https://github.com/emeryberger/Scalene
https://pypi.org/project/scalene/
https://github.com/plasma-umass/scalene/blob/master/docs/scalene-paper.pdf


Python for Data Science, Release 24.1.0

(continued from previous page)

for i in range(6):
x = np.array(range(10**7))
y = np.array(np.random.uniform(0, 100, size=(10**8)))

Create a reduced profile (only rows with non-zero counts)

[ ]: %scrun --reduced-profile profile_me()
import numpy as np

def profile_me():
for i in range(6):

x = np.array(range(10**7))
y = np.array(np.random.uniform(0, 100, size=(10**8)))

For a complete list of options, contact:

[5]: %scrun --help

usage: scalene [-h] [--version] [--column-width COLUMN_WIDTH]
[--outfile OUTFILE] [--html] [--json] [--cli] [--stacks]
[--web] [--viewer] [--reduced-profile]
[--profile-interval PROFILE_INTERVAL] [--cpu] [--cpu-only]
[--gpu] [--memory] [--profile-all]
[--profile-only PROFILE_ONLY]
[--profile-exclude PROFILE_EXCLUDE] [--use-virtual-time]
[--cpu-percent-threshold CPU_PERCENT_THRESHOLD]
[--cpu-sampling-rate CPU_SAMPLING_RATE]
[--allocation-sampling-window ALLOCATION_SAMPLING_WINDOW]
[--malloc-threshold MALLOC_THRESHOLD]
[--program-path PROGRAM_PATH] [--memory-leak-detector]
[--on | --off]

Scalene: a high-precision CPU and memory profiler, version 1.5.23 (2023.07.26)
]8;id=916670;https://github.com/plasma-umass/scalene\
→˓https://github.com/plasma-umass/scalene]8;;\

command-line:
% scalene [options] your_program.py [--- --your_program_args]

or
% python3 -m scalene [options] your_program.py [--- --your_program_args]

in Jupyter, line mode:
%scrun [options] statement

in Jupyter, cell mode:
%%scalene [options]
your code here

options:
-h, --help show this help message and exit
--version prints the version number for this release of Scalene and exits

(continues on next page)

338 Chapter 6. Performance



Python for Data Science, Release 24.1.0

(continued from previous page)

--column-width COLUMN_WIDTH
Column width for profile output (default: 132)

--outfile OUTFILE file to hold profiler output (default: stdout)
--html output as HTML (default: web)
--json output as JSON (default: web)
--cli forces use of the command-line
--stacks collect stack traces
--web opens a web tab to view the profile (saved as 'profile.html')
--viewer only opens the web UI (https://plasma-umass.org/scalene-gui/)
--reduced-profile generate a reduced profile, with non-zero lines only (default:␣

→˓False)
--profile-interval PROFILE_INTERVAL

output profiles every so many seconds (default: inf)
--cpu profile CPU time (default: True )
--cpu-only profile CPU time (deprecated: use --cpu )
--gpu profile GPU time and memory (default: False )
--memory profile memory (default: True )
--profile-all profile all executed code, not just the target program (default:␣

→˓only the target program)
--profile-only PROFILE_ONLY

profile only code in filenames that contain the given strings,␣
→˓separated by commas
(default: no restrictions)

--profile-exclude PROFILE_EXCLUDE
do not profile code in filenames that contain the given strings,␣

→˓separated by commas
(default: no restrictions)
--use-virtual-time measure only CPU time, not time spent in I/O or blocking␣

→˓(default: False)
--cpu-percent-threshold CPU_PERCENT_THRESHOLD

only report profiles with at least this percent of CPU time␣
→˓(default: 1%)
--cpu-sampling-rate CPU_SAMPLING_RATE

CPU sampling rate (default: every 0.01s)
--allocation-sampling-window ALLOCATION_SAMPLING_WINDOW

Allocation sampling window size, in bytes (default: 10485767␣
→˓bytes)
--malloc-threshold MALLOC_THRESHOLD

only report profiles with at least this many allocations␣
→˓(default: 100)
--program-path PROGRAM_PATH

The directory containing the code to profile (default: the path␣
→˓to the profiled program)
--memory-leak-detector

EXPERIMENTAL: report likely memory leaks (default: True)
--on start with profiling on (default)
--off start with profiling off

When running Scalene in the background, you can suspend/resume profiling
for the process ID that Scalene reports. For example:

% python3 -m scalene yourprogram.py &

(continues on next page)

6.2. Performance measurements 339



Python for Data Science, Release 24.1.0

(continued from previous page)

Scalene now profiling process 12345
to suspend profiling: python3 -m scalene.profile --off --pid 12345
to resume profiling: python3 -m scalene.profile --on --pid 12345

Profile with more than one line of code in a cell

[ ]: %%scalene --reduced-profile
x = 0
for i in range(1000):

for j in range(1000):
x += 1

6.3 Search for existing implementations

You should not try to reinvent the wheel: If there are existing implementations, you should use them. There are even
two implementations for the k-means algorithm:

• sklearn.cluster.KMeans

from sklearn.cluster import KMeans

KMeans(10).fit_predict(points)

• dask_ml.cluster.KMeans

from dask_ml.cluster import KMeans

KMeans(10).fit(points).predict(points)

The best that could be said against these existing solutions is that they could create a considerable overhead in your
project if you are not already using scikit-learn or Dask-ML elsewhere. In the following, I will therefore show you
further possibilities to optimise your own code.

6.4 Find anti-patterns

Then you can use perflint to search your code for the most common performance anti-patterns in Python.

340 Chapter 6. Performance

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://ml.dask.org/modules/generated/dask_ml.cluster.KMeans.html
https://scikit-learn.org/stable/
https://ml.dask.org


Python for Data Science, Release 24.1.0

6.4.1 perflint

perflint is an extension for pylint for performance anti-patterns, among others:

W8101: unnecessary-list-cast
Unnecessary use of list() on an already iterable type.

W8102: incorrect-dictionary-iterator
Incorrect iterator method for dict: Python dictionaries store keys and values in two separate tables. They can
be iterated separately. Using .items() and discarding either the key or the value with _ is inefficient when
.keys() or .values() can be used instead.

W8201: loop-invariant-statement
The loop is examined to determine statements or expressions whose result is constant on each iteration of a loop
because they are based on named variables that are not changed during the iteration.

W8202: loop-global-usage
Global name usage in a loop: loading global variables is slower than loading local variables. The difference is
marginal, but when passed in a loop, there can be a noticeable speed improvement.

R8203: loop-try-except-usage
Up until Python 3.10, try. . .except blocks are very computationally intensive compared to if statements.

Avoid using them in a loop as they can cause significant overhead. Refactor your code so that no iteration-specific
details are required and put the entire loop in the try block.

W8204: memoryview-over-bytes
Slicing byte objects in loops is inefficient because it creates a copy of the data. Use memoryview() instead.

See also:
• Zero-copy interactions

• Memoryview Benchmarks

• Memoryview Benchmarks 2

W8205: dotted-import-in-loop
Direct import of the name %s is more efficient in a loop. In Python, you can import a module and then access
submodules as attributes. You can also access functions as attributes of that module. This keeps the import
statements to a minimum. However, if you use this method in a loop, it is inefficient because each loop pass
loads the global, then the attribute, then the method.

W8301: use-tuple-over-list
Use a tuple instead of a list for an immutable sequence: both the construction and indexing of a tuple is faster
than that of a list.

W8401: use-list-comprehension
Use list comprehensions with or without an if statement instead of a for loop.

W8402: use-list-copy
Use list.copy() instead of a for loop.

W8403: use-dict-comprehension
Uses a dictionary comprehension instead of a simple for loop.

See also:
• Effective Python

6.4. Find anti-patterns 341

https://github.com/tonybaloney/perflint
https://pylint.org/
https://effectivepython.com/2019/10/22/memoryview-bytearray-zero-copy-interactions
https://jakevdp.github.io/blog/2012/08/08/memoryview-benchmarks/
https://jakevdp.github.io/blog/2012/08/16/memoryview-benchmarks-2/
https://effectivepython.com


Python for Data Science, Release 24.1.0

6.5 Vectorisations with NumPy

NumPy moves repetitive operations into a statically typed compiled layer, combining the fast development time of
Python with the fast execution time of C. You may be able to use Universal functions (ufunc), vectorisation and Indexing
and slicing in all combinations to move repetitive operations into compiled code to avoid slow loops.

With NumPy we can do without some loops:

Listing 2: np_kmeans.py

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np

def find_labels(points, centers):

The advantages of NumPy are that the Python overhead only occurs per array and not per array element. However,
because NumPy uses a specific language for array operations, it also requires a different mindset when writing code.
Finally, the batch operations can also lead to excessive memory consumption.

6.6 Special data structures

pandas

for SQL-like Group operations and
Aggregation.

This way you can also bypass the loop in the compute_centers method:

Listing 3: pd_kmeans.py

#
# SPDX-License-Identifier: BSD-3-Clause

diff = points[:, None, :] - centers
distances = (diff**2).sum(-1)
return distances.argmin(1)

scipy.spatial
for spatial queries like distances, nearest neighbours, k-Means etc (et cetera).

Our find_labels method can then be written more specifically:

Listing 4: sp_kmeans.py

import pandas as pd
from scipy.spatial import cKDTree

342 Chapter 6. Performance

https://docs.scipy.org/doc/scipy/reference/spatial.html


Python for Data Science, Release 24.1.0

scipy.sparse
sparse matrices for 2-dimensional structured data.

Sparse
for N-diemensional structured data.

scipy.sparse.csgraph
for graph-like problems, for example searching for shortest paths.

Xarray
for grouping across multiple dimensions.

6.6.1 Parallelise pandas

In Enhancing performance, some possibilities are described for improving the performance of pandas. However, there
are also special libraries that can parallelise the processing of data frames.

cuDF

cuDF is a GPU DataFrame library that implements a pandas-like API.

See also:
• Docs

• GitHub

• PyPI

• Example notebooks

Modin

Modin parallelises almost the entire Pandas API. In most cases, the existing Pandas code only needs to be extended by
the following import:

import modin.pandas as pd

The restrictions refer to pd.read_json, which is only implemented for lines=True.

See also:
• Docs

• GitHub

Dask

Dask DataFrame is a large parallel DataFrame made up of multiple pandas DataFrames. Here, the dask.dataframe
API is a subset of the pandas API, although there are minor changes.

See also:
• Home

• API docs

• Example notebook

6.6. Special data structures 343

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://en.wikipedia.org/wiki/Sparse_matrix
https://sparse.pydata.org/en/stable/
https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html
https://docs.xarray.dev/en/stable/
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html
https://docs.rapids.ai/api/cudf/stable/
https://docs.rapids.ai/api/cudf/stable/
https://github.com/rapidsai/cudf
https://pypi.org/project/cudf/
https://github.com/rapidsai-community/notebooks-contrib
https://modin.readthedocs.io/en/latest/
https://github.com/modin-project/modin
https://www.python4data.science/en/latest/performance/dask.html#Dask-DataFrame
https://docs.dask.org/en/latest/dataframe.html
https://docs.dask.org/en/latest/dataframe-api.html
https://examples.dask.org/dataframe.html


Python for Data Science, Release 24.1.0

• Tutorial

6.7 Select compiler

6.7.1 Faster Cpython

At PyCon US in May 2021, Guido van Rossum presented Faster CPython, a project that aims to double the speed of
Python 3.11. The cooperation with the other Python core developers is regulated in PEP 659 – Specializing Adaptive
Interpreter. There is also an open issue tracker and various tools for collecting bytecode statistics. CPU-intensive
Python code in particular is likely to benefit from the changes; code already written in C, I/O-heavy processes and
multithreaded code, on the other hand, are unlikely to benefit.

See also:
• Faster CPython

If you don’t want to wait with your project until the release of Python 3.11 in the final version probably on 24 October
2022, you can also have a look at the following Python interpreters:

6.7.2 Cython

For intensive numerical operations, Python can be very slow, even if you have avoided all anti-patterns and used vec-
torisations with NumPy. In this case, translating code into Cython can be helpful. Unfortunately, the code often has
to be restructured and thus increases in complexity. Explicit type annotations and the provision of code also become
more cumbersome.

Our example could then look like this:

Listing 5: cy_kmeans.pyx

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

cimport numpy as np
import numpy as np

cdef double dist(double[:] x, double[:] y):
"""Calculate the distance"""
cdef double dist = 0
for i in range(len(x)):

dist += (x[i] - y[i]) ** 2
return dist

def find_labels(double[:, :] points, double[:, :] centers):
"""Assign points to a cluster."""
cdef int n_points = points.shape[0]
cdef int n_centers = centers.shape[0]
cdef double[:] labels = np.zeros(n_points)
cdef double distance, nearest_distance
cdef int nearest_index

(continues on next page)

344 Chapter 6. Performance

https://tutorial.dask.org/01_dataframe.html
https://github.com/faster-cpython
https://peps.python.org/pep-0659/
https://peps.python.org/pep-0659/
https://github.com/faster-cpython/ideas/issues
https://github.com/faster-cpython/tools
https://web.archive.org/web/20221007175548/https://faster-cpython.readthedocs.io/
https://cython.org


Python for Data Science, Release 24.1.0

(continued from previous page)

for i in range(n_points):
nearest_distance = np.inf
for j in range(n_centers):

distance = dist(points[i], centers[j])
if distance < nearest_distance:

See also:
• Cython Tutorials

6.7.3 Numba

Numba is a JIT compiler that translates mainly scientific Python and NumPy code into fast machine code, for example:

Listing 6: nb_kmeans.py

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

import numba

@numba.jit(nopython=True)
def dist(x, y):

"""Calculate the distance"""
dist = 0
for i in range(len(x)):

dist += (x[i] - y[i]) ** 2
return dist

@numba.jit(nopython=True)
def find_labels(points, centers):

"""Assign points to a cluster."""
labels = []
min_dist = np.inf
min_label = 0
for i in range(len(points)):

for j in range(len(centers)):
distance = dist(points[i], centers[j])

However, Numba requires LLVM and some Python constructs are not supported.

6.7. Select compiler 345

https://cython.readthedocs.io/en/latest/src/tutorial/
http://numba.pydata.org/
https://en.wikipedia.org/wiki/LLVM


Python for Data Science, Release 24.1.0

6.8 Task planner

ipyparallel, Dask and Ray can distribute tasks in a cluster. In doing so, they have different focuses:

• ipyparallel simply integrates into a JupyterHub.

• Dask imitates pandas, NumPy iterators, Toolz und PySpark when it distributes their tasks.

• Ray provides a simple, universal API for building distributed applications.

– RLlib will scale reinforcement learning in particular.

– A backend for joblib supports distributed scikit-learn programs.

– XGBoost-Ray is a backend for distributed XGBoost.

– LightGBM-Ray is a backend for distributed LightGBM.

– Collective Communication Lib offers a set of native collective primitives for Gloo and the NVIDIA Col-
lective Communication Library (NCCL).

Our example could look like this with Dask:

Listing 7: ds_kmeans.py

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from dask import array as da
from dask import dataframe as dd

def find_labels(points, centers):
"""Assign points to a cluster."""
diff = points[:, None, :] - centers
distances = (diff**2).sum(-1)
return distances.argmin(1)

def compute_centers(points, labels):
"""Calculate the cluster centres."""
points_df = dd.from_dask_array(points)
labels_df = dd.from_dask_array(labels)
return points_df.groupby(labels_df).mean()

def kmeans(points, n_clusters):
"""Calculates the cluster centres repeatedly until nothing changes."""
centers = points[-n_clusters:]
points = da.from_array(points, 1000)
while True:

old_centers = centers
labels = find_labels(points, da.from_array(centers, 5))
centers = compute_centers(points, labels)
centers = centers.compute().values

(continues on next page)

346 Chapter 6. Performance

https://jupyter-tutorial.readthedocs.io/en/latest/hub/ipyparallel/index.html
https://docs.ray.io/
https://jupyter-tutorial.readthedocs.io/en/latest/hub/index.html
https://docs.ray.io/en/latest/rllib/index.html
https://docs.ray.io/en/latest/ray-more-libs/joblib.html
https://scikit-learn.org/stable/
https://docs.ray.io/en/latest/train/examples/xgboost/xgboost_example.html
https://xgboost.readthedocs.io/en/latest/
https://docs.ray.io/en/latest/tune/examples/lightgbm_example.html
https://lightgbm.readthedocs.io/en/latest/
https://docs.ray.io/en/latest/ray-more-libs/ray-collective.html
https://github.com/facebookincubator/gloo
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html


Python for Data Science, Release 24.1.0

(continued from previous page)

if np.all(centers == old_centers):
break

return labels.compute()

6.8.1 Dask

Dask performs two different tasks: 1. it optimizes dynamic task scheduling, similar to Airflow, Luigi or Celery. 2. it
performs parallel data like arrays, dataframes, and lists with dynamic task scheduling.

Scales from laptops to clusters

Dask can be easily installed on a laptop with pipenv and expands the size of the datasets from fits in memory to fits on
disk. Dask can also scale to a cluster of hundreds of machines. It is resilient, elastic, data-local and has low latency.
For more information, see the distributed scheduler documentation. This simple transition between a single machine
and a cluster allows users to both start easily and grow as needed.

Install Dask

You can install everything that is required for most common applications of Dask (arrays, dataframes, . . . ). This installs
both Dask and dependencies such as NumPy, Pandas, etc. that are required for various workloads:

$ pipenv install "dask[complete]"

However, only individual subsets can be installed with:

$ pipenv install "dask[array]"
$ pipenv install "dask[dataframe]"
$ pipenv install "dask[diagnostics]"
$ pipenv install "dask[distributed]"

Testing the installation

[1]: !pytest /Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/dask/tests /Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/
→˓python3.11/site-packages/dask/array/tests

============================= test session starts ==============================
platform darwin -- Python 3.11.4, pytest-7.4.0, pluggy-1.2.0
rootdir: /Users/veit
collected 5030 items / 18 skipped
../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/
→˓dask/tests/test_backends.py . [ 0%]
plugins: hypothesis-6.82.0, cov-4.1.0, anyio-3.7.1, typeguard-2.13.3
../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/
→˓dask/tests/test_base.py . [ 0%]
...
../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/
→˓dask/array/tests/test_xarray.py . [ 99%]
s [ 0%]

(continues on next page)

6.8. Task planner 347

https://airflow.apache.org/
https://github.com/spotify/luigi
https://docs.celeryproject.org/
https://distributed.dask.org/en/latest/


Python for Data Science, Release 24.1.0

(continued from previous page)

.... [100%]

=================================== FAILURES ===================================
__________________________ test_solve_assume_a[20-10] __________________________
...
E Failed: DID NOT RAISE <class 'FutureWarning'>

/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/
→˓dask/array/tests/test_linalg.py:809: Failed
__________________________ test_solve_assume_a[30-6] ___________________________
...
E Failed: DID NOT RAISE <class 'DeprecationWarning'>

/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/
→˓dask/array/tests/test_random.py:202: Failed
=============================== warnings summary ===============================
...
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
FAILED ../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/dask/array/tests/test_linalg.py::test_solve_assume_a[20-10] - Failed: DID NOT␣
→˓RAISE <class 'FutureWarning'>
FAILED ../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/dask/array/tests/test_linalg.py::test_solve_assume_a[30-6] - Failed: DID NOT␣
→˓RAISE <class 'FutureWarning'>
FAILED ../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/dask/array/tests/test_random.py::test_RandomState_only_funcs - Failed: DID␣
→˓NOT RAISE <class 'DeprecationWarning'>
= 3 failed, 4543 passed, 487 skipped, 15 xfailed, 34 warnings in 60.13s (0:01:00) =

Familiar operation

Dask DataFrame

. . . imitates Pandas

[2]: import pandas as pd

df = pd.read_csv("2021-09-01.csv")
df.groupby(df.user_id).value.mean()

[3]: import dask.dataframe as dd

dd = pd.read_csv("2021-09-01.csv")
dd.groupby(dd.user_id).value.mean()

See also
• Dask DataFrame Docs

348 Chapter 6. Performance

https://docs.dask.org/en/latest/dataframe.html


Python for Data Science, Release 24.1.0

• Dask DataFrame Best Practices

Dask Array

. . . imitates NumPy

[4]: import numpy as np

f = h5py.File("mydata.h5")
x = np.array(f["."])

[5]: import dask.array as da

f = h5py.File("mydata.h5")
x = da.array(f["."])

See also
• Dask Array Docs

• Dask Array Best Practices

Dask Bag

. . . imitates iterators, Toolz und PySpark.

[6]: import json

import dask.bag as db

b = db.read_text("2021-09-01.csv").map(json.loads)
b.pluck("user_id").frequencies().topk(10, lambda pair: pair[1]).compute()

See also
• Dask Bag Docs

Dask Delayed

. . . imitates loops and wraps custom code

[7]: from dask import delayed

L = []
for fn in "2021-*-*.csv": # Use for loops to build up computation

data = delayed(load)(fn) # Delay execution of function
L.append(delayed(process)(data)) # Build connections between variables

(continues on next page)

6.8. Task planner 349

https://docs.dask.org/en/latest/dataframe-best-practices.html
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/array-best-practices.html
https://docs.python.org/3/library/itertools.html
https://toolz.readthedocs.io/en/latest/index.html
http://spark.apache.org/docs/latest/api/python/
https://docs.dask.org/en/latest/bag.html


Python for Data Science, Release 24.1.0

(continued from previous page)

result = delayed(summarize)(L)
result.compute()

See also
• Dask Delayed Docs

• Dask Delayed Best Practices

• Dask pipeline example: Tracking the International Space Station with Dask

The concurrent.futures interface enables the submission of user-defined tasks.

Note
For the following example, Dask must be installed with the distributed option, e.g.

$ pipenv install dask[distributed]

[8]: from dask.distributed import Client

client = Client("scheduler:port")

futures = []
for fn in filenames:

future = client.submit(load, fn)
futures.append(future)

summary = client.submit(summarize, futures)
summary.result()

See also
• Dask Futures Docs

• Dask Futures Quickstart

• Dask Futures Examples

6.9 Multithreading, Multiprocessing and Async

After a brief overview, three examples of threading, multiprocessing and async illustrate the rules and best practices.

350 Chapter 6. Performance

https://docs.dask.org/en/latest/delayed.html
https://docs.dask.org/en/latest/delayed-best-practices.html
https://docs.dask.org/en/latest/futures.html
https://distributed.dask.org/en/latest/quickstart.html
https://examples.dask.org/futures.html


Python for Data Science, Release 24.1.0

6.9.1 Introduction to multithreading, multiprocessing and async

Martelli’s model of scalability

Number of cores Description
1 Single thread and single process
2–8 Multiple threads and multiple processes
>8 Distributed processing

Martelli’s observation was that over time the second category becomes less and less important as individual cores
become more powerful and large data sets become larger.

Global Interpreter Lock (GIL)

CPython has a lock on its internally shared global state. As a result, no more than one thread can run at the same time.

The GIL is not a big problem for I/O-heavy applications; however, using threading will slow down CPU-heavy appli-
cations. Accordingly, multi-processing is exciting for us to get more CPU cycles.

Literate programming and Martelli’s model of scalability determined the design decisions on Python’s performance
for a long time. Little has changed in this assessment to this day: Contrary to intuitive expectations, more CPUs and
threads in Python initially lead to less efficient applications. However, the Gilectomy project, which was supposed to
replace the GIL, also encountered another problem: the Python C API exposes too many implementation details. With
this, however, performance improvements would quickly lead to incompatible changes, which then seem unacceptable,
especially in a language as popular as Python.

6.9. Multithreading, Multiprocessing and Async 351

http://www.literateprogramming.com/
https://pythoncapi.readthedocs.io/gilectomy.html


Python for Data Science, Release 24.1.0

Overview

Cri-
te-
rion

Multithreading Multiprocessing asyncio

Sep-
a-
ra-
tion

Threads share one state.
However, sharing a state can lead
to race conditions, i.e. the re-
sult of an operation can depend
on the timing of certain individ-
ual operations.

The processes are independent of
each other.
If they are to communicate with
each other, interprocess communi-
cation (IPC), object pickling and
other overhead is necessary.

With
run_coroutine_threadsafe(),
asyncio objects can also be used
by other threads.
Almost all asyncio objects are not
thread-safe.

SwitchThreads change preemptively,
i.e. no explicit code needs to be
added to cause a change of tasks.
However, such a change is possi-
ble at any time; accordingly, crit-
ical areas must be protected with
lock.

As soon as you get a process as-
signed, significant progress should
be made. So you should not
make too many roundtrips back
and forth.

asyncio switches cooperatively,
i.e. yield or await must be ex-
plicitly specified to cause a switch.
You can therefore keep the effort to
these changes very low.

Tool-
ing

Threads require very little tool-
ing: Lock and Queue.
Locks are difficult to understand
in non-trivial examples. For
complex applications, it is there-
fore better to use atomic message
queues or asyncio.

Simple tooling with map and
imap_unordered among others,
to test individual processes in a
single thread before switching to
multiprocessing.
If IPC or object pickling is used,
the tooling becomes more com-
plex.

At least for complex systems,
asyncio leads to the goal more
easy than multithreading locks.
However asyncio requires a large
set of tools: futures, Event Loops
and non-blocking versions of al-
most everything.

Per-
for-
mance

Multithreading produces the best
results for IO-heavy tasks.
The performance limit for
threads is one CPU minus task
switches and synchronisation
overheads.

The processes can be distributed to
several CPUs and should therefore
be used for CPU-heavy tasks.
However, additional effort may be
required and synchronisation of the
processes.

Calling a poor Python function
takes more overhead than request-
ing a generator or awaitable –
i.e., asyncio can utilise the CPU
efficiently.
For CPU-intensive tasks, however,
multiprocessing is more suitable.

Summary

There is no one ideal implementation of concurrency – each of the approaches presented next has specific advantages
and disadvantages. So before you decide which approach to follow, you should analyse the performance problems
carefully and then choose the most suitable solution. In our projects, we often use several approaches, depending on
the part for which the performance is to be optimised.

352 Chapter 6. Performance

https://docs.python.org/3/library/ipc.html
https://docs.python.org/3/library/ipc.html
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/Computer_multitasking#Preemptive_multitasking
https://en.wikipedia.org/wiki/Computer_multitasking#Cooperative_multitasking
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/reference/expressions.html#await
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/library/queue.html
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool.map
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool.imap_unordered
https://docs.python.org/3/library/asyncio-task.html#awaitables
https://docs.python.org/3/library/asyncio-eventloop.html


Python for Data Science, Release 24.1.0

6.9.2 Threading example

Updating and displaying a counter:

[1]: counter = 0

print("Starting up")
for i in range(10):

counter += 1
print("The count is %d" % counter)

print("Finishing up")

Starting up
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5
The count is 6
The count is 7
The count is 8
The count is 9
The count is 10
Finishing up

Start with code that is clear, simple, and top-down. It’s easy to develop and incrementally testable.

Note
Test and debug your application before you start threading. Threading never makes debugging easier.

Convert to functions

The next step is to create reusable code as a function:

[2]: counter = 0

def worker():
"My job is to increment the counter and print the current count"
global counter

counter += 1
print("The count is %d" % counter)

print("Starting up")
for i in range(10):

worker()
print("Finishing up")

Starting up
The count is 1
The count is 2

(continues on next page)

6.9. Multithreading, Multiprocessing and Async 353



Python for Data Science, Release 24.1.0

(continued from previous page)

The count is 3
The count is 4
The count is 5
The count is 6
The count is 7
The count is 8
The count is 9
The count is 10
Finishing up

Multi-Threading

Now some worker threads can be started:

[3]: import threading

counter = 0

def worker():
"My job is to increment the counter and print the current count"
global counter

counter += 1
print("The count is %d" % counter)

print("Starting up")
for i in range(10):

threading.Thread(target=worker).start()
print("Finishing up")

Starting up
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5
The count is 6
The count is 7
The count is 8
The count is 9
The count is 10
Finishing up

354 Chapter 6. Performance



Python for Data Science, Release 24.1.0

Test

A simple test run leads to the same result.

Detection of race conditions

Note
Tests cannot prove the absence of errors. Many interesting race conditions do not show up in test environments.

Fuzzing

Fuzzing is a technique to improve the detection of race conditions:

[4]: import random
import threading
import time

FUZZ = True

def fuzz():
if FUZZ:

time.sleep(random.random())

counter = 0

def worker():
"My job is to increment the counter and print the current count"
global counter

fuzz()
oldcnt = counter
fuzz()
counter = oldcnt + 1
fuzz()
print("The count is %d" % counter, end="")
fuzz()

print("Starting up")
fuzz()
for i in range(10):

threading.Thread(target=worker).start()
fuzz()

print("Finishing up")
fuzz()

6.9. Multithreading, Multiprocessing and Async 355



Python for Data Science, Release 24.1.0

Starting up
The count is 1The count is 2The count is 2The count is 3The count is 3The count is 3The␣
→˓count is 3Finishing up
The count is 4The count is 4The count is 5

This technique is limited to relatively small blocks of code and is imperfect in that it still cannot prove the absence of
errors. Nevertheless, fuzzed tests can reveal race conditions.

Careful threading with queues

The following rules must be observed:

1. All shared resources should be executed in exactly one thread. All communication with this thread should be
done with only one atomic message queue – usually with the queue module, email or message queues such as
RabbitMQ or ZeroMQ.

Resources that require this technology include global variables, user inputs, output devices, files, sockets, etc.

2. One category of sequencing problems is to ensure that step A is performed before step B. The solution is to run
them both on the same thread, with all the actions happening in sequence.

3. To implement a barrier that waits for all parallel threads to complete, just join all threads with join().

4. You cannot wait for daemon threads to complete (they are infinite loops); instead you should execute join() on
the queue itself, so that the tasks are only merged when all tasks in the queue have been completed.

5. You can use global variables to communicate between functions, but only within a single-threaded program. In
a multi-thread program, however, you cannot use global variables because they are mutable. Then the better
solution is threading.local(), since it is global in a thread, but not beyond.

6. Never try to terminate a thread from the outside: you never know if that thread is holding a lock. Therefore,
Python does not provide a direct thread termination mechanism. However, if you try to do this with ctypes, this
is a recipe for deadlock.

Now, if we apply these rules, our code looks like this:

[5]: import queue
import threading

counter = 0

counter_queue = queue.Queue()

def counter_manager():
"I have EXCLUSIVE rights to update the counter variable"
global counter

while True:
increment = counter_queue.get()
counter += increment
print_queue.put(

[
"The count is %d" % counter,

]
(continues on next page)

356 Chapter 6. Performance

https://docs.python.org/3/library/queue.html
https://www.rabbitmq.com/
http://zeromq.org/


Python for Data Science, Release 24.1.0

(continued from previous page)

)
counter_queue.task_done()

t = threading.Thread(target=counter_manager)
t.daemon = True
t.start()
del t

print_queue = queue.Queue()

def print_manager():
while True:

job = print_queue.get()
for line in job:

print(line)
print_queue.task_done()

t = threading.Thread(target=print_manager)
t.daemon = True
t.start()
del t

def worker():
"My job is to increment the counter and print the current count"
counter_queue.put(1)

print_queue.put(["Starting up"])
worker_threads = []
for i in range(10):

t = threading.Thread(target=worker)
worker_threads.append(t)
t.start()

for t in worker_threads:
t.join()

counter_queue.join()
print_queue.put(["Finishing up"])
print_queue.join()

Starting up
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5
The count is 6
The count is 7

(continues on next page)

6.9. Multithreading, Multiprocessing and Async 357



Python for Data Science, Release 24.1.0

(continued from previous page)

The count is 8
The count is 9
The count is 10
Finishing up

Careful threading with locks

If we thread with locks instead of queues, the code looks even tidier:

[6]: import random
import threading
import time

counter_lock = threading.Lock()
printer_lock = threading.Lock()

counter = 0

def worker():
global counter
with counter_lock:

counter += 1
with printer_lock:

print("The count is %d" % counter)

with printer_lock:
print("Starting up")

worker_threads = []
for i in range(10):

t = threading.Thread(target=worker)
worker_threads.append(t)
t.start()

for t in worker_threads:
t.join()

with printer_lock:
print("Finishing up")

Starting up
The count is 1
The count is 2
The count is 3
The count is 4
The count is 5
The count is 6
The count is 7
The count is 8

(continues on next page)

358 Chapter 6. Performance



Python for Data Science, Release 24.1.0

(continued from previous page)

The count is 9
The count is 10
Finishing up

Finally, a few notes on locks:

1. Locks are just so-called flags, they are not really reliable.

2. In general, locks should be viewed as a primitive tool that is difficult to understand in non-trivial examples. For
more complex applications, it is better to use atomic message queues.

3. The more locks that are set at the same time, the less the benefits of simultaneous processing.

6.9.3 Multi-processing example

We’ll start with code that is clear, simple, and executed top-down. It’s easy to develop and incrementally testable:

[1]: from multiprocessing.pool import ThreadPool as Pool

import requests

sites = [
"https://github.com/veit/jupyter-tutorial/",
"https://jupyter-tutorial.readthedocs.io/en/latest/",
"https://github.com/veit/pyviz-tutorial/",
"https://pyviz-tutorial.readthedocs.io/de/latest/",
"https://cusy.io/en",

]

def sitesize(url):
with requests.get(url) as u:

return url, len(u.content)

pool = Pool(10)
for result in pool.imap_unordered(sitesize, sites):

print(result)

('https://cusy.io/en', 36389)
('https://jupyter-tutorial.readthedocs.io/en/latest/', 40884)
('https://github.com/veit/jupyter-tutorial/', 236862)
('https://github.com/veit/pyviz-tutorial/', 213124)
('https://pyviz-tutorial.readthedocs.io/de/latest/', 32803)

Note
A good development strategy is to use map, to test your code in a single process and thread before moving to multi-
processing.

Note
In order to better assess when ThreadPool and when process Pool should be used, here are some rules of thumb:

6.9. Multithreading, Multiprocessing and Async 359

https://docs.python.org/3/library/functions.html#map


Python for Data Science, Release 24.1.0

• For CPU-heavy jobs, multiprocessing.pool.Pool should be used. Usually we start here with twice the
number of CPU cores for the pool size, but at least 4.

• For I/O-heavy jobs, multiprocessing.pool.ThreadPool should be used. Usually we start here with five
times the number of CPU cores for the pool size.

• If we use Python 3 and do not need an interface identical to pool, we use concurrent.future.Executor instead
of multiprocessing.pool.ThreadPool; it has a simpler interface and was designed for threads from the
start. Since it returns instances of concurrent.futures.Future, it is compatible with many other libraries,
including asyncio.

• For CPU- and I/O-heavy jobs, we prefer multiprocessing.Pool because it provides better process isolation.

[2]: from multiprocessing.pool import ThreadPool as Pool

import requests

sites = [
"https://github.com/veit/jupyter-tutorial/",
"https://jupyter-tutorial.readthedocs.io/en/latest/",
"https://github.com/veit/pyviz-tutorial/",
"https://pyviz-tutorial.readthedocs.io/de/latest/",
"https://cusy.io/en",

]

def sitesize(url):
with requests.get(url) as u:

return url, len(u.content)

for result in map(sitesize, sites):
print(result)

('https://github.com/veit/jupyter-tutorial/', 236862)
('https://jupyter-tutorial.readthedocs.io/en/latest/', 40884)
('https://github.com/veit/pyviz-tutorial/', 213124)
('https://pyviz-tutorial.readthedocs.io/de/latest/', 32803)
('https://cusy.io/en', 36389)

What can be parallelised?

Amdahl’s law

The increase in speed is mainly limited by the sequential part of the problem, since its execution time
cannot be reduced by parallelisation. In addition, parallelisation creates additional costs, such as for com-
munication and synchronisation of the processes.

In our example, the following tasks can only be processed serially:

• UDP DNS request request for the URL

• UDP DNS response

• Socket from the OS

360 Chapter 6. Performance

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor


Python for Data Science, Release 24.1.0

• TCP-Connection

• Sending the HTTP request for the root resource

• Waiting for the TCP response

• Counting characters on the site

[3]: from multiprocessing.pool import ThreadPool as Pool

import requests

sites = [
"https://github.com/veit/jupyter-tutorial/",
"https://jupyter-tutorial.readthedocs.io/en/latest/",
"https://github.com/veit/pyviz-tutorial/",
"https://pyviz-tutorial.readthedocs.io/de/latest/",
"https://cusy.io/en",

]

def sitesize(url):
with requests.get(url, stream=True) as u:

return url, len(u.content)

pool = Pool(4)
for result in pool.imap_unordered(sitesize, sites):

print(result)

('https://github.com/veit/jupyter-tutorial/', 236862)
('https://github.com/veit/pyviz-tutorial/', 213124)
('https://pyviz-tutorial.readthedocs.io/de/latest/', 32803)
('https://jupyter-tutorial.readthedocs.io/en/latest/', 40884)
('https://cusy.io/en', 36389)

Note
imap_unordered is used to improve responsiveness. However, this is only possible because the function returns the
argument and result as a tuple.

Tips

• Don’t make too many trips back and forth

If you get too many iterable results, this is a good indicator of too many trips, such as in

>>> def sitesize(url, start):
... req = urllib.request.Request()
... req.add_header('Range:%d-%d' % (start, start+1000))
... u = urllib.request.urlopen(url, req)
... block = u.read()
... return url, len(block)

• Make relevant progress on every trip

6.9. Multithreading, Multiprocessing and Async 361

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool.imap_unordered


Python for Data Science, Release 24.1.0

Once you get the process, you should make significant progress and not get bogged down. The following example
illustrates intermediate steps that are too small:

>>> def sitesize(url, results):
... with requests.get(url, stream=True) as u:
... while True:
... line = u.iter_lines()
... results.put((url, len(line)))

• Don’t send or receive too much data

The following example unnecessarily increases the amount of data:

>>> def sitesize(url):
... with requests.get(url) as u:
... return url, u.content

6.9.4 Threading and forking combined

Mixing multiprocessing and threading is generally problematic and a recipe for deadlocks.

The following code was entered in 2016 at https://bugs.python.org/issue27422 in the Python bug tracker:

[1]: import multiprocessing
import subprocess
import sys

from concurrent.futures import ThreadPoolExecutor

def run(arg):
print("starting %s" % arg)
p = multiprocessing.Process(target=print, args=("running", arg))
p.start()
p.join()
print("finished %s" % arg)

if __name__ == "__main__":
n = 16
tests = range(n)
with ThreadPoolExecutor(n) as pool:

for r in pool.map(run, tests):
pass

starting 0starting 1

starting 2
starting 3
starting 4
starting 5
starting 6
starting 7
starting 8

(continues on next page)

362 Chapter 6. Performance

https://bugs.python.org/issue27422


Python for Data Science, Release 24.1.0

(continued from previous page)

starting 9
starting 10
starting 11
starting 12
starting 13
starting 14
starting 15
running 0
finished 4
running 4
running 1
running 2
running 3
running 15
finished 15
finished 0
finished 3
finished 1
finished 2
running 5
finished 5
running 7
running 6
finished 7
running 11
finished 6
running 9
finished 11
finished 9
running 8
running 10
finished 8
finished 10
running 13
finished 13
running 12
running 14
finished 12
finished 14

Usually, threading is recommended after the fork, not before. Otherwise, the locks used when executing the threads
are duplicated across the processes. If one of these processes dies with a lock, all other processes with this lock are
deadlocked.

6.9. Multithreading, Multiprocessing and Async 363



Python for Data Science, Release 24.1.0

6.9.5 asyncio example

From IPython7.0 you can use asyncio directly in Jupyter Notebooks, see also IPython 7.0, Async REPL.

If you get RuntimeError: This event loop is already running, [nest-asyncio] might help you.

Ihr könnt das Paket installieren mit

$ pipenv install nest-asyncio

You can then import it into your notebook and use it with:

[1]: import nest_asyncio

nest_asyncio.apply()

See also
• asyncio: We Did It Wrong by Lynn Root

• An Intro to asyncio by Mike Driscoll

• Asyncio Coroutine Patterns: Beyond await by Yeray Diaz

Simple Hello world example

[2]: import asyncio

async def hello():
print("Hello")
await asyncio.sleep(1)
print("world")

await hello()

Hello
world

A little bit closer to a real world example

[3]: import asyncio
import random

async def produce(queue, n):
for x in range(1, n + 1):

# produce an item
print("producing {}/{}".format(x, n))
# simulate i/o operation using sleep
await asyncio.sleep(random.random())
item = str(x)

(continues on next page)

364 Chapter 6. Performance

https://blog.jupyter.org/ipython-7-0-async-repl-a35ce050f7f7
https://www.roguelynn.com/words/asyncio-we-did-it-wrong/
https://www.blog.pythonlibrary.org/2016/07/26/python-3-an-intro-to-asyncio/
https://medium.com/python-pandemonium/asyncio-coroutine-patterns-beyond-await-a6121486656f


Python for Data Science, Release 24.1.0

(continued from previous page)

# put the item in the queue
await queue.put(item)

# indicate the producer is done
await queue.put(None)

async def consume(queue):
while True:

# wait for an item from the producer
item = await queue.get()
if item is None:

# the producer emits None to indicate that it is done
break

# process the item
print("consuming {}".format(item))
# simulate i/o operation using sleep
await asyncio.sleep(random.random())

loop = asyncio.get_event_loop()
queue = asyncio.Queue()
asyncio.ensure_future(produce(queue, 10), loop=loop)
loop.run_until_complete(consume(queue))

producing 1/10
producing 2/10
consuming 1
producing 3/10
consuming 2
producing 4/10
consuming 3
producing 5/10
consuming 4
producing 6/10
consuming 5
producing 7/10
consuming 6
producing 8/10
consuming 7
producing 9/10
consuming 8
producing 10/10
consuming 9
consuming 10

6.9. Multithreading, Multiprocessing and Async 365



Python for Data Science, Release 24.1.0

Exception Handling

See also
• set_exception_handler

[4]: def main():
loop = asyncio.get_event_loop()
# May want to catch other signals too
signals = (signal.SIGHUP, signal.SIGTERM, signal.SIGINT)
for s in signals:

loop.add_signal_handler(
s, lambda s=s: asyncio.create_task(shutdown(loop, signal=s))

)
loop.set_exception_handler(handle_exception)
queue = asyncio.Queue()

Testing with pytest

Example:

[5]: import pytest

@pytest.mark.asyncio
async def test_consume(mock_get, mock_queue, message, create_mock_coro):

mock_get.side_effect = [message, Exception("break while loop")]

with pytest.raises(Exception, match="break while loop"):
await consume(mock_queue)

Third-party libraries

• pytest-asyncio has helpfull things like fixtures for event_loop, unused_tcp_port, and
unused_tcp_port_factory; and the ability to create your own asynchronous fixtures.

• asynctest has helpful tooling, including coroutine mocks and exhaust_callbacks so we don’t have to manually
await tasks.

• aiohttp has some really nice built-in test utilities.

Debugging

asyncio already has a debug mode in the standard library. You can simply activate it with the PYTHONASYNCIODEBUG
environment variable or in the code with loop.set_debug(True).

366 Chapter 6. Performance

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.set_exception_handler
https://github.com/pytest-dev/pytest-asyncio
https://pytest-asyncio.readthedocs.io/en/latest/reference/fixtures/index.html
https://asynctest.readthedocs.io/en/latest/index.html
https://asynctest.readthedocs.io/en/latest/asynctest.helpers.html#asynctest.helpers.exhaust_callbacks
https://docs.aiohttp.org/en/stable/
https://docs.python.org/3.6/library/asyncio-dev.html#debug-mode-of-asyncio


Python for Data Science, Release 24.1.0

Using the debug mode to identify slow async calls

asyncio’s debug mode has a tiny built-in profiler. When debug mode is on, asyncio will log any asynchronous calls
that take longer than 100 milliseconds.

Debugging in oroduction with aiodebug

aiodebug is a tiny library for monitoring and testing asyncio programs.

Example

[6]: from aiodebug import log_slow_callbacks

def main():
loop = asyncio.get_event_loop()
log_slow_callbacks.enable(0.05)

Logging

aiologger allows non-blocking logging.

Asynchronous Widgets

See also
• Asynchronous Widgets

[7]: def wait_for_change(widget, value):
future = asyncio.Future()

def getvalue(change):
# make the new value available
future.set_result(change.new)
widget.unobserve(getvalue, value)

widget.observe(getvalue, value)
return future

[8]: from ipywidgets import IntSlider

slider = IntSlider()

async def f():
for i in range(10):

print("did work %s" % i)
x = await wait_for_change(slider, "value")

(continues on next page)

6.9. Multithreading, Multiprocessing and Async 367

https://github.com/qntln/aiodebug
https://github.com/async-worker/aiologger
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Asynchronous.html


Python for Data Science, Release 24.1.0

(continued from previous page)

print("async function continued with value %s" % x)

asyncio.ensure_future(f())

slider

IntSlider(value=0)

did work 0

368 Chapter 6. Performance



CHAPTER

SEVEN

CREATE A PRODUCT

With Jupyter Notebooks you can quickly build prototypes for data analysis. You can also use them to document and
present your results. However, they are not well suited for reproducing your results with Kernel → Restart and Run All
in a few days or years. For example, the notebooks contain very little information about the environment, the kernel,
with which they have been able to run successfully in the past. Although you can use pd.show_versions() to display
Information about the host operating system and the versions of installed Python packages, this is unfortunately not
sufficient to reproduce such an environment.

«Non-reproducible single occurrences are of no significance to science.»1

In order for others to be able to use your code, it should meet some conditions:

• You should not silently rely on specific resources and environments

• Required software packages and hardware should be specified in the requirements

• Path information will only work in a different context within your package or in previously generated directories
and files

• Do not share secrets like login details or internal IP numbers in your published product

There are various tools that support you in creating shareable products. These can be tools on the one hand for the
versioning of the source code and the training data as well as for the reproducibility of the execution environments, on
the other hand for Testing, Logging, documenting and creating packages.

See also:
• Dustin Boswell, Trevor Foucher: The Art of Readable Code

• TIB workshop «FAIR Data and Software»

– GitHub Page

– GitHub Repository

– Slides

• Dryad: Best practices for creating reusable data publications
1 Karl Popper in The Logic of Scientific Discovery, 1959

369

https://jupyter-tutorial.readthedocs.io/en/latest/kernels/index.html
https://python-basics-tutorial.readthedocs.io/en/latest/libs/index.html
https://learning.oreilly.com/library/view/~/9781449318482/
https://tibhannover.github.io/2018-07-09-FAIR-Data-and-Software/
https://github.com/TIBHannover/2018-07-09-FAIR-Data-and-Software
https://doi.org/10.5281/zenodo.3707745
https://datadryad.org/stash/best_practices


Python for Data Science, Release 24.1.0

7.1 Manage code with Git

To gain better control over your source code, it is usually managed with Git. Git is a mature and very actively maintained
open source project originally developed in 2005 by Linus Torvalds, the initiator of the Linux operating system kernel.
Git can be combined well with many operating systems and IDEs (integrated development environments).

With its distributed architecture, Git is an example of a DVCS (distributed version control system). This means that the
entire version history no longer has to be in a single location, as was common with previously popular version control
systems such as CVS or Subversion (SVN). In Git, each local repository can contain specific changes.

However, Git can not only be used in a distributed way, it is also performant, secure and flexible.

7.1.1 Performance

Git is very fast compared to many other version control systems in committing changes, branching and merging, and
comparing with previous versions. This is also necessary when we look at the Linux kernel repository with over a
million commits. Git is not oriented towards file names, but focuses on changes in content so that files can be efficiently
renamed, split and rearranged. Git achieves this by storing deltas for the differences in content, metadata of the files
and compression.

The distributed version control system also ensures that, for example, implementing a new function does not require
network access to a remote server, thus avoiding delays. You can also carry out error correction locally on an earlier
version. Later, both changes can be transmitted to a central server with a single command.

7.1.2 Security

The integrity of managed source code was a high priority in the design of Git. For example, the relationships between
files and commits are protected by a hashing algorithm (SHA1), making accidental or deliberate changes more difficult
and ensuring the actual history.

7.1.3 Flexibility

Git not only allows for very flexible workflows but is also suitable for both large and small projects on different platforms.

7.1.4 Criticisms

A common criticism of Git is that it is difficult to learn: either large parts of the Git terminology are new or in other sys-
tems terms have a different meaning, such as for example revert in SVN or CVS. Git also offers a lot of functionality,
but it takes some time to learn.

370 Chapter 7. Create a product

https://git-scm.com/
https://github.com/git/git
https://github.com/torvalds/linux


Python for Data Science, Release 24.1.0

7.1.5 Read more

See also:
• Git Cheat Sheet (PDF)

• Interactive Git Cheatsheet

• Software Carpentry Version Control with Git

• Flight rules for Git

• First Aid git

• git-tips

• Pro Git book

• Git reference

Essentially, in this tutorial, I show on the one hand how Jupyter Notebooks can be managed with Git, and on the other
hand best practices and typical Git workflows.

7.1. Manage code with Git 371

https://xkcd.com/1597
http://ndpsoftware.com/git-cheatsheet.html
https://swcarpentry.github.io/git-novice/
https://github.com/k88hudson/git-flight-rules
https://firstaidgit.io/
https://github.com/git-tips/tips
https://git-scm.com/book
https://git-scm.com/docs
https://jupyter-tutorial.readthedocs.io/en/latest/notebook/index.html


Python for Data Science, Release 24.1.0

Workspaces

Git manages multiple locations or workspaces where files are stored:

local working copy
contains files and folders that can be edited normally.

staging area
contains changes to files that are scheduled for writing into the version history.

local repository
contains the entire history of all files in the project.

remote repository
also contains the entire history, but is stored on a remote server.

stash
contains changes that are temporarily stored somewhere else to move them out of the way.

Basic Git commands

The following basic Git commands move changes between these workspaces.

git add
adds files from the working directory to the staging area.

git reset HEAD
restores a file in the work area from the stage area.

git stash
moves files from the workspace to a stash.

git stash pop
brings files from the stash to the work area.

git commit
writes changes from the staging area to the local repository.

372 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

git pull
copies changes from the remote to the local repository and updates the work area.

git push
copies changes from the local repository to the remote repository.

git push -u UPSTREAM BRANCHNAME

-u (long form --set-upstream)
allows to specify the remote repository and a branch in it.

UPSTREAM
the name of the remote repository, typically origin.

BRANCHNAME
the name of a branch in the remote repository, typically the same as in the local repository.

Git installation and configuration

Installation

For iX distributions, Git should be in the standard repository.

The git-all package provides a complete Git working environment. Install it with:

$ sudo apt install git-all

To install only Git the git package suffices:

$ sudo apt install git

The bash autocompletion makes Git easier to use on the command line. The according package is called bash-
completion. Install it with:

$ sudo apt install bash-completion

There are several different ways to install Git on a Mac. Probably the easiest way to do is to install the Xcode Command
Line Tools. For this you only have to call up git in the terminal for the first time:

$ git --version

git-completion you can install with Homebrew:

Then you have to add the following line to the file ~/.bash_profile:

[[ -r "$(brew --prefix)/etc/profile.d/bash_completion.sh" ]] && . "$(brew --prefix)/etc/
→˓profile.d/bash_completion.sh"

Go to https://git-scm.com/download/win and start the download automatically. Further information can be found at
https://gitforwindows.org/.

7.1. Manage code with Git 373

https://packages.debian.org/stable/git-all
https://packages.debian.org/stable/git
https://packages.debian.org/stable/bash-completion
https://packages.debian.org/stable/bash-completion
https://brew.sh/
https://git-scm.com/download/win
https://gitforwindows.org/


Python for Data Science, Release 24.1.0

Configuration

The author of every change needs to be transparent. Specify your name and email address as follows:

$ git config --global user.name "NAME"
defines the name NAME associated with your commit transactions.

$ git config --global user.email "EMAIL-ADDRESS"
defines the email address EMAIL-ADDRESS that will be linked to your commit transactions.

For better readability, activate the coloring of the command line output:

$ git config --global color.ui auto

The ~/.gitconfig file

For example, the following file can be created with the commands given above:

[user]
name = veit
email = veit@cusy.io

[color]
ui = auto

However, aliases can also be specified in the ~/.gitconfig file:

[alias]
st = status
ci = commit
br = branch
co = checkout
df = diff
dfs = diff --staged

See also:
Shell-Konfiguration:

• oh-my-zsh

– Git plugin aliases

– zsh-you-should-use

• Starship

– git_branch-Modul

– git_commit-Modul

– git_state

– git_status-Modul

The editor can also be specified, for example with:

[core]
editor = vim

374 Chapter 7. Create a product

https://ohmyz.sh
https://github.com/ohmyzsh/ohmyzsh/tree/master/plugins/git#aliases
https://github.com/MichaelAquilina/zsh-you-should-use
https://starship.rs
https://starship.rs/config/#git-branch
https://starship.rs/config/#git-commit
https://starship.rs/config/#git-state
https://starship.rs/config/#git-status


Python for Data Science, Release 24.1.0

or for Visual Studio Code:

[core]
editor = code --wait

Note: On macOS, you must first start Visual Studio Code, then open the command palette with +-p and finally execute
the Install 'code' command in PATH.

The highlighting of space errors in git diff can also be configured:

[core]
# Highlight whitespace errors in git diff:
whitespace = tabwidth=4,tab-in-indent,cr-at-eol,trailing-space

Note: In addition to ~/.gitconfig, since version 1.17.12 Git also looks in ~/.config/git/config for a global
configuration file.

Under Linux, ~/.config can sometimes be a different path set by the environment variable XDG_CONFIG_HOME. This
behaviour is part of the X Desktop Group (XDG) specification. You can get the other path with:

$ echo $XDG_CONFIG_HOME

See also:
• git config files

Since you can set options at multiple levels, you may want to keep track of where Git reads a particular value from. With
git config --list1 you can list all the overridden options and values. You can combine this with --show-scope2

to see where Git is getting the value from:

$ git config --list --show-scope
system credential.helper=osxkeychain
global user.name=veit
global user.email=veit@cusy.io
...

You can also use --show-origin3 to list the names of the configuration files:

$ git config --list --show-origin
file:/opt/homebrew/etc/gitconfig credential.helper=osxkeychain
file:/Users/veit/.config/git/config user.name=veit
file:/Users/veit/.config/git/config user.email=veit@cusy.io
...

1 git config –list
2 git config –show-scope
3 git config –show-origin

7.1. Manage code with Git 375

https://wiki.archlinux.org/title/XDG_Base_Directory#Specification
https://git-scm.com/docs/git-config#FILES
https://git-scm.com/docs/git-config#Documentation/git-config.txt---list
https://git-scm.com/docs/git-config#Documentation/git-config.txt---show-scope
https://git-scm.com/docs/git-config#Documentation/git-config.txt---show-origin


Python for Data Science, Release 24.1.0

Alternative configuration file

You can use other configuration files for certain working directories, for example to distinguish between private and
professional projects. You can use a local configuration in your repository or conditional includes at the end of your
global configuration:

...
[includeIf "gitdir:~/private"]
path = ~/.config/git/config-private

This construct ensures that Git includes additional configurations or overwrites existing ones when you work in ~/
private.

Now create the file ~/.config/git/config-private and define your alternative configuration there, for example:

[user]
email = kontakt@veit-schiele.de

[core]
sshCommand = ssh -i ~/.ssh/private_id_rsa

See also:
• core.sshCommand

Manage login data

Since Git version 1.7.9, the access data to git repositories can be managed with gitcredentials. To use this, you can, for
example, specify the following:

$ git config --global credential.helper Cache

This will keep your password in the cache for 15 minutes. If necessary, the timeout can be increased, for example with:

$ git config --global credential.helper 'cache --timeout=3600'

With macOS you can use osxkeychain to store the login information. osxkeychain requires Git version 1.7.10 or newer
and can be installed in the same directory as Git with:

$ git credential-osxkeychain
git: 'credential-osxkeychain' is not a git command. See 'git --help'.
$ curl -s -O http://github-media-downloads.s3.amazonaws.com/osx/git-credential-
→˓osxkeychain
$ chmod u+x git-credential-osxkeychain
$ sudo mv git-credential-osxkeychain /usr/bin/
Password:
git config --global credential.helper osxkeychain

This enters the following in the ~/.gitconfig file:

[credential]
helper = osxkeychain

For Windows, Git Credential Manager (GCM) is available. It is integrated in Git for Windows and is installed by
default. However, there is also a standalone Installer in Releases.

It is configured with

376 Chapter 7. Create a product

https://git-scm.com/docs/git-config#_conditional_includes
https://git-scm.com/docs/git-config#Documentation/git-config.txt-coresshCommand
https://git-scm.com/docs/gitcredentials
https://github.com/GitCredentialManager/git-credential-manager
https://git-scm.com/download/win
https://github.com/GitCredentialManager/git-credential-manager/releases/


Python for Data Science, Release 24.1.0

$ git credential-manager configure
Configuring component 'Git Credential Manager'...
Configuring component 'Azure Repos provider'...

This will add the [credential] section to your ~.gitconfig file:

[credential]
helper =
helper = C:/Program\\ Files/Git/mingw64/bin/git-credential-manager.exe

Now, when cloning a repository, a Git Credential Manager window opens and asks you to enter your credentials.

In addition, the ~/.gitconfig file is supplemented, for example by the following two lines:

[credential "https://ce.cusy.io"]
provider = generic

Note: You can find a comprehensive example of a ~/.gitconfig file in my dotfiles repository: .gitconfig.

See also:
• Git Credential Manager: authentication for everyone

The .gitignore file

In the .gitignore file you can exclude files from version management. A typical .gitignore file can look like this:

/logs/*
!logs/.gitkeep
/tmp
*.swp

In doing so, Git uses Globbing patterns, among others:

7.1. Manage code with Git 377

https://github.com/veit/dotfiles/
https://github.com/veit/dotfiles/blob/main/.config/git/config
https://github.blog/2022-04-07-git-credential-manager-authentication-for-everyone/
https://linux.die.net/man/7/glob


Python for Data Science, Release 24.1.0

Pattern Example Description

**/logs

logs/instance.log, logs/
instance/error.log, prod/
logs/instance.log

You can put two asterisks to prefix
directories anywhere.

**/logs/instance.log

logs/instance.log, prod/
logs/instance.log but not
logs/prod/instance.log

You can put two asterisks to prefix
files with their name in a parent di-
rectory.

*.log

instance.log, error.log,
logs/instance.log

An asterisk is a placeholder for null
or more characters.

/logs
!/logs/.gitkeep

/logs/instance.log, /logs/
error.log, but not /logs/.
gitkeep or /instance.log

An exclamation mark in front of a
pattern ignores it. If a file matches a
pattern, but also a negating one that
is defined later, it is not ignored.

/instance.log

/instance.log, but not logs/
instance.log

With a preceding slash, the pattern
only matches files in the root direc-
tory of the repository.

instance.log

instance.log, logs/instance.
log

Usualy the pattern match files in any
directory.

instance?.log

instance0.log, instance1.
log, but not instance.log or
instance10.log

A question mark fits exactly on a
charater.

instance[0-9].log

instance0.log, instance1.
log, but not instance.log or
instance10.log

Square brackets can be used to find
a single character from a specific
range.

instance[01].log

instance0.log, instance1.
log, but not instance2.log or
instance01.log

Square brackets match a single char-
acter from a given set.

instance[!01].log

instance2.log, but not
instance0.log, instance1.
log or instance01.log

An exclamation mark can be used to
find any character from a specified
set.

logs

logs logs/instance.log prod/
logs/instance.log

If no slash appended, the pattern fix
both files and the contents of direc-
tories witch this name.

logs/

logs/instance.log, logs/
prod/instance.log, prod/
logs/instance.log

Appending a slash indicates that the
pattern is a directory. The en-
tire contents of any directory in the
repository that matches the name –
including all its files and subdirecto-
ries – are ignored.

var/**/instance.log

var/instance.log, var/logs/
instance.log, but not var/logs/
instance/error.log

Two Asterisks match null or more di-
rectories.

logs/instance*/error.log

logs/instance/error.log,
logs/instance1/error.log

Wildcards can also be used in direc-
tory names.

logs/instance.log

logs/instance.log, but not
var/logs/instance.log or
instance.log

Pattern, that specify a particular file
in a directory are relative to the root
of the repository.

378 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Git-commit empty folder

In the example above you can see that with /logs/* no content of the logs directory should be versioned with Git,
but an exception is defined in the following line: !logs/.gitkeep allows the file .gitkeep to be managed with Git.
The logs directory is then also transferred to the Git repository. This construction is necessary because empty folders
cannot be managed with Git.

Another possibility is to create a .gitignore file in an empty folder with the following content:

# ignore everything except .gitignore
*
!.gitignore

excludesfile

However, you can also exclude files centrally for all Git repositories. For this purpose, you can set excludesfile in
the ~/.gitconfig file:

[core]

# Use custom `.gitignore`
excludesfile = ~/.gitignore
...

Note: You can find helpful templates in my dotfiles repository or on the gitignore.io website.

Ignoring a file from the repository

If you want to ignore a file that has already been added to the repository in the past, you need to delete the file from
your repository and then add a .gitignore rule for it. Using the --cached option on git rm means that the file will
be deleted from the repository but will remain in your working directory as an ignored file.

$ echo *.log >> .gitignore
$ git rm --cached *.log
rm 'instance.log'
$ git commit -m "Remove log files"

Note: You can omit the --cached option if you want to remove the file from both the repository and your local file
system.

7.1. Manage code with Git 379

https://github.com/veit/dotfiles/tree/main/gitignores
https://gitignore.io/


Python for Data Science, Release 24.1.0

Commit an ignored file

It is possible to force the commit of an ignored file to the repository with the -f (or --force) option on git add:

$ cat data/.gitignore
*
$ git add -f data/iris.csv
$ git commit -m "Force add iris.csv"

You might consider this if you have a general pattern (like *) defined, but want to commit a specific file. However, a
better solution is usually to define an exception to the general rule:

$ echo '!iris.csv' >> data/.gitignore
$ cat data/.gitignore
*
!iris.csv
$ git add data/iris.csv
$ git commit -m "Add iris.csv"

This approach should be more obvious and less confusing for your team.

Troubleshooting .gitignore files

For complicated .gitignore patterns, or patterns that are spread across multiple .gitignore files, it can be difficult
to figure out why a particular file is being ignored.

With git status --ignored=matching4, an Ignored Files section is added to the output, showing all ignored files
and directories:

$ git status --ignored=matching
On branch main
Ignored Files:
(use "git add -f <file>...", to pre-mark the changes for committing
.DS_Store
docs/.DS_Store
docs/_build/doctrees/
docs/_build/html/
docs/clean-prep/.ipynb_checkpoints/
...
nothing to commit, working tree clean

You can use the git check-ignore command with the -v (or --verbose) option to determine which pattern is
causing a particular file to be ignored:

$ git check-ignore -v data/iris.csv
data/.gitignore:2:!iris.csv data/iris.csv

The output shows FILE_CONTAINING_THE_PATTERN:LINE_NUMBER_OF_THE_PATTERN:PATTERN FILE_NAME

You can pass multiple filenames to git check-ignore if you like, and the names themselves don’t even have to match
the files that exist in your repository.

4 git status –ignored

380 Chapter 7. Create a product

https://git-scm.com/docs/git-status#Documentation/git-status.txt---ignoredltmodegt


Python for Data Science, Release 24.1.0

You can get a complete list of all ignored files with git ls-files --ignored --exclude-standard --others5.
With --exclude-standard the standard ignored files are read and with --others the non-versioned files are dis-
played instead of the versioned ones:

$ git ls-files --ignored --exclude-standard --others
.DS_Store
_build/doctrees/clean-prep/bulwark.doctree
_build/doctrees/clean-prep/dask-pipeline.doctree
_build/doctrees/clean-prep/deduplicate.doctree
...

Occasionally you may want to bypass the global ~/.gitignore file to see which files Git always ignores, regardless
of your configuration. You can do this by switching to another exclude option, --exclude-per-directory, which
uses only the repository’s .gitignore files:

$ git ls-files --ignored --exclude-per-directory=.gitignore --others
docs/_build/doctrees/clean-prep/bulwark.doctree
docs/_build/doctrees/clean-prep/dask-pipeline.doctree
docs/_build/doctrees/clean-prep/deduplicate.doctree
...

Note that the .DS_Store file is no longer listed as ignored.

If you replace --others with --cached, git ls-files will list files that would be ignored unless they have already
been committed:

$ git ls-files --ignored --exclude-per-directory=.gitignore --cached
data/iris.csv

You may have such files because someone added them to a .gitignore file before the relevant patterns, or because
someone added them with git add --force. Either way, if you no longer want to manage the file with Git, you can
remove it from Git management with the following one-liner, but don’t delete it:

$ git ls-files --ignored --exclude-per-directory=.gitignore --cached | xargs -r git rm --
→˓cached
rm 'data/iris.csv'

Working with Git

Start working on a project

Start your own project

$ git init [PROJECT]
creates a new, local git repository.

[PROJECT]
if the project name is given, Git creates a new directory and initializes it.

If no project name is given, the current directory is initialised.
5 git check-ignore

7.1. Manage code with Git 381

https://git-scm.com/docs/git-check-ignore


Python for Data Science, Release 24.1.0

Work on a project

$ git clone PROJECT_URL
downloads a project with all branches and the entire history from the remote repository.

--depth
indicates the number of commits to be downloaded.

-b
specifies the name of the remote branch to be downloaded.

Work on a project

$ git status
shows the status of the current branch in the working directory with new, changed and files already marked for
commit.

-v
shows the changes in the stage area as a diff.

-vv
also shows the changes in the working directory as a second diff.

See also:
git status -v

$ git add PATH
adds one or more files to the stage area.

-p
adds parts of one or more files to the stage area.

-e
the changes to be adopted can be edited in the standard editor.

$ git diff [PATH]
shows differences between working and stage areas, for example:

$ git diff docs/productive/git/work.rst
diff --git a/docs/productive/git/work.rst b/docs/productive/git/work.rst
index e2a5ea6..fd84434 100644
--- a/docs/productive/git/work.rst
+++ b/docs/productive/git/work.rst
@@ -46,7 +46,7 @@

:samp:`$ git diff {FILE}`
- shows differences between work and stage areas.
+ shows differences between work and stage areas, for example:

index e2a5ea6..fd84434 100644 displays some internal Git metadata that you will probably never need.
The numbers correspond to the hash identifiers of the git object versions.

The rest of the output is a list of diff chunks whose header is enclosed in @@ symbols. Each chunk shows changes
made in a file. In our example, 7 lines were extracted starting at line 46 and 7 lines were added starting at line
46.

By default, git diff performs the comparison against HEAD. If you use git diff HEAD docs/productive/
git/work.rst in the example above, it will have the same effect.

382 Chapter 7. Create a product

https://git-scm.com/docs/git-status#Documentation/git-status.txt--v


Python for Data Science, Release 24.1.0

git diff can be passed Git references. Besides HEAD, some other examples of references are tags and branch
names, for example git diff MAIN..FEATURE_BRANCH . The dot operator in this example indicates that the
diff input is the tips of the two branches. The same effect occurs if the dots are omitted and a space is used
between the branches. In addition, there is a three-dot operator: git diff MAIN...FEATURE_BRANCH , which
initiates a diff where the first input parameter MAIN is changed so that the reference is the common ancestor of
MAIN and FEATURE.

Every commit in Git has a commit ID, which you can get by running git log. You can then also pass this
commit ID to git diff:

$ git log --pretty=oneline
af1a395a08221ffa83b46f562b6823cf044a108c (HEAD -> main, origin/main, origin/HEAD) :
→˓memo: Add some git diff examples
d650de52306b63b93e92bba4f15be95eddfea425 :memo: Add „Debug .gitignore files“ to git␣
→˓docs
...
$ git diff af1a395a08221ffa83b46f562b6823cf044a108c␣
→˓d650de52306b63b93e92bba4f15be95eddfea425

--staged, --cached
shows differences between the stage area and the repository.

--word-diff
shows the changed words.

$ git restore FILE
changes files in the working directory to a state previously known to Git. By default, Git checks out HEAD, the
last commit of the current branch.

Note: In Git < 2.23, git restore is not yet available. In this case you still need to use git checkout:

$ git checkout FILE

$ git commit
makes a new commit with the added changes.

-m 'COMMIT MESSAGE'
writes a commit message directly from the command line.

--dry-run --short
shows what would be committed with the status in short format.

$ git reset [--hard|--soft] [TARGET_REFERENCE]
resets the history to an earlier commit.

$ git rm PATH
removes a file from the work and stage areas.

$ git stash
moves the current changes from the workspace to a stash.

To be able to distinguish your hidden changes as well as possible, the following two options are recommended:

-p or --patch
allows you to partially hide changes, for example:

$ git stash -p
diff --git a/docs/productive/git/work.rst b/docs/productive/git/work.rst

(continues on next page)

7.1. Manage code with Git 383



Python for Data Science, Release 24.1.0

(continued from previous page)

index cff338e..1988ab2 100644
--- a/docs/productive/git/work.rst
+++ b/docs/productive/git/work.rst
@@ -83,7 +83,16 @@

``list``
lists the hidden changes.

``show``
- shows the changes in the hidden files.
+ shows the changes in the hidden files, for example
...
(1/1) Stash this hunk [y,n,q,a,d,e,?]? y

With ? you get a complete list of options. The most common are:

Command Description
y Hide this change
n Do not apply this change
q All changes already selected will be hidden
a Apply this and all subsequent changes
e Edit this change manually
? Help

branch
creates a branch from hidden files, for example:

$ git stash branch stash-example stash@{0}
On branch stash-example
Changes marked for commit:
(use "git restore --staged <file>..." to remove from staging area).
new file: docs/productive/git/work.rst

Changes not marked for commit:
(use "git add <file>..." to mark the changes for commit).
(use "git restore <file>..." to discard the changes in the working directory)
changed: docs/productive/git/index.rst

stash@{0} (6565fdd1cc7dff9e0e6a575e3e20402e3881a82e) gelöscht

save MESSAGE
adds a message to the changes.

-u UNTRACKED_FILE
hides unversioned files.

list
lists the various stashes.

show
shows the changes in the stashed files.

pop
transfers the changes from the stash to the workspace and empties the stash, for example:

384 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

$ git stash pop stash@{2}

drop
empties a specific stash, for example:

$ git stash drop stash@{0}
stash@{0} (defcf56541b74a1ccfc59bc0a821adf0b39eaaba) deleted

clear
delete all your hiding places.

Review

log

See also:
• Git’s Database Internals III: File History Queries

Filter and sort

$ git log [-n COUNT]
lists the commit history of the current branch.

-n
limits the number of commits to the specified number.

$ git log [--after="YYYY-MM-DD"] [--before="YYYY-MM-DD"]
Commit history filtered by date.

Relative specifications such as 1 week ago or yesterday are also permitted.

$ git log --author="VEIT"
filters the commit history by author.

It is also possible to search for several authors at the same time, for example:

$ git log --author="VEIT|VSC"

$ git log --grep="TERM" [-i]
filters the commit history for regular expressions in the commit message.

-i
ignores upper and lower case.

$ git log -S"FOO" [-i]
filters commits for specific lines in the source code.

-i
ignores upper and lower case.

$ git log -G"BA*"
filters commits for regular expressions in the source code.

$ git log -- PATH
filters the commit history for specific files.

7.1. Manage code with Git 385

https://github.blog/2022-08-31-gits-database-internals-iii-file-history-queries/


Python for Data Science, Release 24.1.0

$ git log MAIN..FEATURE
filters for different commits in different branches, in our case between the MAIN and FEATURE branches.

However, this is not the same as git log FEATURE..MAIN. Let’s take the following example:

A - B main
\
C - D feature

$ git log MAIN..FEATURE
shows changes in FEATURE that are not contained in MAIN, that is, commits C and D.

$ git log FEATURE..MAIN
shows changes in MAIN that are not contained in FEATURE, that is, commit B.

$ git log MAIN...FEATURE
shows the changes on both sides, that is, commits B, C and D.

$ git log --follow PATH/TO/FILE
This ensures that the log shows changes to a single file, even if it has been renamed or moved.

You can activate --follow for individual file calls by default by activating the log.follow option in your global
configuration:

$ git config --global log.follow true

Then you no longer have to enter --follow, but only the file name.

$ git log -L LINE_START_INT|LINE_START_REGEX,LINE_END_INT|LINE_END_REGEX:PATH/TO/FILE
$ git log -L :FUNCNAME_REGEX:PATH/TO/FILE

With the -L option, you can perform a refined search by checking the log of only part of a file. This function
allows you to thoroughly search through the history of a single function, class or other code block. It is ideal
for finding out when something was created and how it was changed so that you can correct, refactor or delete it
with confidence.

For more comprehensive investigations, you can also track multiple blocks. You can use multiple -L
options at once.

$ git log --reverse
The log usually displays the latest commit first. You can reverse this with --reverse. This is particularly useful
if you are analysing with the -S and -G options already mentioned. By reversing the order of the commits, you
can quickly find the first commit that added a specific string to the codebase.

View

$ git log --stat --patch|-p

--stat
A summary of the number of changed lines per file is added to the usual metadata.

--patch|-p
adds the complete commit diff to the output.

$ git log --oneline --decorate --graph --all|FEATURE
display the history graph with references, one commit per line.

--oneline
One commit per line.

386 Chapter 7. Create a product

https://git-scm.com/docs/git-log#Documentation/git-log.txt--Lltstartgtltendgtltfilegt


Python for Data Science, Release 24.1.0

--decorate
The prefixes refs/heads/, refs/tags/ and refs/remotes/ are not output.

--graph
The log usually smoothes historical branches and displays commits one after the other. This hides the
parallel structure of the history when merging branches. --graph displays the history of the branches in
ASCII format.

--all|FEATURE
--all shows the log for all branches; FEATURE only shows the commits of this branch.

reflog

With git reflog, your Git repository is not checked a second time. Instead, it displays the reference log, a record of all
commits made. The reflog not only tracks changes to a branch, it also records changes to the current commit, branch
changes, rebasing, etc. (et cetera) You can use it to find all unreachable commits, even those on deleted branches. This
allows you to undo many otherwise destructive actions.

Let’s look at the basics of using reflog and some typical use cases.

Warning: The reflog is only part of your local repository. If you delete a repository and clone it again, the new
clone will have a fresh, empty reflog.

Show the reflog for HEAD

$ git reflog
If no options are specified, the command displays the reflog for HEAD by default. It is short for git reflog show
HEAD. git reflog has other subcommands to manage the log, but show is the default command if no subcommand
is passed.

1 $ git reflog
2 12bc4d4 (HEAD -> main, my-feature-branch) HEAD@{0}: merge my-feature-branch: Fast-forward
3 900844a HEAD@{1}: checkout: moving from my-feature-branch to main
4 12bc4d4 (HEAD -> main, my-feature-branch) HEAD@{2}: commit (amend): Add my feature and␣

→˓more
5 982d93a HEAD@{3}: commit: Add my feature
6 900844a HEAD@{4}: checkout: moving from main to my-feature-branch
7 900844a HEAD@{5}: commit (initial): Initial commit

• The output is quite dense.

• Each line is a reflog entry, the most recent first.

• The lines start with the abbreviated SHA of the corresponding commit, for example 12bc4d4.

• The first entry is what HEAD currently refers to: (HEAD -> main, my-feature).

• The names HEAD@\{N} are alternative references for the specified commits. N is the number of returning reflog
entries.

• remaining text describes the change. Above you can see several types of entries:

– commit: MESSAGE for commits

– commit (amend): MESSAGE for a commit change

7.1. Manage code with Git 387

https://git-scm.com/docs/git-reflog


Python for Data Science, Release 24.1.0

– checkout: moving from SRC TO DST for a branch change

There are many other possible types of entries. The text should be descriptive enough that you can understand the
process without looking it up in the documentation. In most cases, you will want to look through such reflog entries to
find the corresponding commit SHA.

Show the reflog for a branch

You can focus on entries for a single branch by using the explicit subcommand show and the branch name:

$ git reflog show my-feature-branch
12bc4d4 (HEAD -> main, my-feature-branch) my-feature-branch@{0}: commit (amend): Add my␣
→˓feature and more
982d93a my-feature-branch@{1}: commit: Add my feature
900844a my-feature-branch@{2}: branch: Created from HEAD

Show timestamps of the entries

If you need to distinguish between similarly titled changes, the timestamps can help. For relative timestamps you can
use --date=relative:

$ git reflog --date=relative
12bc4d4 (HEAD -> main, my-feature) HEAD@{vor 37 Minuten}: merge my-feature-branch: Fast-
→˓forward
900844a HEAD@{vor 37 Minuten}: checkout: moving from my-feature-branch to main
12bc4d4 (HEAD -> main, my-feature-branch) HEAD@{vor 37 Minuten}: commit (amend): Add my␣
→˓feature and more
982d93a HEAD@{vor 38 Minuten}: commit: Add my feature
900844a HEAD@{vor 39 Minuten}: checkout: moving from main to my-feature-branch
900844a HEAD@{vor 40 Minuten}: commit (initial): Initial commit

And for absolute timestamps you can also use --date=iso:

$ git reflog --date=iso
12bc4d4 (HEAD -> main, my-feature) HEAD@{2024-01-11 15:26:53 +0100}: merge my-feature-
→˓branch: Fast-forward
900844a HEAD@{2024-01-11 15:26:47 +0100}: checkout: moving from my-feature-branch to main
12bc4d4 (HEAD -> main, my-feature-branch) HEAD@{2024-01-11 15:26:11 +0100}: commit␣
→˓(amend): Add my feature and more
982d93a HEAD@{2024-01-11 15:25:38 +0100}: commit: Add my feature
900844a HEAD@{2024-01-11 15:24:37 +0100}: checkout: moving from main to my-feature-branch
900844a HEAD@{2024-01-11 15:23:56 +0100}: commit (initial): Initial commit

388 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Passes all options that git log supports

git reflog show has the same options as git log. For example, you can use --grep to search for commit messages
that mention my feature without case-sensitivity:

$ git reflog -i --grep 'my feature'
12bc4d4 (HEAD -> main, my-feature-branch) HEAD@{0}: merge my-feature: Fast-forward
12bc4d4 (HEAD -> main, my-feature-branch) HEAD@{2}: commit (amend): Add my feature and␣
→˓more
982d93a HEAD@{3}: commit: Add my feature

Note the expiry of entries

Reflog entries expire after a certain time when Git runs the automatic gc (garbage collection) process for your repository.
This expiration time is controlled by two gc.* options:

gc.reflogExpire
The general expiration time, which is set to 90 days by default.

gc.reflogExpireUnreachable
The expiry time for entries relating to commits that can no longer be reached is set to 30 days by default.

You can increase these options to a longer time frame, but this is rarely useful.

Git tags

Git tags are references that point to specific commits in the Git history. This allows certain points in the history to be
marked for a particular version, for example v3.9.16. Tags are like Git branches that do not change, so have no further
history of commits.

$ git tag TAGNAME
creates a tag, where TAGNAME is a semantic label for the current state of the Git repository. Git distinguishes
between two different types of tags: annotated and lightweight tags. They differ in the amount of associated
metadata.

Annotated tags
They store not only the TAGNAME, but also additional metadata such as the name and email address of the
person who created the tag and the date. In addition, annotated tags have messages, similar to commits.
You can create such tags, for example with git tag -a v3.9.16 -m 'Python 3.9.16'. You can then
display this additional metadata for example with git show v3.9.16.

Lightweight tags
Lightweight tags can be created, for example, with git tag v3.9.16 without the -a, -s or -m options.
They create a tag checksum that are stored in the .git/ directory of your repo.

$ git tag
lists the tags of your repo, for example:

v0.9.9
v1.0.1
v1.0.2
v1.1
...

7.1. Manage code with Git 389



Python for Data Science, Release 24.1.0

$ git tag -l 'REGEX'
lists only tags that match a regular expression.

$ git tag -a TAGNAME COMMIT-SHA
creates a tag for a previous commit.

The previous examples create tags for implicit commits that reference HEAD. Alternatively, git tag can be
passed the reference to a specific commit that you get with Review.

However, if you try to create a tag with the same identifier as an existing tag, Git will give you an error message,
for example Fatal: tag 'v3.9.16' already exists. If you try to tag an older commit with an existing
tag, Git will give the same error.

In case you need to update an existing tag, you can use the -f option, for example:

$ git tag -af v3.9.16 595f9ccb0c059f2fb5bf13643bfc0cdd5b55a422 -m 'Python 3.9.16'
Tag 'v3.9.16' updated (was 4f5c5473ea)

$ git push origin TAGNAME
Sharing tags is similar to pushing branches: by default, git push does not share tags, but they must be explicitly
passed to git push for example:

$ git tag -af v3.9.16 -m 'Python 3.9.16'
$ git push origin v3.9.16
Counting objects: 1, done.
Writing objects: 100% (1/1), 161 bytes, done.
Total 1 (delta 0), reused 0 (delta 0)
To git@github.com:python/cpython.git
* [new tag] v3.9.16 -> v3.9.16

To push multiple tags at once, pass the --tags option to the git push command. Others get the tags on git
clone or git pull of the repo.

With git push --follow-tags you can also share the corresponding annotated tags with a commit.

Note: --follow-tags works for annotated tags, not for lightweight tags.

If you want to use --follow-tags for all future pushes, you can configure this with

$ git config --global push.followTags true

See also:
• git push –follow-tags

• git config push.followTags

$ git checkout TAGNAME
switches to the state of the repo with this tag and detaches HEAD. This means that any changes made now will
not update the tag, but will end up in a detached commit that cannot be part of a branch and will only be directly
accessible via the SHA hash of the commit. Therefore, a new branch is usually created when such changes are
to be made, for example with git checkout -b v3.9.17 v3.9.16.

$ git tag -d TAGNAME
deletes a tag, for example:

$ git tag -d v3.9.16
$ git push origin --delete v3.9.16

390 Chapter 7. Create a product

https://git-scm.com/docs/git-push#Documentation/git-push.txt---follow-tags
https://git-scm.com/docs/git-config#Documentation/git-config.txt-pushfollowTags


Python for Data Science, Release 24.1.0

Git branches

$ git branch [-a] [-l "GLOB_PATTERN"]
shows all local branches in a repository.

-a
also shows all removed branches.

-l
restricts the branches to those that correspond to a specific pattern.

$ git branch --sort=-committerdate
sorts the branches according to the commit date.

You can also use git config --global branch.sort -committerdate to make this setting your default
setting.

$ git branch BRANCH_NAME
creates a new branch based on the current HEAD.

$ git switch [-c] BRANCH_NAME
switches between branches.

-c
creates a new branch.

Note: In Git < 2.23, git switch is not yet available. In this case you still need to use git checkout:

$ git checkout [-b] [BRANCH_NAME]
changes the working directory to the specified branch.

-b
creates the specified branch if it does not already exist.

$ git merge FROM_BRANCH_NAME
connects the given branch with the current branch you are currently in, for example:

$ git checkout main
$ git merge hotfix
Updating f42c576..3a0874c
Fast forward
setup.py | 1 -
1 files changed, 0 insertions(+), 1 deletions(-)

Fast forward
means that the new commit immediately followed the original commit and so the branch pointer only had
to be continued.

In other cases the output can look like this:

$ git checkout main
$ git merge 'my-feature'
Merge made by recursive.
setup.py | 1 +
1 files changed, 1 insertions(+), 0 deletions(-)

recursive
is a merge strategy that is used when the merge is only to be done to HEAD.

7.1. Manage code with Git 391



Python for Data Science, Release 24.1.0

Merge conflicts

Occasionally, however, Git runs into issues with merging, such as:

$ git merge 'my-feature'
Auto-merging setup.py
CONFLICT (content): Merge conflict in setup.py
Automatic merge failed; fix conflicts and then commit the result.

The history can then look like this, for example:

* 49770a2 (HEAD -> main) Fix merge conflict with my-feature
|\
| * 9412467 (my-feature) My feature
* | 46ab1a2 Hotfix directly in main
|/
* 0c65f04 Initial commit

See also:
• Git Branching - Basic Branching and Merging

• Git Tools - Advanced Merging

rerere to reuse recorded conflict resolutions

rerere (reuse recorded resolutions) makes it easier for you to have to resolve the same merge conflicts again and again.
This can happen, for example, if you merge a commit into several branches or if you have to rebase a branch repeatedly.
Resolving merge conflicts requires concentration and energy, and it is a waste to resolve the same conflict again and
again. git rerere is rarely called directly, however, but is usually activated globally. It is then automatically used by git
merge, git rebase and git commit. Its most important effect is that it adds some messages to the output of these
commands. You can activate it with:

$ git config --global rerere.enabled true

Let’s look at an example of git rerere in action. Suppose you attempt a merge and run into conflicts:

% git merge rerere-example
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Recorded preimage for 'README.md'
Automatic merge failed; fix conflicts and then commit the result.

git rerere wrote the third line, Preimage for 'README.md', meaning that the conflict was recorded before we
fixed it. If we fix the conflict now, we can proceed with the merge, in our example with:

$ git add README.md
$ git merge --continue
Recorded resolution for 'README.md'.
[main 5935d00] Merge branch 'rerere-example'

git rerere now reports conflict resolution recorded for 'README.md'., meaning that it has saved how
we resolved the conflicts in this file. Suppose you undo this merge because you realise that it was not finished:

392 Chapter 7. Create a product

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging
https://git-scm.com/docs/git-rerere


Python for Data Science, Release 24.1.0

$ git reset --keep @~

Later you repeat the merging process:

$ git merge rerere-example
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Resolved 'README.md' using previous resolution.
Automatic merge failed; fix conflicts and then commit the result.
When finished, apply stashed changes with `git stash pop`

git rerere solved the conflict using the previous solution, which means it reused your previous merge. Now check
that the file is correct and then continue:

$ git add README.md
$ git merge --continue
[main c922b21] Merge branch 'rerere-example'

git rerere saves its data within the .git directory of your Git repository in an rr-cache directory. You should
note two things here:

1. The rerere cache is local. It is not shared when you perform a git push, so your team colleagues cannot reuse
the merges you have performed.

2. Git’s automatic garbage collection deletes entries from the rr-cache. It is controlled by two configuration
options:

gc.rerereResolved
determines how long entries for resolved conflicts are kept. The default value is 60 days. And with git
config gc.rerereResolved you can change the default values for your project.

gc.rerereUnresolved
determines how long entries for unresolved conflicts are kept. The default value is 15 days.

Delete branches

$ git branch -d [BRANCH_NAME]
deletes the selected branch if it has already been transferred to another.

-D instead of -d forcing the deletion.

See also:
• Git Branching - Branches in a Nutshell

Remote branches

So far, these examples have all shown local branches. However, the git branch command also works with remote
branches. To work with remote branches, a remote repository must first be configured and added to the local repository
configuration:

$ git remote add origin https://ce.cusy.io/veit/NEWREPO.git

7.1. Manage code with Git 393

https://git-scm.com/docs/git-config#Documentation/git-config.txt-gcrerereResolved
https://git-scm.com/docs/git-config#Documentation/git-config.txt-gcrerereUnresolved
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell


Python for Data Science, Release 24.1.0

Add remote branches

Now the branch can also be added to the remote repository:

$ git push origin [BRANCH_NAME]

With git branch -d you delete the branches locally only. To delete them on the remote server as well, you can type
the following:

$ git push --set-upstream origin [BRANCH_NAME]

If you want to add all branches of a local repository to the remote repo, you can do this with:

$ git push --set-upstream origin --all

You can configure the following so that this happens automatically for branches without a tracking upstream:

$ git config --global push.autoSetupRemote true

Delete remote branches

To remove remote branches locally, you can run git fetch with the --prune or -p option. You can also make this
the default behaviour by enabling fetch.prune:

$ git config --global fetch.prune true

See also:
PRUNING

Rename branches

You can rename branches, for example with

$ git branch --move master main

This changes your local master branch to main. In order for others to see the new branch, you must push it to the
remote server. This will make the main branch available on the remote server:

$ git push origin main

The current state of your repository may now look like this:

$ git branch -a
* main
remotes/origin/HEAD -> origin/master
remotes/origin/main
remotes/origin/master

• Your local master branch has disappeared because it has been replaced by the main branch.

• The main branch is also present on the remote computer.

• However, the master branch is also still present on the remote server. So presumably others will continue to use
the the master branch for their work until you make the following changes:

– For all projects that depend on this project, the code and/or configuration must be updated.

394 Chapter 7. Create a product

https://git-scm.com/docs/git-fetch#_pruning


Python for Data Science, Release 24.1.0

– The test-runner configuration files may need to be updated.

– Build and release scripts need to be adjusted.

– The settings on your repository server, such as the default branch of the repository, merge rules and others,
need to be adjusted.

– References to the old branch in the documentation need to be updated.

– Any pull or merge requests that target the master branch should be closed.

After you have done all these tasks and are sure that the main branch works the same as the master branch, you can
delete the master branch:

$ git push origin --delete master

Team members can delete their locally still existing references to the master branch with

$ git fetch origin --prune

Git rebase

The commands git rebase and git merge allow you to merge Git branches. While git merge is always a moving
forward change approach, git rebase has powerful history rewrite functions. Here we take a look at its configuration,
use cases and pitfalls.

In doing so, git rebase moves a sequence of commits to a new base commit and can be useful for Feature branch
workflows workflows. Internally, Git achieves this by creating new commits and applying them to the specified base;
so the same-looking commits from branches are entirely new commits.

The main reason for git rebase is to maintain a linear project progression. If the main branch has evolved since you
started working on a feature branch, you might want to keep the latest updates to the main branch in your feature branch,
but keep the history of your branch clean. This would have the advantage that you could later do a clean git merge
of your functional branch into the main branch. This clean history also makes it easier for you to find a regression with
Find regressions with git bisect. A more realistic scenario would be the following:

1. An error is found in the main branch in a function that once worked without errors.

2. With the clean history of the main branch, Review should allow for quick conclusions.

3. If Review does not lead to the desired result, git bisect will probably help. In this case, the clean Git history helps
git bisect in the search for the regression.

Warning: The published history should only be changed in very rare exceptional cases, as the old commits would
be replaced by new ones and it would look as if this part of the project history had suddenly disappeared.

See also:
git rebase: what can go wrong?

Note: git rebase is also covered briefly in Jupyter Notebooks with Git and Feature branch workflows.

7.1. Manage code with Git 395

https://jvns.ca/blog/2023/11/06/rebasing-what-can-go-wrong-/#undoing-a-rebase-is-hard


Python for Data Science, Release 24.1.0

Rebasing dependent branches with –update-refs

When you are working on a large feature, it is often helpful to spread the work over several branches that build on each
other.

However, these branches can be cumbersome to manage if you need to overwrite the history in an earlier branch. Since
each branch depends on the previous branches, rewriting commits in one branch will result in subsequent branches no
longer being connected to the history.

Git 2.38 ships with a new --update-refs option for git rebase that will perform such updates for you without you
having to manually update each branch and without subsequent branches losing their history.

If you want to use this option on every rebase, you can run git config --global rebase.updateRefs true to
make Git behave as if the --update-refs option is always specified.

See also:
rebase: add –update-refs option

Delete commits with git rebase

This can also be easily realised with git rebase, whereby you do not have to delete the line in your editor but replace
the line pick with r (reword).

$ git rebase -i SHA origin/main

-i
Interactive mode, in which your standard editor is opened and a list of all commits after the commit with the hash
value SHA to be removed is displayed, for example

pick d82199e Update readme
pick 410266e Change import for the interface
...

If you now remove a line, this commit will be deleted after saving and closing the editor. Then the remote repository
can be updated with:

$ git push origin HEAD:main -f

Modify a commit message with rebase

This can also be easily with rebase by not deleting the line in your editor but replace pick with r (reword).

rebase as standard git pull strategy

Normally, git pull fetches and merges new remote commits without any problems. Usually only new commits from
the remote branch are added, a so-called fast-forward merge. However, if both the local and remote branches have new
commits, the branches will diverge. You must then somehow harmonise the different histories. By default, as of Git
2.33.1, any discrepancy will cause git pull to stop and display the following message:

$ git pull
hint: You have divergent branches and need to specify how to reconcile them.
hint: You can do so by running one of the following commands sometime before

(continues on next page)

396 Chapter 7. Create a product

https://lore.kernel.org/git/3ec2cc922f971af4e4a558188cf139cc0c0150d6.1657631226.git.gitgitgadget@gmail.com/


Python for Data Science, Release 24.1.0

(continued from previous page)

hint: your next pull:
hint:
hint: git config pull.rebase false # merge
hint: git config pull.rebase true # rebase
hint: git config pull.ff only # fast-forward only
hint:
hint: You can replace "git config" with "git config --global" to set a default
hint: preference for all repositories. You can also pass --rebase, --no-rebase,
hint: or --ff-only on the command line to override the configured default per
hint: invocation.
fatal: Need to specify how to reconcile divergent branches.

The notes allow three options:

git config pull.rebase false
merges the local and remote commits. Before Git 2.33.1, Git always used this merge.

git config pull.rebase true
The local commits are transferred to the remote commits.

git config pull.ff only
always leads to an error with divergent branches. You can then decide on a case-by-case basis with --no-rebase
(which means merge) or --rebase whether you want to merge or rebase.

Tip: I recommend git config pull.rebase true, as merging can be confusing. Rebasing the local commits to
the remote ones makes the story linear, which is more understandable.

Make rebase part of your standard strategy:

$ git config --global pull.rebase interactive

If git pull then encounters divergent local and remote branches, it will perform a rebase:

$ git pull
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
error: could not apply e50dfe5...
hint: Resolve all conflicts manually, mark them as resolved with
hint: "git add/rm <conflicted_files>", then run "git rebase --continue".
hint: You can instead skip this commit: run "git rebase --skip".
hint: To abort and get back to the state before "git rebase", run "git rebase --
,→abort".
Could not apply e50dfe5...

7.1. Manage code with Git 397



Python for Data Science, Release 24.1.0

Undo changes

With Git 2.23, git restore was added for undoing file changes. Previously, this task was performed by git reset,
which also has other tasks:

$ git restore
changes files in the working directory to a state that was previously known to Git. By default, Git HEAD checks
out the last commit of the current branch.

Note:
In Git < 2.23, git restore is not yet available. In this case, you still need to use git checkout:

$ git checkout FILE

$ git restore [-S|--staged] PATH/TO/FILE
undoes the addition of files. The changes are retained in your workspace so that you can change and add
them again if necessary.

The command is equivalent to $ git reset PATH/TO/FILE.

$ git restore [-SW] FILE
undoes the addition and changes in the workspace.

$ git restore [-s|--source] BRANCH FILE
restores a change to the version in the BRANCH .

$ git restore [-s|--source] @~ FILE
restores a change to the previous commit.

$ git restore [-p|--patch]
lets you select the changes to be undone individually.

$ git reset [--hard | --mixed | --soft | --keep] TARGET_REFERENCE
resets the history to an earlier commit.

Warning: The risk with reset is that work can be lost. Although commits are not deleted immediately,
they can become orphaned so that there is no longer a direct path to them. They must then be found and
restored promptly with reflog as Git usually deletes all orphaned commits after 30 days.

$ git reset @~

@~
cancels the last commit, whereby its changes are now transferred back to the stage area.

If there are changes in the stage area, these are moved to the work area, for example:

$ echo 'My first repo' > README.rst
$ git add README.rst
$ git status
On branch main
Changes marked for commit:
(use "git rm --cached <Datei>..." to remove from staging area)
New file: README.rst

$ git reset
$ git status

(continues on next page)

398 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

On branch main
Unversioned files:

(use "git add <file>...", to mark the changes for commit)
README.rst

@~3
takes back the last three commits.

'@{u}'
takes the remote version (upstream) of the current branch.

--hard
discards the changes in the staging and working area as well.

$ git status
On branch main
Changes marked for commit:
(use "git rm --cached <Datei>..." to remove from staging area)
New file: README.rst

$ git reset --hard
$ git status
On branch main
nothing to commit (create/copy files and use "git add" to version)

--mixed
resets the stage area, but not the work area, so that the changed files are retained but not marked for commit.

Tip: I usually prefer --soft over --mixed: it keeps the undone changes separate so that any additional
changes are explicit. This is especially useful if you have changes to the same file in the stage and workspace.

--soft
takes back the commits, but leaves the stage and workspace unchanged.

--keep
resets the stage area and updates the files in the work area that differ between COMMIT and HEAD, but retains
those that differ between stage and work area, these are files with changes that have not yet been added. If
a file that differs between COMMIT and stage area has unadded changes, reset will be cancelled.

You can then deal with your uncommitted changes, perhaps undoing them with git restore or hiding
them with git stash, before trying again.

Tip: Many other guides recommend --hard for this task, probably because this mode has been around
for a while. However, this mode is riskier because it irrevocably discards the changes not included in the
commit without asking questions. However, I use --keep and if I want to discard all uncommitted changes
before the reset, I use git restore -SW.

$ git revert COMMIT_SHA
creates a new commit and reverts the changes of the specified commit so that the changes are inverted.

$ git fetch --prune REMOTE
Remote refs are removed when they are removed from the remote repository.

$ git commit --amend
updates and replaces the last commit with a new commit that combines all deployed changes with the contents

7.1. Manage code with Git 399



Python for Data Science, Release 24.1.0

of the previous commit. If nothing is provided, only the previous commit message is rewritten.

Reference for common reset commands

Undo all local changes to a branch

$ git reset --keep '@{u}'

Undo all commits in the current branch

git merge-base selects the commit where two branches have split. Pass @ and main to select the commit where the
current branch is forked from main. Reset it to undo all commits on the local branch with:

$ git reset --soft $(git merge-base @ main)

Undo all changes in the current branch

$ git reset --keep main

Undo commit in the wrong branch

If you have accidentally committed to an existing branch instead of creating a new branch first, you can change this in
the following three steps:

1. create a new branch with $ git branch NEW_BRANCH

2. Resets the last commit in your active branch with $ git reset --keep @~

3. Apply the changes to the new branch with $ git switch NEW_BRANCH

Restoring a deleted branch

Assuming you have accidentally deleted an unmerged branch, you can recreate the branch with the corresponding SHA:

$ git branch -D new-feature
Branch new-feature entfernt (war d53e431).

The output contains the SHA commit to which the branch pointed. You can recreate the branch with this SHA:

$ git branch new-feature d53e431

But what if you have deleted the branch and the corresponding terminal history has been lost? To find the SHA again,
you can pass the reflog output to grep:

$ git reflog | grep -A 1 new-feature
12bc4d4 HEAD@{0}: checkout: moving from new-feature to main
d53e431 HEAD@{1}: commit: Add new feature
12bc4d4 HEAD@{2}: checkout: moving from main to new-feature
12bc4d4 HEAD@{3}: merge my-feature: Fast-forward

400 Chapter 7. Create a product

https://git-scm.com/docs/git-merge-base


Python for Data Science, Release 24.1.0

-A 1 displays an additional line after each hit. The output shows several reflog entries that refer to the branch. The
first entry shows a change from new-feature to main, with the commit SHA on main. The entry before it is the last
change to new-feature with the SHA to restore:

$ git branch triceratops-enclosure 43f66f9

By default, you can save such a branch within 30 days after deleting the branch, as gc.reflogExpireUnreachable
is usually set to do so.

Undoing a commit change

Let’s return to the introductory example. Imagine you have made a commit and changed it later. Then you realise
that the change should be undone. How can you proceed? If you can still see the original Git commit output in your
terminal history, you can retrieve the SHA from there and undo the change. But if this is no longer possible, it’s time
for the reflog. Check the reflog for the branch:

$ git reflog my-feature-branch
12bc4d4 (HEAD -> main, my-feature-branch) my-feature-branch@{0}: commit (amend): Add my␣
→˓feature and more
982d93a my-feature-branch@{1}: commit: Add my feature
900844a my-feature-branch@{2}: branch: Created from HEAD

The first entry, commit (amend), shows the creation of the amended commit. The second entry shows the original
commit, which we now want to return to with a hard reset:

$ git reset --hard 982d93a

You may then want to restore the content of the changed commit in order to correct it and change it again. Do this with
git restore from the changed commit SHA, which is at the top of the previous reflog output:

$ git restore -s 12bc4d4

Undoing a faulty rebase

Imagine you are working on a new-feature branch with three commits, of which you want to undo the middle one:

$ git rebase -i main

pick d53e431 Add new feature
-pick 329271a More performant implementation for the new feature
-pick 1d6c477 Add API docs

However, you have now inadvertently deleted the last commit. If you can no longer see the SHA value in the terminal
history, you can pass the reflog output to grep again:

$ git reflog| grep 'API docs'
1d6c477 HEAD@{2}: commit: Add API docs

With this SHA, the commit can now be restored with Git cherry-pick:

$ git cherry-pick 1d6c477

7.1. Manage code with Git 401



Python for Data Science, Release 24.1.0

Remove a file from the history

A file can be completely removed from the current branches Git history. This could be necessary if you accidentally
committed passwords or huge files:

$ git filter-repo --invert-paths --path path/somefile
$ git push --no-verify --mirror

Note: Inform the team members that they should create a clone of the repository again.

Remove a string from the history

$ git filter-repo --message-callback 'return re.sub(b"^git-svn-id:.*\n", b"", message,␣
→˓flags=re.MULTILINE)'

See also:
• git-filter-repo — Man Page

• git-reflog

• git-gc

Git best practices

Commit early

Make your first commit after you’ve finished the initial installation and before you make your first changes. For a cookie
cutter template, for example, proceed as follows:

$ pipenv run cookiecutter https://github.com/veit/cookiecutter-namespace-template.git
full_name [Veit Schiele]:
email [veit@cusy.io]:
github_username [veit]:
project_name [cusy.example]:
...

These initial changes can then be checked in with:

$ cd cusy.example
$ git init
$ git add *
$ git add .gitignore
$ git commit -m 'Initial commit'
$ git remote add origin ssh://git@github.com:veit/cusy.example.git
$ git push -u origin main

402 Chapter 7. Create a product

https://www.mankier.com/1/git-filter-repo
https://git-scm.com/docs/git-reflog
https://git-scm.com/docs/git-gc


Python for Data Science, Release 24.1.0

Exclude undesired files

Temporary files, jupyter checkpoint folders and builds have no business in a git repository. Credentials do not either.
The .gitignore file contains a list of paths that git will not add unless you ask for it explicitly.

You can find a template .gitignore file for Python projects in the dotfiles repository. The gitignore.io website contains
.gitignore files for other programming languages. The .gitignore file itself should be checked in, too:

$ git add .gitignore
$ git commit -m 'add .gitignore file'

If you have accidentally checked undesired files into your Git repository, you can remove them again with:

$ git rm -r .ipynb_checkpoints/

Write a README

Each repository should also have a README.rst file that describes the deployment and the basic structure of the code.

Commit often

Each completed task and subtask should be immediately followed by a commit. Incomplete work also may be stored
on git. As a rule of thumb you should commit at least daily before leaving work. In busy times it is common to commit
every 10 minutes.

Frequent commits make it easier for you to:

• isolate errors

• understand the code

• maintain the code in the future

If you have made several changes to a file, you can split them up into several commits later with:

$ git add -p my-changed-file.py

Don’t change the published history

Even if you later find out that a commit that has already been published with git push contains one or more errors,
you should never try to undo this commit. Rather, you should fix the error that have occurred through further commits.

Warning: Workflows with git rebase are a reasonable exception to this rule.

7.1. Manage code with Git 403

https://github.com/veit/dotfiles
https://gitignore.io/


Python for Data Science, Release 24.1.0

Choose a Git workflow

Choose a workflow that fits best to your project. Projects are by no means identical and a workflow that fits one project
does not necessarily have to fit in another project. A different workflow can be recommended initially than in the further
progress of the project.

Write meaningful commit messages

By creating insightful and descriptive commit messages, you make working in a team a lot easier. They allow others
to understand your changes. They are also helpful at a later point in time to understand which goal should be achieved
with the code.

Usually short messages, 50–72 characters long, should be specified and displayed on one line, eg with git log
--oneline.

With git blame you can later specify for each line in which revision and by which author the change was made. You
can find more information on this in the Git documentation: git-blame.

If you use gitmojis in your commit messages, you can easily see the intent of the commit later.

Note:
• gitmoji.dev

• github.com/carloscuesta/gitmoji

• github.com/carloscuesta/gitmoji-cli

• Visual Studio Code Extension

GitLab also interprets certain commit messages as links, for example:

$ git commit -m "Awesome commit message (Fix #21 and close group/otherproject#22)"

• links to issues: #NUMBER

• links to issues in other projects: GROUP/PROJECT#NUMBER

• links to merge requests: !NUMBER

• links to snippets: $NUMBER

There should be at least one ticket for each commit that should provide more detailed information about the changes.

There should be at least one ticket for each commit, which should contain more detailed information about the changes.
Alternatively, you can also write multi-line commit messages containing this information, for example with:

$ git commit -m 'Expand section on meaningful commit messages' -m 'Fix the serious␣
→˓problem'

Or, if you just enter git commit, your editor will open, for example with the following text:

# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
#
# On branch main

404 Chapter 7. Create a product

https://git-scm.com/docs/git-blame
https://gitmoji.dev/
https://github.com/carloscuesta/gitmoji
https://github.com/carloscuesta/gitmoji-cli
https://marketplace.visualstudio.com/items?itemName=seatonjiang.gitmoji-vscode


Python for Data Science, Release 24.1.0

Git expects you to insert your commit message at the beginning of the file. After you have finished editing the file, Git
reads its contents and continues. It cleans up the file by removing lines commented with # and subsequent empty lines.
If the message is empty after cleaning up, Git cancels the commit – this is useful if you realise that you have forgotten
something. Otherwise, the commit is created with the remaining content. However, GitLab uses # as a prefix for the
number of an item. This double meaning of # can lead to confusion if you write a commit message that refers to an
item:

Expand section on meaningful commit messages
#21: Add multi-line commit messages
# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
#
# On branch main
# Changes to be committed:
# modified: productive/git/best-practices.rst
#

Git usually removes the line starting with #21 so that the message looks like this:

Expand section on meaningful commit messages

Avoid this mishap by using an alternative clean-up mode called Scissors. You can activate it globally with:

$ git config --global commit.cleanup scissors

Git then starts each new commit message with the Scissorsr line:

# ------------------------ >8 ------------------------
# Do not modify or remove the line above.
# Everything below it will be ignored.
#
# On branch main
# ...
#

Specify co-authors

If you are working on a commit with a team member, it’s good to acknowledge their contribution with the
co-authored-by trailer. Trailers are additional metadata at the end of the commit message that use a KEY: VALUE
syntax and can be repeated to list multiple values:

Expand section on meaningful commit messages
#21: Add multi-line commit messages
co-authored-by: Kristian Rother <kristian.rother@cusy.io>
co-authored-by: Frank Hofmann <frank.hofmann@cusy.io>

GitLab analyses the co-authored-by lines to display all avatars of the commit and also to update the profile statistics
of the co-authors, etc..

7.1. Manage code with Git 405



Python for Data Science, Release 24.1.0

Maintain your repository regularly

You should perform the following maintenance work regularly:

Validate the repo

The command git fsck checks whether all objects in the internal datastructure of git are consistently connected with
each other.

Compresses the repo

Save storage space with the command git gc or git gc --aggressive.

See also:
• git gc

• Git Internals - Maintenance and Data Recovery

Clean up remote tracking branches

Unused branches on a server can be removed with git remote update --prune. It is even better if you change
the default setting so that remotely deleted branches are also deleted locally with git fetch and git pull. You can
achieve this with:

$ git config --global fetch.prune true

Check forgotten work

Display a list of saved stashes with git stash list. They can be removed with git stash drop.

Check your repositories for unwanted files

With Gitleaks you can regularly check your repositories for unintentionally saved access data.

You can also run Gitleaks automatically as a GitLab action. To do this, you need to include the Secret-Detection.gitlab-
ci.yml template, for example, in a stage called secrets-detection in your .gitlab-ci.yml file:

include:
- template: Security/Secret-Detection.gitlab-ci.yml

The template creates secret detection jobs in your CI/CD pipeline and searches the source code of your project for
secrets. The results are saved as a Secret Detection Report Artefakt that you can download and analyse later.

See also:
• GitLab Secret Detection

With git-filter-repo you can remove unwanted files from your Git history.

406 Chapter 7. Create a product

https://git-scm.com/docs/git-gc
https://git-scm.com/book/en/v2/Git-Internals-Maintenance-and-Data-Recovery
https://github.com/zricethezav/gitleaks
https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Secret-Detection.gitlab-ci.yml
https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Secret-Detection.gitlab-ci.yml
https://docs.gitlab.com/ee/ci/yaml/artifacts_reports.html#artifactsreportssecret_detection
https://docs.gitlab.com/ee/user/application_security/secret_detection/


Python for Data Science, Release 24.1.0

Git workflows

Here, Git workflow is understood as a recommendation for using Git to enable a consistent and efficient way of working.
Since Git makes branching and merging much easier compared to older versioning systems like SVN, this allows for a
variety of different workflows and there is no one ideal process for best interacting with Git.

However, all of the workflows presented expect everyone on the team to use the same workflow for changes. Therefore,
at the outset, a team should collectively agree on a particular Git workflow that they feel is most appropriate for that
project. Size and team culture play a role in keeping the complexity of the workflow and the number of errors as low
as possible.

In the following, we discuss some of these Git workflows.

Git Flow

Git Flow was one of the first proposals for the use of Git branches. It recommended a main branch and a separate
develop branch as well as various other branches for features, releases and hotfixes. The various developments should
be brought together in the develop branch, then transferred to the release branch and finally end up in the main
branch.

Drawbacks of Git Flow

While Git Flow is a well-defined but complex standard, it creates two practical problems:

• Most developers and tools assume that the main branch is the branch from which branches and merges are
executed. With Git Flow, there is additional work involved because you always have to switch to the develop
branch first.

• The hotfixes and release branches also bring additional complexity, which should only bring advantages in
the rarest of cases.

In response to the problems of Git Flow, GitHub and Atlassian developed simpler alternatives that are mostly limited
to so-called Feature branch workflows.

See also:
Vincent Driessen: A successful Git branching model

First steps

Git-flow is just an abstract idea of a git workflow, where the branches and the merges are given. There is also software,
git-flow, to assist with this workflow.

Installation

$ wget -q -O - --no-check-certificate https://github.com/nvie/gitflow/raw/develop/
→˓contrib/gitflow-installer.sh | bash

$ sudo apt install git-flow

$ brew install git-flow

7.1. Manage code with Git 407

https://guides.github.com/introduction/flow/
https://www.atlassian.com/de/git/tutorials/comparing-workflows
https://nvie.com/posts/a-successful-git-branching-model/


Python for Data Science, Release 24.1.0

Initialise

git-flow is a wrapper for Git. The git flow init command not only initiates a directory, but also creates branches
for you:

$ git flow init
Initialized empty Git repository in /home/veit/my_repo/.git/
No branches exist yet. Base branches must be created now.
Branch name for production releases: [master] main
Branch name for "next release" development: [develop]
How to name your supporting branch prefixes?
Feature branches? [feature/]
Bugfix branches? [bugfix/]
Release branches? [release/]
Hotfix branches? [hotfix/]
Support branches? [support/]
Version tag prefix? []
Hooks and filters directory? [.git/hooks]

Alternatively, you could have entered the following:

$ git branch develop
$ git push -u origin develop

0.1

0.2

1.0

This workflow provides two branches to record the history of the project:

408 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

main
contains the official release history, and all commits in this branch should be tagged with a version number.

develop
integrates the features.

Feature branches

Each new feature should be created in its own branch, which can be pushed to the remote repository at any time.
However, a feature branch is not created from the main branch but from the develop branch; and when a feature is
finished, it is also merged back into the develop branch.

7.1. Manage code with Git 409



Python for Data Science, Release 24.1.0

0.1

0.2

1.0

You can create such feature branches with git flow:

$ git flow feature start 17-some-feature
(continues on next page)

410 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

Switched to a new branch 'feature/17-some-feature'

Summary of actions:
- A new branch 'feature/17-some-feature' was created, based on 'develop'
- You are now on branch 'feature/17-some-feature'
...

. . . or with

$ git switch -c feature/17-some-feature
Switched to a new branch 'feature/17-some-feature'

Conversely, you can complete your feature branch with

$ git flow feature finish 17-some-feature
Switched to branch 'develop'
Already up to date.
Deleted branch feature/17-some-feature (was a2d223f).
...

. . . or with

$ git switch develop
$ git merge feature/17-some-feature
$ git branch -d feature/17-some-feature
Deleted branch feature/17-some-feature (was a2d223f).

Release branches

If the develop branch contains enough features for a release or a fixed release date is approaching, a release branch
is created from the develop branch, to which no new features should be added from this point on, but only bug fixes
and changes related to this release. If the release can be delivered, the release branch is on the one hand merged
into the main branch and tagged with a version number, and on the other hand merged back into the develop branch,
which may have developed further since the creation of the release branch.

$ git flow release start 0.1.0
Switched to a new branch 'release/0.1.0'
...
$ git flow release finish '0.1.0'
Switched to branch 'main'
Deleted branch release/0.1.0 (was a2d223f).

Summary of actions:
- Release branch 'release/0.1.0' has been merged into 'main'
- The release was tagged '0.1.0'
- Release tag '0.1.0' has been back-merged into 'develop'
- Release branch 'release/0.1.0' has been locally deleted
- You are now on branch 'develop'

. . . or

7.1. Manage code with Git 411



Python for Data Science, Release 24.1.0

$ git switch develop
$ git branch develop/0.1.0
...
$ git switch main
$ git merge release/0.1.0
$ git tag -a 0.1.0
$ git switch develop
$ git merge release/0.1.0
$ git branch -d release/0.1.0

412 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

0.1

0.2

1.0

7.1. Manage code with Git 413



Python for Data Science, Release 24.1.0

Hotfix branches

Hotfix branches are suitable for quick patches of production versions. They are similar to release branches and
feature branches, but are based on the main branch instead of the develop branch. This makes it the only branch
that should be forced directly from the main branch. Once the hotfix has been completed, it should be merged into both
the main and develop branches and, if necessary, into the current release branch. The main branch should also be
tagged with a new version number.

$ git flow hotfix finish 37-some-bug
Switched to branch 'develop'
Merge made by the 'recursive' strategy.
...
Deleted branch hotfix/37-some-bug (was a2d223f).

Summary of actions:
- Hotfix branch 'hotfix/37-sombe-bug' has been merged into 'main'
- The hotfix was tagged '0.2.0'
- Hotfix tag '0.2.0' has been back-merged into 'develop'
- Hotfix branch 'hotfix/37-some-bug' has been locally deleted
- You are now on branch 'develop'

. . . or

$ git switch main
Switched to branch 'main'
...
$ git merge hotfix/37-some-bug
$ git tag -a 0.2.0
$ git switch develop
$ git merge hotfix/37-some-bug
$ git branch -d hotfix/37-some-bug

414 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

0.1

0.2

1.0

7.1. Manage code with Git 415



Python for Data Science, Release 24.1.0

Feature branch workflows

The basic idea behind feature branch workflows is that the development of individual features should take place in a
dedicated branch and not in the main branch. This encapsulation facilitates the work in a development team, as changes
in the main branch do not disturb and can initially be neglected. Conversely, this should prevent the main branch from
being contaminated by unfinished code. This second argument then also facilitates continuous integration with other
components.

See also:
• Feature Driven Development

• Martin Fowler: Feature Branch

Merge or pull requests

Encapsulating the development of individual features in a branch also allows you to use merge or pull requests to discuss
changes with others in the team and give them the opportunity to approve a feature before it is integrated into the official
project. However, if you encounter problems in your feature development, you can also use merge or pull requests to
discuss possible solutions with others in the team.

Merge or pull requests are provided by web-based services such as GitHub, GitLab and Atlassian for reviewing and
commenting on changes. You can also use @ID in your comments to ask specific people on the project team directly
for feedback. If you use automated testing, you can also see the test results here; perhaps the coding style does not
correspond to your project guidelines, or the test coverage is insufficient. In the merge or pull requests, such discussions
are encouraged and documented without appearing directly as commits in the repository.

Warning: Merge or pull requests are not part of Git itself, but of the respective web-based service. They are also
not standardised, so that they can only be transferred with difficulty when switching to another service.

See also:
• About pull requests

• Making a Pull Request

• Merge requests

GitHub Flow

GitHub Flow was intended to be a greatly simplified alternative to Git Flow, with only different feature branches in
addition to the main branch. The lifecycle of a Git feature branch could then look like this:

1. All feature branches start on the basis of the current main branch.

To do this, we first switch to the main branch, get the latest changes from the server and update our local copy
of the repository:

$ git switch main
$ git fetch origin
$ git reset --hard origin/main

2. Creating the feature branch.

We create a feature branch with git switch -c and the number of the ticket in the task management that
describes this feature.

416 Chapter 7. Create a product

https://en.wikipedia.org/wiki/Continuous_integration
https://de.wikipedia.org/wiki/Feature_Driven_Development
https://martinfowler.com/bliki/FeatureBranch.html
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://www.atlassian.com/git/tutorials/making-a-pull-request
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.github.com/en/get-started/quickstart/github-flow


Python for Data Science, Release 24.1.0

$ git switch -c 17-some-feature

3. Add and commit changes.

$ git add SOMEFILE
$ git commit

4. Push the feature branch with the changes.

By pushing the feature branch with your changes, you not only create a backup copy of your changes, but you
also allow others in the team to view the changes.

$ git push -u origin 17-some-feature

The -u parameter adds the 17-some-feature branch to the upstream Git server (origin) as a remote branch.
In the future, you can push into this branch without having to specify any further parameters.

5. Make a merge or pull request

Once you have completed a feature, it is not immediately merged into the main branch, but a merge or pull request
is created, giving others in the development team the opportunity to review your changes. Any changes to this
branch will now also be reflected in this merge or pull request.

6. Merge

Once your merge or pull request is accepted, you must first ensure that your local main branch is synchronised
with the upstream main branch; only then can you merge the feature branch into the main branch and finally
push the updated main branch back into the upstream main branch. However, this will not infrequently lead to
a merge commit. Nevertheless, this workflow has the advantage that a clear distinction can be made between
feature development and merging.

Simple Git workflow

Atlassian also recommends a similar strategy, but they recommend rebasing the feature branches. This gives you a
linear progression by moving the changes in the feature branch to the top of the main branch before merging with a
fast-forward merge.

1. Use rebase to keep your feature branch up to date with main:

$ git fetch origin
$ git rebase -i origin/main

In the rare case that others from the team are also working in the same feature branch, you should also adopt their
changes:

$ git rebase -i origin/17-some-feature

Resolves any conflicts arising from rebase at this stage. This should have resulted in a number of clean merges
by the end of feature development. It also keeps the history of your feature branches clean and focused, without
distracting noise.

2. When you are ready for feedback, push your branch:

$ git push -u origin 17-some-feature

You can then make a merge or pull request.

After this push, you can always update the remote branch in response to feedback.

7.1. Manage code with Git 417

https://www.atlassian.com/blog/git/simple-git-workflow-is-simple


Python for Data Science, Release 24.1.0

3. After the review is complete, you should do a final clean-up of the feature branch’s commit history to remove
unnecessary commits that do not provide relevant information.

4. When development is complete, merge the two branches with -no-ff. This will preserve the context of the work
and make it easy to revert the entire feature if needed:

$ git switch main
$ git pull origin main
$ git merge --no-ff 17-some-feature

The simple-git-workflow using rebase creates a strictly linear version history. In this linear history it is easier to
understand changes over time and to find bugs with bisect.

Summary

The main advantages of feature branches workflows are as follows

• Features are isolated in individual branches so that each team member can work independently.

• At the same time, team collaboration is enabled via merge or pull requests.

• The code inventory to be managed remains relatively small because the feature branches can usually be quickly
transferred to the main.

• The workflows correspond to the usual methods of continuous integration.

However, they cannot answer how deployments to different environments or splitting into different releases should be
done. Possible answers to this are described in Deployment and release branches.

See also:
Both variations of feature branches are simpler alternatives of the considerably more complex Git Flow.

Deployment and release branches

Deployment branches

We recommend one or more deployment branches if, for example, you cannot determine the release time yourself, for
example if an iOS application has to pass the app store validation or you only have a fixed time window available for
deployment. In this case, a production branch prod, that reflects the code provided is recommended. Such a workflow
prevents the additional work when using Git rebase and Git tags.

Assuming that you have a development, staging and production environment, then a merge or pull request for a
feature is first made to the staging branch. As long as the quality check has been passed there, the changes and the
code can be ready for production, the changes can be transferred to the main branch. This process can be repeated
several times for new features until for example the time has come for the going life of these changes and a deployment
branch can be created.

418 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Release branches

Release branches are recommended when software is to be delivered to customers. In this case each branch should
contain a minor version, for example 2.7 or 3.4. Usually these branches are created from the main branch as late
as possible. This reduces the number of merges that have to be distributed across multiple branches during bug fixes.
Usually, these are first transferred to the main and then transferred from there to the release branch with Git cherry-pick,
for example:

$ git switch 3.10
$ git cherry-pick 61de025
[3.10 b600967] Fix bug #17
Date: Thu Sep 15 11:17:35 2022 +0200
1 file changed, 9 insertions(+)

This upstream first approach is for example used by Google and Red Hat. Every time a bug fix has been adopted in a
release branch, the release is increased by a patch version with a Tag, see also Semantic Versioning.

7.1. Manage code with Git 419

https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first
https://www.redhat.com/en/blog/a-community-for-using-openstack-with-red-hat-rdo
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://semver.org/


Python for Data Science, Release 24.1.0

2.7.0

2.7.8

3.10.0

3.10.1

Trunk Based Development

Trunk Based Development recommends short-lived topic branches that are merged into a single main branch. TBD
(Trunk Based Development) leads to an easily managed linear progression.

Trunk Based Development is a perfect fit for one-person projects. Branches are not necessary, but using a version
control system pays off quickly even for a single developer.

In smaller development teams, each pair-programming duo preferably transfers small commits directly to the trunk (or
main branch), although the build must first be successfully executed before integration.

Trunk based development on a large scale is best done with short-lived feature branches, where one person develops
over a few days at most, and the changes are then integrated into the trunk (or main) with pull or merge requests, code
review and build automation.

Merge strategies: merge vs. squash vs. rebase

I use git merge, git merge squash and git rebase depending on the situation. They all have their merits, but
their use depends very much on the context.

git merge
adds a new commit when the branches are merged.

This has the advantage that it best represents the true history. You can see the merge and all the WIP (work in
progress) commits that were run during development. If necessary, you can simply undo the merge with git
revert -m|--mainline 1|2 MERGE-COMMIT_SHA .

420 Chapter 7. Create a product

https://trunkbaseddevelopment.com


Python for Data Science, Release 24.1.0

-m 1
takes you back to the behaviour of the parent element from the branch to which you have applied the changes.

-m 2
takes you back to the behaviour of the parent element from the branch from which you have applied the
changes.

Tip: More commits also make git bisect better, as long as a build can be created for each commit. With a
hundred or at most a thousand lines that have changed, I still have a chance of finding the bug in a reasonable
amount of time.

See also:
• Advanced Merging

git merge --squash
allows you to merge all changes from a branch into a single commit above the current branch.

This is useful if you have many small WIP commits that are really all aimed at one feature. When squashing,
I make sure to rewrite the commit message so that it is as meaningful as possible. The usual squash commit
message created by Git, GitLab etc. is usually not sufficient and simply adds all squash commit messages
together, possibly a series of WIP commit messages.

git rebase
moves a sequence of commits to a new base commit. With git rebase, the advantage to find a bug quickly
using git bisect remains. In addition, however, it is now easier to recognise the context in which the bug occurred.

Tip: With a large diff and many WIP commits, git rebase can be used interactively to selectively choose
commits for the squash option and rearrange the commits. However, it only does one thing at a time:

• merge commits with the squash option or

• change the order of the commits or

• edit the commits.

Do not try to make all changes at once.

Tip: If you don’t feel safe with git rebase, then don’t do it! You can use git merge or git commit
--amend instead.

See also:
• Git rebase

• Rewriting History: Squashing Commits

• Rewriting History: Reordering Commits

7.1. Manage code with Git 421

https://git-scm.com/book/en/v2/Git-Tools-Advanced-Merging
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#_squashing
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#_reordering_commits


Python for Data Science, Release 24.1.0

Change commits for a clean log

With git commit --fixup and git rebase --autosquash you can correct a series of commits relatively easily.
To demonstrate this with an example, I present the following scenario:

1. We have two commits in our my-feature branch: one for the actual function, the other for the associated tests:

$ git log --oneline my-feature ^origin/main
a4587fa (my-feature) Add test for my new feature
56e34e9 Add new feature

2. During the merge or pull request, we receive feedback on both our function and our tests, which we would like
to integrate into our existing commits. To do this, we first create temporary commits:

$ git commit -m "Feedback on the tests from my function"
$ git commit -m "Feedback on my function"
$ git log --oneline my-feature ^origin/main
556c1e8 (my-feature) Feedback on my function
8780db6 Feedback on the tests from my function
a4587fa Add test for my new feature
56e34e9 Add new feature

. . . with git rebase

3. With git rebase -i we can interactively rearrange the pick lines:

$ git rebase -i origin/main

This opens our editor:

pick 56e34e9 Add new feature
pick a4587fa Add test for my new feature
pick 8780db6 Feedback on the tests from my function
pick 556c1e8 Feedback on my function

We can then change the lines, for example to:

pick 56e34e9 Add new feature
squash 556c1e8 Feedback on my function
pick a4587fa Add test for my new feature
squash 8780db6 Feedback on the tests from my function

Now we have two commits again:

$ git log --oneline my-feature ^origin/main
31a140a (my-feature) Add test for my new feature
132ae9b Add new feature

4. The changes can now be sent to our remote branch with git push -f.

422 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

. . .with git commit --fixup and git rebase --autosquash

In Git, however, there is an even easier way to correct a previous commit: with git commit--fixup and git rebase
--autosquash.

5. We create two temporary commits again, but this time with git commit--fixup:

# Further changes to the tests
$ git commit --fixup=31a140a
[my-feature dd0c0d1] fixup! Add test for my new feature
1 file changed, 1 insertion(+)
# Further changes to my function
$ git commit --fixup=132ae9b
[my-function bc2298a] fixup! Add new feature
1 file changed, 1 insertion(+)
$ git log --oneline my-feature ^origin/main
bc2298a (my-feature) fixup! Add new feature
dd0c0d1 fixup! Add test for my new feature
31a140a Add test for my new feature
132ae9b Add new feature

For commits with the --fixup=SHA option, Git writes a specially formatted commit message that can be read
as this commit corrects that commit.

6. Instead of using git rebase -i to manually specify the Pick/Squash lines, we can now simply run git
rebase --autosquash:

$ git rebase --autosquash origin/main
Successfully rebased and updated refs/heads/my-feature.
$ git log --oneline my-feature ^origin/main
694cb48 (my-feature) Add test for my new feature
55cbe9b Add new feature

git rebase --autosquash automates what we have just done manually with git rebase -i – but it does
not open an editor in which we have to move the commits manually.

Tip: The --fixup option also contains the amend and reword options to reformulate the commit message, for
example git commit --fixup:amend=SHA .

Further options can be found in the Git commit documentation.

Monorepos and large repositories

In a large project, single components of a software may be kept in separate repositories. However, sometimes this
creates unnecessary complexity, for instance which versions of the components work together. In these cases, it can
make sense to keep all parts of a project in a monolithic repository or monorepo.

7.1. Manage code with Git 423

https://git-scm.com/docs/git-commit#Documentation/git-commit.txt---fixupamendrewordltcommitgt


Python for Data Science, Release 24.1.0

Definition

• The repository contains more than one logical project (for example an iOS client and a web application).

• The logical projects can be built, tested and deployed independently.

• These projects are usually only loosely connected or can be connected in other ways, for example via dependency
management tools.

• The repository contains many commits, branches and/or tags. Or it contains many and/or large files.

With thousands of commits by hundreds of authors in thousands of files per month, the Linux kernel repository is huge.

Pros and cons

One advantage of monorepos may be that the effort to determine which versions of one project are compatible with
which versions of another project may be significantly reduced. This is at least always dan the case if all projects of
a Repository are worked on by only one developer team. Then it is recommended to receive with each Merge again a
executable version also if the API between the two projects was changed.

However, performance losses can prove to be a disadvantage. These can arise, for example, from

a large number of commits
Since Git uses DAGs (directed acyclic graphs) to represent the history of a project, all operations that traverse
this graph, for example git log or git blame, will become slow.

a large number of Git references
A large number of branches and tags also slow down git. You can use git ls-remote to view the refs in a
repository, and git gc to combine loose refs into a single file.

Any operation that must traverse the commit history of a repository and account for the individual refs, such as
with git branch --contains *COMMIT, will be slow on a repo with many refs.

a large number of versioned files
The directory cache index (.git/index) is used by Git to determine if the file has been modified. In doing so,
as the number of files increases, many operations, such as git status and git commit, slow down.

large files
Large files in a subtree or project reduce the performance of the entire repository.

Strategies for large repositories

The design goals of Git that have made it so successful and popular sometimes conflict with the desire to use it in ways
for which it was not designed. Nevertheless, there are a number of strategies that can be helpful when working with
large repositories:

git clone --depth

Even though the threshold at which a history is considered huge is quite high, it can still be tedious to clone it. Never-
theless, we cannot always avoid long histories when they need to be maintained for legal or regulatory reasons.

The solution for a fast clone of such a repository is to copy only the most recent revisions. With the shallow option of git
clone you can retrieve only the last N commits of the history, for example git clone --depth N REMOTE-URL.

Tip: Build systems connected to your Git repository also benefit from such shallow clones!

424 Chapter 7. Create a product

https://github.com/torvalds/linux/


Python for Data Science, Release 24.1.0

Shallow clones have been rather rare in Git until now, as some operations were hardly supported at the beginning.
For some time now (in versions 1.9 and higher) you can even perform pull and push operations in repositories from a
Shallow Clone.

git filter-branch

For large repositories where many binaries have been accidentally transferred, or old assets that are no longer needed,
git filter-branch is a good solution to go through the entire history and filter out, change or skip files according
to predefined patterns.

It’s a very powerful tool once you figure out where your repository is heavy. There are also helper scripts to identify
large items: git filter-branch --tree-filter 'rm -rf /PATH/TO/BIG/ASSETS'

Warning: However, git filter-branch rewrites the entire history of your project, that is, on the one hand all
commit hashes change and on the other hand every team member has to clone the updated repository again.

See also:
• How to tear apart a repository: the Git way

git clone --branch

You can also limit the size of the cloned history by cloning a single branch, for example with git clone REMOTE-URL
--branch BRANCH-NAME --single-branch FOLDER .

This can be useful if you are working with long-running and divergent branches, or if you have many branches and only
need to work with some of them. However, if you only have a few branches with few differences, you probably won’t
notice much difference with this.

Git LFS

Git LFS is an extension that stores pointers to large files in your repository rather than the files themselves; these are
stored on a remote server, drastically reducing the time it takes to clone your repository. Git LFS accesses Git’s native
push, pull, checkout and fetch operations to transfer and replace objects, meaning you can work with large files in your
repository as usual.

You can install Git LFS with

$ sudo apt install git-lfs

$ brew install git-lfs

Git LFS can be installed with git for windows.

Then you can install Git LFS in your repository with

$ git lfs install
Updated Git hooks.
Git LFS initialized.

Now, to apply Git LFS to specific file types, you can for example specify:

7.1. Manage code with Git 425

https://www.atlassian.com/blog/git/tear-apart-repository-git-way?
https://git-lfs.github.com/
https://gitforwindows.org/


Python for Data Science, Release 24.1.0

$ git lfs track "*.pdf"
Tracking "*.pdf"

This creates the following line in your .gitattributes file:

*.pdf filter=lfs diff=lfs merge=lfs -text

Finally, you should manage the .gitattributes file with Git:

$ git add .gitattributes

git-sizer

git-sizer calculates various metrics for a local Git repository and flags those that might cause you problems or incon-
venience, for example:

$ git-sizer
Processing blobs: 1903
Processing trees: 4126
Processing commits: 1055
Matching commits to trees: 1055
Processing annotated tags: 2
Processing references: 5
| Name | Value | Level of concern |
| ---------------------------- | --------- | ------------------------------ |
| Biggest objects | | |
| * Blobs | | |
| * Maximum size [1] | 35.8 MiB | *** |

[1] 9fe7b8048891965e476aac0410e08e050fd21354 (refs/heads/main:docs/workspace/pandas/
→˓descriptive-statistics.ipynb)

Installation

1. Go to the releases page and download the ZIP file that corresponds to your platform.

2. Unpack the file.

3. Move the executable file (git-sizer or git-sizer.exe) into your PATH.

$ brew install git-sizer

Git file system monitor (FSMonitor)

git status and git add are slow because they have to search the entire working tree for changes. The git
fsmonitor--daemon function, available in Git version 2.36 and later, speeds up these commands by reducing the
scope of the search:

$ time git status
On branch master
Your branch is up to date with 'origin/master'.

(continues on next page)

426 Chapter 7. Create a product

https://github.com/github/git-sizer
https://github.com/github/git-sizer/releases


Python for Data Science, Release 24.1.0

(continued from previous page)

real 0m1,969s
user 0m0,237s
sys 0m1,257s
$ git config core.fsmonitor true
$ git config core.untrackedcache true
$ time git status
On branch master
Your branch is up to date with 'origin/master'.
real 0m0,415s
user 0m0,171s
sys 0m0,675s
$ git fsmonitor--daemon status
fsmonitor-daemon is watching '/srv/jupyter/linux'

See also:
• Improve Git monorepo performance with a file system monitor

• Scaling monorepo maintenance

Scalar

scalar, a repository management tool for large repositories from Microsoft, has been part of the Git core installation
since version 2.38. To use it, you can either clone a new repository with scalar clone /path/to/repo or apply
scalar to an existing clone with scalar register /path/to/repo.

Other options of scalar clone are:

-b, --branch BRANCH
Branch to be checked out after cloning.

--full-clone
Create full working directory when cloning.

--single-branch
Download only metadata of the branch that will be checked out.

With scalar list you can see which repositories are currently tracked by Scalar and with scalar unregister
/path/to/repo the repository is removed from this list.

By default, Sparse-Checkout is enabled and only the files in the root of the git repository are shown. Use git
sparse-checkout set to expand the set of directories you want to see, or git sparse-checkout disable to
show all files. If you don’t know which directories are available in the repository, you can run git ls-tree -d
--name-only HEAD to find the directories in the root directory, or git ls-tree -d --name-only HEAD /path/
to/repo to find the directories in /path/to/repo.

See also:
git ls-tree

To enable sparse-checkout afterwards, run git sparse-checkout init --cone. This will initialise your sparse-
checkout patterns to match only the files in the root directory.

Currently, in addition to sparse-checkout, the following functions are available for scalar:

• FSMonitor

• multi-pack-index (MIDX)

7.1. Manage code with Git 427

https://github.blog/2022-06-29-improve-git-monorepo-performance-with-a-file-system-monitor/
https://github.blog/2021-04-29-scaling-monorepo-maintenance/
https://devblogs.microsoft.com/devops/introducing-scalar/
https://git-scm.com/docs/git-sparse-checkout
https://git-scm.com/docs/git-ls-tree
https://git-scm.com/docs/multi-pack-index


Python for Data Science, Release 24.1.0

• commit-graph

• Git maintenance

• Partial cloning with git clone --depth and git filter-branch

The configuration of scalar is updated as new features are introduced into Git. To ensure that you are always using the
latest configuration, you should run scalar reconfigure /PATH/TO/REPO after a new Git version to update your
repository’s configuration, or scalar reconfigure -a to update all your Scalar-registered repositories at once.

See also:
• Git - scalar Documentation

Splitting repos

It is often useful to divide a large Git repository into multiple smaller ones. This can be necessary in a project that has
grown over time, or if you want to manage a sub-project in a separate repository. Of couse you could simply create a
new repository and copy the files, but you would also loose the entire version history.

Here I describe how you can split a Git repository without losing the associated history.

Scenario and goals

We want to split out from the Jupyter tutorial repository the part that deals with visualising the data: docs/viz/. The
challenge is that the history for the docs/viz/ directory is mixed with other changes. Therefore, we first clone the
same repository twice:

$ git clone git@github.com:veit/jupyter-tutorial.git
Klone nach 'jupyter-tutorial'...
$ git clone git@github.com:veit/jupyter-tutorial.git pyviz-tutorial
Klone nach 'pyviz-tutorial' ...

The next step is to filter out the unwanted histories from each of the two repos. To rewrite the history and keep only
those commits that actually affect your content of a particular subfolder, we use git-filter-repo:

$ curl https://raw.githubusercontent.com/newren/git-filter-repo/main/git-filter-repo -o␣
→˓git-filter-repo
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 161k 100 161k 0 0 578k 0 --:--:-- --:--:-- --:--:-- 584k

$ cd pyviz-tutorial
$ python3 ../git-filter-repo --path docs/viz

The only thing left to do now is to adjust the remote URL:

$ git remote add origin git@github.com:veit/pyviz-tutorial.git
$ git push -u origin main

For our Jupyter tutorial repository, we now invert the selected path:

$ cd jupyter-tutorial
$ python3 ../git-filter-repo --invert-paths --path docs/viz

(continues on next page)

428 Chapter 7. Create a product

https://git-scm.com/docs/git-commit-graph
https://git-scm.com/docs/git-maintenance
https://git-scm.com/docs/scalar
https://github.com/newren/git-filter-repo


Python for Data Science, Release 24.1.0

(continued from previous page)

$ git remote add origin git@github.com:veit/jupyter-tutorial.git
$ git push -f -u origin main

CI-friendly Git Repos

In the following, I’d like to share some tips on how Git repositories and Continuous Integration can work well together
with GitLab CI/CD or GitHub Actions.

Store large files outside your repository

Every time a new build is created, the working directory needs to be cloned. However, if your repository is bloated
with large artefacts, it will slow down and you will have to wait longer for the results.

However, if your build depends on binaries from other projects or large artefacts, it may be useful to have an external
storage system that provides those files you need in the build directory at the start of your build for download.

Use shallow clones

Every time a build is executed, your build server clones your repository into the current working directory. Git usually
clones the entire history of the repository, so this process takes longer and longer over time. Unless you use so-called
shallow clones, where only the current snapshot of the repository is pulled down with git clone --depth and only the
relevant branch with git clone --branch. This shortens the build time, especially for repositories with a long history
and many branches.

In doing so, since version 1.9, Git can make simple changes to files, such as updating a version number, without pushing
the entire history.

Warning: In a shallow clone, git fetch can result in an almost complete commit history being downloaded. Other
git operations can also lead to unexpected results and negate the supposed advantages of shallow clones, so we
recommend using shallow clones only for builds and deleting the repository immediately afterwards.

However, if you want to continue using the repositories, the following tip may be helpful.

Cache the repo on build servers

This also speeds up cloning as the repos only need to be updated.

Note: Repo caching is only beneficial if the build environment persists from build to build. However, if your build
agent, for example Amazon EC2, dismantles the build again, you have nothing to gain with caching.

7.1. Manage code with Git 429

https://en.wikipedia.org/wiki/Continuous_integration
https://docs.gitlab.com/ee/ci/
https://docs.github.com/en/actions


Python for Data Science, Release 24.1.0

Choose triggers wisely

It’s a good idea to run CI on all your active branches. But it’s not a good idea to run all builds on all branches against
all commits.

Typically we give everyone on the development team the option to do their branch builds at the click of a button, rather
than triggering them automatically. This seems like a good way for us to balance regular testing with saving resources.
However, in critical branches like main or stable, builds are triggered automatically. In addition, we also get automated
timely test results for any merge or pull request.

Typically we give everyone on the development team the option to do their branch builds at the click of a button,
rather than triggering them automatically. This seems like a good way for us to balance regular testing with saving
resources. However, in critical branches like main or stable, builds are triggered automatically. In addition, we also
get automated timely test results for any merge or pull request.

Advanced Git

git cherry-pick
allows you to append any Git commit to the current HEAD based on its hash value.

git bisect
allows you to quickly find a Git commit that has introduced a regression.

git notes
adds text notes to commits, tags and other objects.

Git hooks
are scripts that are automatically executed when certain events occur in a Git repository.

Jupyter Notebooks
can lead to problems when managing with Git.

Binärdateien
can be configured in Git so that meaningful diffs are displayed.

Visual Studio Code
can use an existing Git installation to provide the corresponding functionalities.

GitLab
is a web application for version management based on Git.

git-big-picture
visualises Git repositories as DAGs (directed acyclic graph).

etckeeper
is a collection of tools that can be used to manage the /etc directory in a Git repository.

Git’s database internals
refers to articles on Git’s database internals.

430 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Git cherry-pick

git cherry-pick allows you to append arbitrary Git commits to the current HEAD based on their hash value. Cherry-
picking is selecting a commit from one branch and applying it to another, for example:

$ git checkout 3.10
$ git cherry-pick 61de025
[3.10 b600967] Fix bug #17
Date: Thu Sep 15 11:17:35 2022 +0200
1 file changed, 9 insertions(+)

Thereby git cherry-pick can be used with different options:

--edit, -e
does not take over the existing commit message but allows you to create your own commit message for this
cherry-pick.

--no-commit, -n
does not create a new commit but moves the contents of the commit to the working directory.

--signoff, -s
adds a signature line with signed-off-by at the end of the commit message.

git cherry-pick also accepts options to resolve merge conflicts, including --abort, --continue and --quit.

git cherry-pick can be useful for reverting changes, for example if a commit was accidentally made to the wrong
branch, you can switch to the branch where the change was supposed to be made and then cherry-pick the commit to
that branch.

However, cherry-picking usually results in duplicate commits, and in many cases we prefer to use git merges. Never-
theless, git cherry-pick can be very suitable for some scenarios, for example Release branches workflows.

git range-diff

git range-diff shows the difference between two commit ranges, that is, which commits between these ranges are the
same or have changed. This command can help, for example, when checking which commits were applied to which
branches with git cherry-pick.

Find regressions with git bisect

git bisect allows you to quickly find a git commit that has introduced a regression. The name bisect comes from
the binary search that the command uses. The list of commits is repeatedly halved until the relevant commit is found.
This means that only log2(n+1) commits need to be tested.

1. To do this, start the search with git bisect start. You can then use git bisect new [COMMIT] and git
bisect old [COMMIT] to narrow down the area in which an error was introduced. Alternatively, the short
form git bisect start [BAD COMMIT] [GOOD COMMIT] can also be used. git bisect then checks out a
commit in the middle and asks you to test it, for example:

$ git bisect start v2.6.27 v2.6.25
Bisecting: 10928 revisions left to test after this (roughly 14 steps)
[2ec65f8b89ea003c27ff7723525a2ee335a2b393] x86: clean up using max_low_pfn on 32-bit

2. The search can now be continued manually or automatically with a script. Manually, you can use git bisect
new and git bisect old to narrow down the area in which an error was introduced. If this commit is found,
the output may look like this, for example:

7.1. Manage code with Git 431

https://git-scm.com/docs/git-range-diff
https://en.wikipedia.org/wiki/Binary_search_algorithm


Python for Data Science, Release 24.1.0

$ git bisect new
2ddcca36c8bcfa251724fe342c8327451988be0d is the first bad commit
commit 2ddcca36c8bcfa251724fe342c8327451988be0d
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sat May 3 11:59:44 2008 -0700

Linux 2.6.26-rc1

:100644 100644 5cf82581... 4492984e... M Makefile

3. We then use git show HEAD to check what changes have been made in this commit:

$ git show HEAD
commit 2ddcca36c8bcfa251724fe342c8327451988be0d
Autor: Linus Torvalds <torvalds@linux-foundation.org>
Datum: Sa 3. Mai 11:59:44 2008 -0700

Linux 2.6.26-rc1

diff --git a / Makefile b / Makefile
index 5cf8258 ..4492984 100644
--- a / Makefile
+++ b / Makefile
@@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
-SUBLEVEL = 25
-EXTRAVERSION =
+ SUBLEVEL = 26
+ EXTRAVERSION = -rc1
NAME = Funky Weasel ist Jiggy wit it

# * DOKUMENTATION *

4. Finally, you can use git bisect reset to return to the branch you were in before the bisect search:

$ git bisect reset
Checking out files: 100% (21549/21549), done.
Previous HEAD position was 2ddcca3... Linux 2.6.26-rc1
Switched to branch 'master'

Mark non-testable commits with git bisect skip

Sometimes with git bisect you end up with a commit that you can’t test because there’s another problem. Usually
this is due to an error that prevents you from running your code or seeing the test result, for example a syntax error. In
this case, you should not mark the commit as old or new, as you will not be able to determine the behaviour due to the
error. Instead, you should skip the commit with git bisect skip. git bisect checks out a neighbouring commit
for testing instead. If this works, continue testing and executing new or old as usual. If not, run git bisect skip
again. If you know that there is a range of untestable commits, instruct git bisect to skip this entire area with git
bisect skip COMMIT1..COMMIT2.

See also:

432 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

• Avoiding testing a commit

Automatic testing with git bisect run

It is often possible to automate the test of whether a commit shows old or new behaviour. This speeds up the use of git
bisect massively, as you no longer have to make an entry at every step. It also makes the process less error-prone, as
you won’t accidentally execute the wrong old and new subcommand. Automated tests are also advantageous if your
test process takes a while, for example if you have a long compilation step. The search will not be interrupted to wait
for your input, and you can work on something else in the meantime.

To start automatic tests, use git bisect run with your test command and optional arguments. You may need to create
a short test script that runs the affected part of your code and checks what behaviour is present. git bisect runs the
specified command at each step of the binary search loop and uses its results to call old, new or skip as needed.

You can find an example of this in the issue fetch_california_housing fails in CI on master from scikit-learn:

$ git bisect run pytest sklearn/utils/tests/test_multiclass.py -k test_unique_labels_non_
→˓specific

Automated testing of performance regressions

With a little extra effort, you can use automated tests to search for more complicated changes in behaviour. For per-
formance tests, we need a test programme that can perform multiple runs and determine the minimum time while
eliminating possible noise:

from subprocess import run
from time import perf_counter

times = []
for _ in range(10):

start = perf_counter()
run(

[./perftest, PARAM],
check=True,
capture_output=True,

)
elapsed = perf_counter() - start
times.append(elapsed)

if min(times) > X.0:
print("Too slow")
raise SystemExit(1)

else:
print("Fast enough")
raise SystemExit(0)

The programme executes python perftest.py PARAM ten times and measures the time for each execution. It then
compares the minimum execution time with a limit value of X seconds. If the minimum time is above the limit value,
it outputs Too slow and exits with the exit code 1, otherwise it outputs Fast enough and exits with the exit code 0:

$ python perftest.py PARAM
Fast enough
$ echo $? 0

7.1. Manage code with Git 433

https://git-scm.com/docs/git-bisect#_avoiding_testing_a_commit
https://github.com/scikit-learn/scikit-learn/issues/14956


Python for Data Science, Release 24.1.0

Reproducing the binary search with git bisect log and git bisect replay

The scikit-learn issue also shows how you can communicate the results of your bisect search to others in a reproducible
way using git bisect log:

$ git bisect log
81f2d3a0e * massich/multiclass_type_of_target Merge branch 'master' into multiclass_
→˓type_of_target

|\
15f24f25d | * bad DOC Cleaning for what's new
fbb2c7c70 | * good-fbb2c7c7007dc373c462e39ab273a183a8823d58 @ ENH Adds _
→˓MultimetricScorer for Optimized Scoring (#14593)
...

With git bisect log > bisect_log.txt you can also save your search for others to reproduce:

$ git bisect replay bisect_log.txt

Git Notes

Git Notes add text notes to commits, tags and other objects. Such notes can contain all kinds of metadata, for example
comments on code review, links to bug reports, etc:

1. Add a git note:

$ git notes add -m 'Example note'

2. Display a git note:

$ git log
commit 859de540cda23f510f4ecbe0f38d07666e933f08 (HEAD -> main)
Author: Veit Schiele <veit@cusy.io>
Date: Sun Mar 24 11:17:56 2024 +0100

A commit message

Notes:
Example note

3. Change a git note:

$ git notes edit

However, Git notes are not sent to the remote repository with git push or git pull by default; they must be synchro-
nised with git push origin 'refs/notes/*' and git fetch origin 'refs/notes/*:refs/notes/*'.

Warning: Do not use git pull instead of git fetch: you will not be able to merge refs/notes/commits
with your current branch.

Note: Git notes are not included in the git commit history, so they cannot be used for regulatory purposes where
provenance, non-repudiation or tamper resistance must be proven. However, they can be useful for build tags and

434 Chapter 7. Create a product

https://git-scm.com/docs/git-notes


Python for Data Science, Release 24.1.0

similar.

See also:
• Git Notes: Git’s Coolest, Most Unloved Feature

• git-appraise

• github-issues-git-notes

Git hooks

Git hooks are scripts that are automatically executed when certain events occur in a Git repository, including:

Command Hook
comit comit-msg, pre-commit
merge pre-merge, comit-msg
rebase pre-rebase
pull pre-merge, comit-msg
push pre-push

They can be located either in local or server-side repositories. This allows Git repositories to be customised and user-
defined actions to be triggered.

Git hooks are located in the .git/hooks/ directory. When a repository is created, some sample scripts are already
created there:

.git/hooks/
applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
pre-merge-commit.sample
prepare-commit-msg.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
update.sample

For the scripts to be executed, only the suffix .sample must be removed and, if necessary, the file permission must be
executable, for example with chmod +x .git/PREPARE-COMMIT-MSG .

The integrated scripts are shell and Perl scripts, but any scripting language can be used. The Shebang line (#!/bin/sh)
determines how the file is to be interpreted.

However, the scripts cannot be copied into the server-side repository.

7.1. Manage code with Git 435

https://tylercipriani.com/blog/2022/11/19/git-notes-gits-coolest-most-unloved-feature/
https://github.com/google/git-appraise
https://github.com/TomasHubelbauer/github-issues-git-notes


Python for Data Science, Release 24.1.0

pre-commit framework

pre-commit is a framework for managing and maintaining multilingual commit hooks.

An essential task is to make the same scripts available to the entire development team. pre-commit by yelp manages
such hooks and distributes them to different projects and developers.

Git hooks are mostly used to automatically point out problems in the code before code reviews, for example to check
the formatting or to find debug statements. pre-commit simplifies the sharing of hooks across projects. The language
in which a linter was written, for example, is abstracted away – scss-lint is written in Ruby, but you can use it with
pre-commit without having to add a Gemfile to your project.

Installation

Before you can execute the hooks, the pre-commit framework must be installed:

Before the pre-commit framework can be installed with Pipenv, the Microsoft Build Tools for C++ must be downloaded
and executed so that the Desktop development with C++ can be selected and installed with the standard options.

Only then can the pre-commit framework be installed with:

$ pipenv install pre-commit

$ apt install pre-commit

$ brew install pre-commit

$ pipenv install pre-commit

Check the installation for example with

$ pipenv run pre-commit -V
pre-commit 2.21.0

Configuration

After Pre-Commit is installed, the .pre-commit-config.yaml file in the root directory of your project can be used
to configure plugins for this project.

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files

You can also generate such an initial .pre-commit-config.yaml file with

$ pipenv run pre-commit sample-config > .pre-commit-config.yaml

436 Chapter 7. Create a product

https://pre-commit.com/
https://pre-commit.com/
https://visualstudio.microsoft.com/de/visual-cpp-build-tools/


Python for Data Science, Release 24.1.0

If you want to apply check-json to your Jupyter notebooks, you must first configure that the check should also be
used for the file suffix .ipynb:

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
...
- id: check-json
types: [file]
files: \.(json|ipynb)$

See also:
For a full list of configuration options, see Adding pre-commit plugins to your project.

You can also write your own hooks, see Creating new hooks.

Installing the git hook scripts

To ensure that pre-commit is also reliably executed before each commit, the script is installed in our project:

$ pre-commit install
pre-commit installed at .git/hooks/pre-commit

If you want to uninstall the git hook scripts, you can do so with pre-commit uninstall.

Run

pre-commit run --all-files

runs all pre-commit hooks independently of git commit:

$ pipenv run pre-commit run --all-files
Trim Trailing Whitespace.................................................Passed
Fix End of Files.........................................................Passed
Check Yaml...............................................................Passed
Check for added large files..............................................Passed

pre-commit run HOOK
executes single pre-commit hooks, for example pre-commit run trailing-whitespace

Note: When a pre-commit hook is called for the first time, it is first downloaded and then installed. This may take
some time, for example if a copy of node has to be created.

pre-commit autoupdate
updates the hooks automatically:

See also:
• pre-commit autoupdate [options].

However, the hooks managed by the pre-commit framework are not limited to being executed before commits; they can
also be used for other Git hooks, see Other pre-commit hooks.

7.1. Manage code with Git 437

https://pre-commit.com/#adding-pre-commit-plugins-to-your-project
https://pre-commit.com/#creating-new-hooks
https://pre-commit.com/#pre-commit-autoupdate


Python for Data Science, Release 24.1.0

pre-commit scripts

pre-commit-hooks
The pre-commit framework already comes with a whole range of scripts, including:

check-added-large-files
prevents large files from being transferred

check-case-conflict
looks for files that would conflict in case-insensitive file systems

check-executables-have-shebangs
makes sure that (non-binary) executables have a shebang line

check-shebang-scripts-are-executable
makes sure (non-binary) files are executable with a shebang line

check-merge-conflict
searches for files containing merge-conflict strings

check-symlinks
checks for symlinks that don’t point to anything

destroyed-symlinks
detects symlinks that have been changed into regular files with the contents of the path the symlink points
to.

no-commit-to-branch
protects branches before committing

pygrep-hooks
provides regular expressions for Python and reStructuredText, including:

python-no-log-warn
search for the deprecated .warn() method of Python loggers

python-use-type-annotations
forces type-annotations to be used instead of type-comments

rst-backticks
detects the use of single backticks when writing reStructuredText

rst-directive-colons
detects that reStructuredText directives do not end with a colon or a space before the colon

rst-inline-touching-normal
detects that inline code is used in normal text in reStructuredText

text-unicode-replacement-char
prevents files that contain UTF-8 Unicode Replacement Characters

Linters and formatters
They are provided in separate repositories, including:

autopep8
provides autopep8 for the pre-commit framework

mypy
provides mypy

validate-pyproject
checks pyproject.toml files

438 Chapter 7. Create a product

https://github.com/pre-commit/pre-commit-hooks
https://github.com/pre-commit/pygrep-hooks
https://github.com/pre-commit/mirrors-autopep8
https://github.com/hhatto/autopep8
https://github.com/pre-commit/mirrors-mypy
https://github.com/python/mypy
https://github.com/abravalheri/validate-pyproject


Python for Data Science, Release 24.1.0

sp-repo-review
evaluates existing repos against the Scientific Python guidelines.

clang-format
provides clang-format-wheel

csslint
provides csslint

scss-lint
provides scss-lint

eslint
provides eslint

fixmyjs
provides fixmyjs

prettier
provides prettier

black
for formatting Python code

black
Python code formatter

black-jupyter
Python code formatter for Jupyter notebooks

Python Code Quality Authority
Code quality tools (and plugins) for the Python programming language:

flake8
promotes the enforcement of a consistent Python style

autoflake
removes unused imports and unused variables from Python code

bandit
tool for finding security vulnerabilities in Python code

pydocstyle
static analysis tool to check compliance with Python docstring conventions

docformatter
formats docstrings according to PEP 257

pylint
Python linter

doc8
executes doc8 for linting documents

prospector
analyses Python code with prospector

isort
sorts Python imports

nbQA
runs isort, pyupgrade, mypy, pylint, flake8 and more on Jupyter notebooks:

7.1. Manage code with Git 439

https://github.com/scientific-python/cookie
https://learn.scientific-python.org/development/
https://github.com/pre-commit/mirrors-clang-format
https://github.com/ssciwr/clang-format-wheel
https://github.com/pre-commit/mirrors-csslint
https://github.com/CSSLint/csslint
https://github.com/pre-commit/mirrors-scss-lint
https://github.com/sds/scss-lint
https://github.com/pre-commit/mirrors-eslint
https://github.com/eslint/eslint
https://github.com/pre-commit/mirrors-fixmyjs
https://github.com/jshint/fixmyjs
https://github.com/pre-commit/mirrors-prettier
https://github.com/prettier/prettier
https://github.com/psf/black
https://github.com/PyCQA/flake8
https://github.com/PyCQA/autoflake
https://github.com/PyCQA/bandit
https://github.com/PyCQA/pydocstyle
https://github.com/PyCQA/docformatter
https://peps.python.org/pep-0257/
https://github.com/PyCQA/pylint
https://github.com/PyCQA/doc8
https://github.com/PyCQA/prospector
https://github.com/PyCQA/isort
https://github.com/nbQA-dev/nbQA


Python for Data Science, Release 24.1.0

nbqa
runs any standard Python code quality tool on a Jupyter notebook

nbqa-black
runs black on a Jupyter notebook

nbqa-check-ast
runs check-ast on a Jupyter notebook

nbqa-flake8
runs flake8 on a Jupyter notebook

nbqa-isort
runs isort on a Jupyter notebook

nbqa-mypy
runs mypy on a Jupyter notebook

nbqa-pylint
runs pylint on a Jupyter notebook

nbqa-pyupgrade
runs ppyupgrade on a Jupyter notebook

nbqa-yapf
runs yapf on a Jupyter notebook

nbqa-autopep8
runs autopep8 on a Jupyter notebook

nbqa-pydocstyle
runs pydocstyle on a Jupyter notebook

nbqa-ruff
runs ruff on a Jupyter notebook

blacken-docs
applies black to Python code blocks in documentation files

Miscellaneous

pyupgrade
automatically updates the syntax for newer versions

reorder-python-imports
reorders imports into Python files

dead
detects dead Python code

python-safety-dependencies-check
analyses Python requirements for known security vulnerabilities

gitlint
Git commit message linter

nbstripout
removes the output of Jupyter Notebooks

ripsecrets
prevents secret keys from being included in your source code

detect-secrets
detects high entropy strings that are likely to be passwords

440 Chapter 7. Create a product

https://github.com/adamchainz/blacken-docs
https://github.com/asottile/pyupgrade
https://github.com/asottile/reorder_python_imports
https://github.com/asottile/dead
https://github.com/Lucas-C/pre-commit-hooks-safety
https://github.com/jorisroovers/gitlint
https://github.com/kynan/nbstripout
https://github.com/sirwart/ripsecrets
https://github.com/Yelp/detect-secrets


Python for Data Science, Release 24.1.0

pip-compile
automatically compiles requirements

kontrolilo
Tool to control licences for OSS dependencies

See also:
• Supported hooks

Other pre-commit hooks

The hooks managed by the pre-commit framework are not limited to being executed before commits; they can also be
used for other Git hooks:

post-commit
As of version 2.4.0, the framework can also execute post-commit hooks with:

$ pipenv run pre-commit install --hook-type post-commit
pre-commit installed at .git/hooks/post-commit

However, since post-commit does not work on files, all these hooks must set always_run:

- repo: local
hooks:
- id: post-commit-local
name: post commit
always_run: true
stages: [post-commit]
# ...

pre-merge
As of Git 2.24, there is a pre-merge-commit hook that is triggered after a merge is successful but before the merge
commit is created. You can use it with the pre-commit framework with:

$ pre-commit install --hook-type pre-merge-commit
pre-commit installed at .git/hooks/pre-merge-commit

post-merge
As of version 2.11.0, the framework can also execute scripts for the post-merge hook:

$ pipenv run pre-commit install --hook-type post-merge
pre-commit installed at .git/hooks/post-merge

With $PRE_COMMIT_IS_SQUASH_MERGE you can find out if it was a squash merge.

pre-push
To use the pre-push hook with the pre-commit framework, enter the following:

$ pre-commit install --hook-type pre-push
pre-commit installed at .git/hooks/pre-push

The following environment variables are provided for this purpose:

$PRE_COMMIT_FROM_REF
The remote revision that was pushed to.

7.1. Manage code with Git 441

https://github.com/jazzband/pip-tools
https://github.com/kontrolilo/kontrolilo
https://pre-commit.com/hooks.html
https://git-scm.com/docs/githooks#_post_commit
https://git-scm.com/docs/githooks#_pre_merge_commit
https://git-scm.com/docs/githooks#_post_merge
https://git-scm.com/docs/githooks#_pre_push


Python for Data Science, Release 24.1.0

$PRE_COMMIT_TO_REF
The local revision that was pushed to the remote revision.

$PRE_COMMIT_REMOTE_NAME
The local revision that was pushed to the remote revision, for example origin.

$PRE_COMMIT_REMOTE_URL
The URL of the remote repository that was pushed to, for example git@github.com:veit/
python4datascience

$PRE_COMMIT_REMOTE_BRANCH
The name of the remote branch that was pushed to, for example refs/heads/TARGET_BRANCH .

$PRE_COMMIT_LOCAL_BRANCH
The name of the local branch that was pushed to the remote branch, for example HEAD.

commit-msg
commit-msg can be used with:

$ pre-commit install --hook-type commit-msg
pre-commit installed at .git/hooks/commit-msg

The commit-msg hook can be configured with stages: [commit-msg], passing the name of a file containing
the current contents of the commit message that can be checked.

prepare-commit-msg
prepare-commit-msg can be used with pre-commit with:

$ pre-commit install --hook-type prepare-commit-msg
pre-commit installed at .git/hooks/prepare-commit-msg

The prepare-commit-msg hook is configured with stages: [prepare-commit-msg], passing the name of a
file that contains the initial commit message, for example from git commit -m "COMMIT-MESSAGE" to create
a dynamic template from it that is displayed in the editor. Finally, the hook should check that no editor is started
with GIT_EDITOR=:.

post-checkout
The post-checkout hook is called when git checkout or git switch is executed.

The post-checkout hook can be used for example for

• checking repositories

• viewing differences from the previous HEAD

• changing the metadata of the working directory.

In pre-commit it can be used with:

$ pre-commit install --hook-type post-checkout
pre-commit installed at .git/hooks/post-checkout

Since post-checkout does not act on files, always_run must be set for all post-checkout scripts, for
example:

- repo: local
hooks:
- id: post-checkout-local
name: Post checkout
always_run: true

(continues on next page)

442 Chapter 7. Create a product

https://git-scm.com/docs/githooks#_commit_msg
https://git-scm.com/docs/githooks#_prepare_commit_msg
https://git-scm.com/docs/githooks#_post_checkout


Python for Data Science, Release 24.1.0

(continued from previous page)

stages: [post-checkout]
# ...

There are three environment variables that correspond to the three arguments of post-checkout:

$PRE_COMMIT_FROM_REF
returns the reference of the previous HEAD

$PRE_COMMIT_TO_REF
returns the reference of the new HEAD, which may or may not have changed.

$PRE_COMMIT_CHECKOUT_TYPE
returns Flag=1 if it was a branch checkout and Flag=0 if it was a file checkout.

post-rewrite
post-rewrite is called when commits are rewritten, for example from git commit --amend or from git
rebase.

$ pre-commit install --hook-type post-rewrite
pre-commit installed at .git/hooks/post-rewrite

Since post-rewrite does not affect files, always_run: true must be set.

Git tells the post-rewrite hook which command triggered the rewrite. pre-commit outputs this as
$PRE_COMMIT_REWRITE_COMMAND.

pre-commit in CI pipelines

Pre-commit can also be used for CI (continuous integration).

Examples for GitHub Actions

pre-commit ci
Service that adds the pre-commit ci app to your GitHub repository at https://github.com/PROFILE/
REPOSITORY/installations.

Besides automatically changing pull requests, the app also autoupdate to keep your configuration up to date.

You can add further installations under Install pre-commit ci.

.github/workflows/pre-commit.yml
Alternative configuration as a GitHub workflow, for example:

name: pre-commit

on:
pull_request:
push:
branches: [main]

jobs:
pre-commit:
runs-on: ubuntu-latest
steps:

(continues on next page)

7.1. Manage code with Git 443

https://git-scm.com/docs/githooks#_post_rewrite
https://pre-commit.ci
https://pre-commit.com/#pre-commit-autoupdate
https://github.com/apps/pre-commit-ci/installations/new


Python for Data Science, Release 24.1.0

(continued from previous page)

- uses: actions/checkout@v3
- uses: actions/setup-python@v3
- uses: actions/cache@v3
with:
path: ~/.cache/pre-commit
key: pre-commit|${{ env.pythonLocation }}|${{ hashFiles('.pre-commit-config.

→˓yaml') }}
- uses: pre-commit/action@v3.0.1

See also:
• pre-commit/action

Example for GitLab Actions

stages:
- validate

pre-commit:
stage: validate
image:
name: python:3.12

variables:
PRE_COMMIT_HOME: ${CI_PROJECT_DIR}/.cache/pre-commit

only:
refs:
- merge_requests
- tags
- main

cache:
paths:
- ${PRE_COMMIT_HOME}

before_script:
- pip install pre-commit

script:
- pre-commit run --all-files

See also:
For more information on fine-tuning caching, see Good caching practices.

Skip hooks

Most Git Git hooks can be bypassed with the --no-verify option. For example, you can skip the pre-commit hook
with:

$ git commit --no-verify -m "Quick and dirty"

If you only want to skip certain pre-commit scripts, you can use the environment variable SKIPwith a comma-separated
list of hook IDs, for example:

444 Chapter 7. Create a product

https://github.com/pre-commit/action
https://docs.gitlab.com/ee/ci/caching/#good-caching-practices


Python for Data Science, Release 24.1.0

$ SKIP=check-added-large-file,no-commit-to-branch git commit -m "Hotfix"

Template for Git repositories

pre-commit init-templatedir can be used to set up a template for Git’s init.templateDir option, whereby any
newly cloned repository will automatically receive the pre-commit hooks without having to run pre-commit install
, for example:

$ git config --global init.templateDir ~/.config/git/template
$ pre-commit init-templatedir ~/.config/git/template
pre-commit installed at /Users/veit/.config/git/template/hooks/pre-commit

Jupyter Notebooks with Git

Problems with version control of Jupyter Notebooks

There are several issues to manage Jupyter Notebooks with Git:

• Jupyter Notebooks cell metadata changes even when no content changes have been made to the cells. This makes
Git diffs unnecessarily complicated.

• The lines that Git writes to the *.ipynb files in case of merge conflicts cause the notebooks to no longer be valid
JSON and therefore cannot be opened by Jupyter: you will then get the Error loading notebook message when
opening them.

Conflicts are especially common in notebooks because Jupyter changes the following each time a notebook is
run:

– Each cell contains a number that indicates the order in which it was executed. If team members execute the
cells in different order, every single cell has a conflict! To fix this manually would take a very long time.

– For each image, such as a plot, Jupyter records not only the image itself in the notebook, but also a
simple text description containing the ID of the object, for example <matplotlib.axes._subplots.
AxesSubplot at 0x7fbc113dbe90>. This will change every time you run a notebook, and therefore
will conflict every time two people run that cell.

– Some output can be non-deterministic, such as a notebook that uses random numbers or interacts with a
service that provides different output over time.

– Jupyter adds metadata to the notebook that describes the environment in which it was last run, such as the
name of the kernel. This often varies between different installations, and so two people saving a notebook
(even without other changes) will often have a conflict in the metadata.

nbdev2

nbdev2 has a set of git hooks that provide clean git diffs that automatically resolve most git conflicts and ensure that
any remaining conflicts can be fully resolved within the standard Jupyter notebook environment:

• A new git merge driver provides notebook-native conflict markers that result in notebooks opening directly
in Jupyter, even if there are Git conflicts. Local and remote changes are each shown as separate cells in the
notebook, so you can simply delete the version you don’t want to keep or combine the two cells as needed.

7.1. Manage code with Git 445

https://git-scm.com/docs/git-init#_template_directory
https://nbdev.fast.ai


Python for Data Science, Release 24.1.0

See also:
nbdev.merge docs

• Resolving git merges locally is extremely helpful, but we also need to resolve them remotely. For example, if a
merge request is submitted and then someone else submits the same notebook before the merge request is merged,
it could cause a conflict:

"outputs": [
{

<<<<<< HEAD
"execution_count": 8,

======
"execution_count": 5,

>>>>>> 83e94d58314ea43ccd136e6d53b8989ccf9aab1b
"metadata": {},

The save hook of nbdev2 automatically removes all unnecessary metadata (including execution_count) and
non-deterministic cell output; this means that there are no pointless conflicts like the one above, since this infor-
mation is not stored in the commits in the first place.

To get started, follow the instructions in Git-Friendly Jupyter.

jq

The results of the calculations can also be saved in the notebook file format nbformat. These can also be Base-64-coded
blobs for images and other binary data that should not normally be included in a version management. These can be
removed manually with Cell → All Output → Clear, but you have to carry out these steps before every git add, and
it also does not solve a second cause of the noise in git diff, namely some in the metadata.

In order to get systematically comparable versions of notebooks in the version management, we can use jq, a lightweight
JSON processor. It takes some time to set up jq because it has its own query/filter language, but the default settings
are usually well chosen.

Installation

jq can be installed with:

$ sudo apt install jq

$ brew install jq

Example

A typical call is:

jq --indent 1 \
'(.cells [] | select (has ("output")) | .outputs) = []
| (.cells [] | select (has ("execution_count")) | .execution_count) = null
| .metadata = {"language_info": {"name": "python", "pygments_lexer": "ipython3"}}
| .Cells []. metadata = {}
' example.ipynb

446 Chapter 7. Create a product

https://nbdev.fast.ai/api/merge.html
https://nbdev.fast.ai/tutorials/git_friendly_jupyter.html
https://jupyter-tutorial.readthedocs.io/en/latest/notebook/create-notebook.html#whats-an-ipynb-file
https://nbformat.readthedocs.io/en/latest/format_description.html#metadata
https://stedolan.github.io/jq/


Python for Data Science, Release 24.1.0

Each line within the single quotation marks defines a filter – the first selects all entries from the cells list and deletes the
output. The next entry resets all outputs. The third step deletes the notebook’s metadata and replaces it with a minimum
of necessary information so that the notebook can still be run without complaints. The fourth filter line .cells [].
metadata = {}, deletes all meta information. If you want to keep certain meta information, you can indicate this
here.

Set up

1. To make your work easier, you can create an alias in the ~/.bashrc file:

alias nbstrip_jq="jq --indent 1 \
'(.cells[] | select(has(\"outputs\")) | .outputs) = [] \
| (.cells[] | select(has(\"execution_count\")) | .execution_count) = null \
| .metadata = {\"language_info\": {\"name\": \"python\", \"pygments_lexer\": \

→˓"ipython3\"}} \
| .cells[].metadata = {} \
'"

2. Then you can conveniently enter the following in the terminal:

$ nbstrip_jq example.ipynb > stripped.ipynb

3. If you start with an existing notebook, you should first add a filter commit by simply reading in the newly
filtered version of your notebook without the unwanted metadata. After you have added the notebook with git
add, you can see whether the filter has really worked with git diff --cached before you do git commit -m
'filter'.

4. If you want to use this filter for all Git repositories, you can also configure your Git globally:

1. First you add the following to your ~/.gitconfig file:

[core]
attributesfile = ~/.gitattributes

[filter "nbstrip_jq"]
clean = "jq --indent 1 \

'(.cells[] | select(has(\"outputs\")) | .outputs) = [] \
| (.cells[] | select(has(\"execution_count\")) | .execution_count) =␣

→˓null \
| .metadata = {\"language_info\": {\"name\": \"python\", \"pygments_

→˓lexer\": \"ipython3\"}} \
| .cells[].metadata = {} \
'"

smudge = cat
required = true

clean
is applied when adding changes to the stage area.

smudge
is used when resetting the workspace by changes from the stage area.

2. Then you have to specify the following in the ~/.gitattributes file:

*.ipynb filter=nbstrip_jq

7.1. Manage code with Git 447



Python for Data Science, Release 24.1.0

5. If you then use git add to add your notebok to the stage area, the nbstrip_jq filter will be applied.

Note: However, git diff will not show you any changes between the working and stage areas. Only with git
diff --staged you can see that only the filtered changes have been applied.

Warning: clean and smudge filters often do not play well with git rebase across such filtered commits.
Then you should disable these filters before rebasing.

6. And there is another problem: If such a notebook is run again, git diff will not show any changes, but git
status will. Therefore, the following should be entered in the ~/.bashrc file to be able to quickly clean the
respective working directory:

function nbstrip_all_cwd {
for nbfile in *.ipynb; do

echo "$( nbstrip_jq $nbfile )" > $nbfile
done
unset nbfile

}

ReviewNB

ReviewNB solves the problem of doing Merge requests with notebooks. GitLab’s code review GUI only works with
line-based file formats, such as Python scripts. Most of the time, however, I prefer to check the source code notebooks
because:

• I want to check the documentation and the tests, not just the implementation

• I want to see the changes to the cell output, like charts and tables, not just the code.

For this purpose ReviewNB is perfect.

nbdime

nbdime is a GUI for nbformat diffs and replaces nbdiff. It attempts content-aware diffing locally as well as merging
notebooks, is not limited to displaying diffs, but also prevents unnecessary changes from being checked in. However,
it is not compatible with nbdev2.

nbstripout

nbstripout automates Clear all outputs. It uses nbformat and a few auto magic to set up .git config. In my opinion,
however, it has two drawbacks:

• it is limited to the problematic metadata section

• it is slow.

448 Chapter 7. Create a product

https://www.reviewnb.com
https://nbdime.readthedocs.io/
https://nbformat.readthedocs.io/
https://github.com/tarmstrong/nbdiff
https://github.com/kynan/nbstripout
https://nbformat.readthedocs.io/


Python for Data Science, Release 24.1.0

Git for binary files

git diff can be configured so that it can also display meaningful diffs for binary files.

. . . for Excel files

For this we need openpyxl and pandas:

$ pipenv install openpyxl pandas

Then we can use pandas.DataFrame.to_csv in exceltocsv.py to convert the Excel files:

Listing 1: exceltocsv.py

# SPDX-FileCopyrightText: 2023 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

import sys
from io import StringIO

import pandas as pd

for sheet_name in pd.ExcelFile(sys.argv[1]).sheet_names:
output = StringIO()
print("Sheet: %s" % sheet_name)
pd.read_excel(sys.argv[1], sheet_name=sheet_name).to_csv(

output, header=True, index=False
)
print(output.getvalue())

Now add the following section to your global Git configuration ~/.gitconfig:

[diff "excel"]
textconv=python3 /PATH/TO/exceltocsv.py
binary=true

Finally, in the global ~/.gitattributes file, our excel converter is linked to *.xlsx files:

*.xlsx diff=excel

. . . for PDF files

For this, pdftohtml is additionally required. It can be installed with

$ sudo apt install poppler-utils

$ brew install pdftohtml

Add the following section to the global Git configuration ~/.gitconfig:

7.1. Manage code with Git 449

https://openpyxl.readthedocs.io/en/stable/
https://pandas.pydata.org
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html


Python for Data Science, Release 24.1.0

[diff "pdf"]
textconv=pdftohtml -stdout

Finally, in the global ~/.gitattributes file, our pdf converter is linked to *.pdf files:

*.pdf diff=pdf

Now, when git diff is called, the PDF files are first converted and then a diff is performed over the outputs of the
converter.

. . . for Word documents

Differences in Word documents can also be displayed. For this purpose Pandoc can be used, which can be easily
installed with

$ sudo apt install pandoc

$ brew install pandoc

Download and install the *.msi. file from GitHub.

Then add the following section to your global Git configuration ~/.gitconfig:

[diff "word"]
textconv=pandoc --to=markdown
binary=true
prompt=false

Finally, in the global ~/.gitattributes file, our word converter is linked to *.docx files:

*.docx diff=word

The same procedure can be used to obtain useful diffs from other binaries, for example *.zip, *.jar and other archives
with unzip or for changes in the meta information of images with exiv2. There are also conversion tools for converting
*.odt, *.doc and other document formats into plain text. For binary files for which there is no converter, strings are
often sufficient.

Visual Studio Code

Visual Studio Code can use an existing Git installation to provide the corresponding functionalities.

Clone

Fig. 1: Source
control icon
If you have not yet

opened a repository,
you have the option
of selecting Open
Folder or Clone
Repository in the

Source Code view.
If you select Clone

Repository, you will
be asked for the

URL of the
repository.

450 Chapter 7. Create a product

https://pandoc.org/
https://github.com/jgm/pandoc/releases/
https://code.visualstudio.com/


Python for Data Science, Release 24.1.0

Gutter indicators

When you open a Git repository and start making changes, VS Code adds useful annotations:

• a red triangle indicates where lines have been deleted

• a green bar indicates newly added lines

• a blue bar indicates lines that have been changed.

Commit

git add and git reset can be selected either in the context menu of a file or by drag & drop.
After a git commit, you can enter a commit message and confirm with Ctrl or . If there are
already changes in the stage area, only these will be committed; otherwise you will be asked to
select changes. If necessary, you will receive more specific commit actions in Views and More
Actions. . .

Note: If you have accidentally created your commit in the wrong branch, you can undo it with Git: Undo Last Commit
in the Command Palette ( P).

The sorce control icon in the activity bar on the left shows you how many changes you have made
in your repository. Selecting the icon will give you a more detailed overview of your changes.
Selecting a single file will show you the line-by-line text changes. You can also use the editor on
the right to make further changes.

Branches and tags

You can create branches and switch to them using Git: Create Branch and Git: Checkout to from
the Command Palette ( P). When you call Git: Checkout to, a dropdown list appears with all the
branches and tags of the repository. You can also create a new branch here.

Git status bar

Fig. 2: Status bar
In the lower left corner you will see the status display with further

indicators about the state of your repository:

• the current branch with the possibility to switch to another branch

• incoming and outgoing commits

• the Synchronize Changes action, which first executes git pull
and then git push.

Extensions

• Git Blame

• Git History

• Git Lens

• GitLab VS Code Extension

7.1. Manage code with Git 451

https://marketplace.visualstudio.com/items?itemName=waderyan.gitblame
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens


Python for Data Science, Release 24.1.0

GitLab VS Code Extension

GitLab VS Code Extension integrates GitLab 13.0
into Visual Studio Code:

Display GitLab issues and merge requests
Issues, comments, merge requests and
changed files are displayed in the sidebar or
in a custom search.

Create and review merge requests
Issues can be commented directly in VS Code, and GitLab Slash Commands are also supported. You can create,
edit and delete comments in the diff view of a merge request.

Configuring and validating GitLab CI/CD
You can edit the gitlab-ci.yml file, which
automatically completes the variables. You
can also validate the file locally.

Search the repository without cloning
You can access repositories read-only, pro-
vided that an access token is registered for
the corresponding GitLab instance.

GitLab

GitLab is a web application for version management based on Git. Later, further functions were added such as an issue
tracking system with Kanban board, a system for Continuous Integration and Continuous Delivery (CI/CD) as well as a
Wiki and Snippets. The GitLab Community Edition (CE) is developed as open source software under the MIT licence
and can be installed on-premises.

The GitLab CI tools enable automated builds and deployments without the need for external integrations. If a PaaS
solution such as Kubernetes is already in use, apps can be automatically deployed, tested and scaled with GitLab CI/CD.
In addition, code can be automatically scanned for potential security risks.

GitLab is a completely packaged platform, while GitHub can be extended with apps from the Marketplace. However,
this does not mean that GitLab cannot be integrated, for example with Asana, Jira, Microsoft Teams, Slack, etc.

See also:
Visual Studio Code: GitLab Workflow

Roles, groups and permissions

Depending on the role a person has in a particular group or project, they have different permissions. If the person is in
both a project group and the project, the highest role is used.

See also:
• Permissions and roles

452 Chapter 7. Create a product

https://gitlab.com/gitlab-org/gitlab-vscode-extension
https://gitlab.com/gitlab-org/gitlab-vscode-extension/-/blob/main/docs/user/custom-queries.md
https://docs.gitlab.com/ee/integration/slash_commands.html
https://gitlab.com
https://about.gitlab.com/features/continuous-integration/
https://en.wikipedia.org/wiki/Kubernetes
https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow
https://docs.gitlab.com/ee/user/permissions.html


Python for Data Science, Release 24.1.0

Members of a project

Members are the people and groups who have access to your project. Each member is given a role that determines what
they can do in the project. Project members can:

• be direct members of the project.

• inherit membership of the project from the project group.

• be a member of a group shared with the project.

• be a member of a group shared with the project group.

Permissions in GitLab

Guests
are not active contributors to private projects; they can only see and leave comments and issues.

Reporters
participate as readers. They cannot write to the repository, but they can contribute to issues.

Developers
contribute directly and have access to everything from idea to production, unless something has been explicitly
restricted, for example by branch protection.

Maintainer
can push to main and move code into the production environment.

Owners
essentially administer the groups and workflows. They can grant access to groups and are allowed to delete.

Protected branches

In GitLab, permissions are basically defined to give read or write permissions to the repository and branches. To impose
further restrictions on certain branches, they can be protected. The default branch for your repository is protected by
default. When a branch is protected, the following restrictions are usually enforced on the branch by default:

Action Role
Protect a branch Maintainer
Push into this branch GitLab admins and anyone explicitly allowed to do so.
Force push into this branch No one
Delete the branch With a Git command, nobody; with GitLab UI or API, at least maintainers.

See also:
• Protected branches

• Pipeline security on protected branches

7.1. Manage code with Git 453

https://docs.gitlab.com/ee/user/project/protected_branches.html
https://docs.gitlab.com/ee/ci/pipelines/index.html#pipeline-security-on-protected-branches


Python for Data Science, Release 24.1.0

Configure protected branches

You must have at least the Maintainer role.

1. Select Menu → Projects in the top bar and find your project.

2. In the left sidebar, select Settings → Repository.

3. :Expand Protected branches.

4. In the Protect branch. . . drop-down list, select the branch you want to protect. Alternatively, you can use wild-
cards:

Wildcard Examples
*-stage #17-some-feature-stage, #42-other-feature-stage
production/* production/app-server, production/load-balancer
*app-server* app-server, production/app-server

5. Select a role from the Allowed to merge: drop-down list that is allowed to merge into this branch.

6. Select a role from the Allowed to push: drop-down list that is allowed to push into this branch.

7. Select Protect.

8. The protected branch is now displayed in the list of protected branches.

Merge requests

Merge requests allow you to check source code changes into a branch. When you open a merge request, you can
visualise the code changes before merging and work on them together. Merge requests contain:

• A description of the request

• Code changes and code reviews

• Information about CI/CD pipelines

• discussion posts

• the list of commits

See also:
• Merge requests

Merge request workflows

1. You check out a new branch and submit your changes through a merge request.

2. You gather feedback from your team.

3. You work on the implementation and optimise the code with code quality reports.

4. You verify your changes with reports from unit tests in GitLab CI/CD.

5. You avoid using dependencies whose licence is incompatible with your project with licence compliance reports.

6. You request approval of your changes.

7. When the merge request is approved, GitLab CI/CD will deploy the changes to the production environment.

454 Chapter 7. Create a product

https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/ci/testing/code_quality.html
https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html
https://docs.gitlab.com/ee/user/project/merge_requests/approvals/index.html


Python for Data Science, Release 24.1.0

GitLab CI/CD

GitLab CI/CD can automatically build, test, deploy and monitor your applications during iterative code changes. This
reduces the risk that you will develop new code based on buggy previous versions. In the process, little or no human
intervention should be required from the development to its deployment of code changes.

The three main approaches to this continuous development are:

Continuous Integration
runs a series of scripts sequentially or in parallel that your application automatically builds and tests, for example
after each git pull in a feature branch. This is to make it less likely that you will introduce bugs into your
application.

If the checks work as expected, you can make a merge request; if the checks fail, you can revert the changes if
necessary.

See also:
• Continuous integration

Continuous Delivery
goes one step further than Continuous Integration and also continuously deploys the application. However, this
still requires manual intervention to manually deploy the changes to a deployment branch.

See also:
• Continuous Delivery

• Continuous Delivery

Continuous Deployment
also performs the deployment of the software to the productive infrastructure automatically.

Activating CI/CD in a project

1. Select Menu → Projects in the top bar and find your project.

2. In the left sidebar, select Settings → General.

3. Expand Visibility, project features, permissions.

4. In the Repository section, activate the CI/CD option.

5. Select Save changes.

CI/CD pipelines

Pipelines are the most important component of Continuous Integration, Delivery and Deployment.

Pipelines consist of:

Jobs
define what needs to be done, for example compiling code or testing.

See also:
Jobs

Stages
define when the jobs are to be executed, for example the phase test to be executed after the phase build.

7.1. Manage code with Git 455

https://en.wikipedia.org/wiki/Continuous_integration
https://continuousdelivery.com
https://en.wikipedia.org/wiki/Continuous_delivery
https://docs.gitlab.com/ee/ci/jobs/index.html


Python for Data Science, Release 24.1.0

See also:
Stages

Jobs are executed by so-called runners. Several jobs in a stage are executed in parallel, provided there are enough
simultaneous runners available.

If all jobs in a stage are successful, the pipeline continues with the next stage.

If a job in a stage fails, the next stage is normally not executed and the pipeline is terminated prematurely.

In general, pipelines are executed automatically and do not require any intervention once they have been created.
However, there are cases where you can manually intervene in a pipeline.

A typical pipeline may consist of four stages that are executed in the following order:

1. A build stage with a job called compile.

2. A test stage with two parallel jobs called unit-test and lint.

3. A staging stage with a job called deploy-to-stage.

4. A production stage with a job called deploy-to-prod.

The corresponding .gitlab-ci.yml file could then look like this:

image: "docker.io/ubuntu"

stages:
- build
- test
- staging
- production

compile:
stage: build
script:
- echo "Compiling the code..."
- echo "Compile complete."

unit-test:
stage: test
script:

- echo "Running unit tests... This will take about 60 seconds."
- sleep 60
- echo "Code coverage is 0%"

lint:
stage: test
script:

- echo "Linting code... This will take about 10 seconds."
- sleep 10
- echo "No lint issues found."

deploy-to-stage:
stage: stage
script:
- echo "Deploying application in staging environment..."
- echo "Application successfully deployed to staging."

(continues on next page)

456 Chapter 7. Create a product

https://docs.gitlab.com/ee/ci/yaml/index.html#stages
https://docs.gitlab.com/ee/ci/runners/index.html


Python for Data Science, Release 24.1.0

(continued from previous page)

deploy-to-production:
stage: production
script:
- echo "Deploying application in production environment..."
- echo "Application successfully deployed to production."

Show pipelines

You can find the current and historical pipeline runs on the CI/CD → Pipelines page of your project. You can also
access pipelines for a merge request by navigating to their Pipelines tab. Select a pipeline to open the Pipeline Details
page and view the jobs that have been run for that pipeline. From here you can cancel a running pipeline, retry jobs in
a failed pipeline or delete a pipeline.

Fig. 3: GitLab CI/CD pipeline

See also:
• Customize pipeline configuration

• Scheduled pipelines

• GitLab CI/CD variables

• Predefined variables reference

Migrating GitHub Actions

GitLab CI/CD and GitHub Actions have some similarities in configuration, making migration to GitLab CI/CD rela-
tively easy:

• Workflow configuration files are written in YAML and are stored in the repository along with the code.

• Workflows contain one or more jobs.

• Jobs include one or more steps or individual commands.

• Jobs can run on either managed or self-hosted machines.

However, there are also some differences, and this guide will show you the main differences so that you can migrate
your workflow to GitLab CI/CD.

7.1. Manage code with Git 457

https://docs.gitlab.com/ee/ci/yaml/index.html
https://docs.gitlab.com/ee/ci/pipelines/schedules.html
https://docs.gitlab.com/ee/ci/variables/index.html
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html


Python for Data Science, Release 24.1.0

Jobs

Jobs in GitHub Actions are very similar to jobs in GitLab CI/CD. Both have the following characteristics:

• Jobs contain a series of steps or scripts that are executed in sequence.

• Jobs can be run on separate machines or in separate containers.

• Jobs are executed in parallel by default, but can also be configured to run sequentially.

• Jobs can execute a script or shell command, and in GitHub Actions all scripts are specified with the run key. In
GitLab CI/CD, however, the script steps are specified with the script key.

Below is an example of the syntax of the two systems.

GitHub Actions syntax for jobs

jobs:
my_job:
steps:
- uses: actions/checkout@v3
- run: echo "Run my script here"

GitLab CI/CD syntax for jobs

my_job:
variables:
GIT_CHECKOUT: "true"

script:
- echo "Run my script here"

Runners

Runners are machines on which jobs are run. Both GitHub Actions and GitLab CI/CD offer managed and self-hosted
variants of runners. In GitHub Actions, the runs-on key is used to run jobs on different platforms, while in GitLab
CI/CD this is done with tags.

GitHub Actions syntax for Runner

my_job:
runs-on: ubuntu-latest
steps:
- run: echo "Hello Pythonistas!"

458 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

GitLab CI/CD syntax for Runner

my_job:
tags:
- linux

script:
- echo "Hello Pythonistas!"

Docker images

GitHub Actions syntax for Docker images

jobs:
my_job:
container: python:3.10

GitLab CI/CD syntax for Docker images

my_job:
image: python:3.10

See also:
• Run your CI/CD jobs in Docker containers

Syntax for conditions and expressions

GitHub Actions uses the if keyword to prevent a job from running if a condition is not met. GitLab CI/CD uses rules
to determine whether a job is executed under a certain condition.

Below is an example of the syntax of the two systems.

GitHub syntax for conditions and expressions

jobs:
deploy:
if: contains( github.ref, 'main')
runs-on: ubuntu-latest
steps:
- run: echo "Deploy to production server"

7.1. Manage code with Git 459

https://docs.gitlab.com/ee/ci/docker/using_docker_images.html


Python for Data Science, Release 24.1.0

GitLab syntax for conditions and expressions

deploy:
stage: deploy
script:
- echo "Deploy to production server"

rules:
- if: '$CI_COMMIT_BRANCH == "main"'

Besides if, GitLab also offers other rules such as changes, exists, allow_failure, variables and when.

See also:
• rules

• Complex rules

Dependencies between jobs

Both GitHub Actions and GitLab CI/CD allow you to set dependencies for a job. In both systems, jobs run in parallel
by default, but GitLab CI/CD has a stages concept where jobs in one stage run concurrently, but the next stage does
not start until all jobs in the previous stage have completed. In GitHub Actions, dependencies between jobs can be
explicitly mapped with the needs key.

Below is an example of the syntax for each system. The workflows start with two jobs running in parallel named
unit-test and lint. When these jobs are completed, another job called deploy-to-stage is run. Finally, when
deploy-to-stage is complete, the job deploy-to-prod is executed.

GitHub Actions syntax for dependencies between jobs

jobs:
unit-test:
runs-on: ubuntu-latest
steps:
- run: echo "Running unit tests... This will take about 60 seconds."
- run: sleep 60
- run: echo "Code coverage is 0%"

lint:
runs-on: ubuntu-latest
steps:
- run: echo "Linting code... This will take about 10 seconds."
- run: sleep 10
- run: echo "No lint issues found."

deploy-to-stage:
runs-on: ubuntu-latest
needs: [unit-test,lint]
steps:
- run: echo "Deploying application in staging environment..."
- run: echo "Application successfully deployed to staging."

(continues on next page)

460 Chapter 7. Create a product

https://docs.gitlab.com/ee/ci/yaml/#rules
https://docs.gitlab.com/ee/ci/jobs/job_control.html#complex-rules


Python for Data Science, Release 24.1.0

(continued from previous page)

deploy-to-prod:
runs-on: ubuntu-latest
needs: [deploy-to-stage]
steps:
- run: echo "Deploying application in production environment..."
- run: echo "Application successfully deployed to production."

GitLab CI/CD syntax for dependencies between jobs

stages:
- test
- stage
- prod

unit-test:
stage: test
script:

- echo "Running unit tests... This will take about 60 seconds."
- sleep 60
- echo "Code coverage is 0%"

lint:
stage: test
script:

- echo "Linting code... This will take about 10 seconds."
- sleep 10
- echo "No lint issues found."

deploy-to-stage:
stage: stage
script:
- echo "Deploying application in staging environment..."
- echo "Application successfully deployed to staging."

deploy-to-prod:
stage: prod
script:

- echo "Deploying application in production environment..."
- echo "Application successfully deployed to production."

Artefacts

Both GitHub Actions and GitLab CI/CD can upload files and directories created by a job as artefacts. These artefacts
can be used to preserve data across multiple jobs.

Below is an example of the syntax for both systems.

7.1. Manage code with Git 461



Python for Data Science, Release 24.1.0

GitHub Actions syntax for artefacts

- name: Archive code coverage results
uses: actions/upload-artifact@v3
with:
name: code-coverage-report
path: output/test/code-coverage.html

GitLab CI/CD syntax for artefacts

script:
artifacts:
paths:
- output/test/code-coverage.html

Databases and service containers

Both systems allow you to include additional containers for databases, caching or other dependencies.

GitHub Actions uses the container key, while in GitLab CI/CD a container for the job is specified with the image
key. In both systems, additional service containers are specified with the services key.

Below is an example of the syntax of the two systems.

GitHub Actions syntax for databases and service containers

jobs:
test:
runs-on: ubuntu-latest

services:
postgres:
image: postgres
env:
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
POSTGRES_DB: postgres

options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5

steps:
- name: Python
uses: actions/checkout@v3
uses: actions/setup-python@v4
with:
python-version: '3.10'

(continues on next page)

462 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

- name: Test with pytest
run: python -m pytest
env:
DATABASE_URL: 'postgres://postgres:postgres@localhost:${{ job.services.

→˓postgres.ports[5432] }}/postgres'

GitLab CI/CD syntax for database and service containers

test:
variables:
POSTGRES_PASSWORD: postgres
POSTGRES_HOST: postgres
POSTGRES_PORT: 5432

image: python:latest
services:
- postgres

script:
- python -m pytest

Mapping

GitHub GitLab
Concepts

actions/upload-artifact@v2 artifacts
actions/cache@v2 cache
actions/download-artifact@v2 dependencies
environment environment
container image
actions/deploy-pages@main pages
actions/create-release@v1 release
run script, after_script, before_script, trigger
hashicorp/vault-action@v2.5.0 secrets
services services
runs-on tags
timeout-minutes timeout

Environment variables
${{ github.api_url }} CI_API_V4_URL
${{ github.workspace }} CI_BUILDS_DIR
${{ github.ref }} CI_COMMIT_BRANCH, CI_COMMIT_REF_NAME, CI_COMMIT_REF_SLUG, CI_COMMIT_TAG, CI_MERGE_REQUEST_REF_PATH
${{ github.sha }} CI_COMMIT_SHA, CI_COMMIT_SHORT_SHA
${{ github.job }} CI_JOB_ID, CI_JOB_NAME
${{ github.event_name == 'workflow_dispatch' }} CI_JOB_MANUAL
${{ job.status }} CI_JOB_STATUS
${{ github.server_url }}/${{ github.repository }} CI_MERGE_REQUEST_PROJECT_URL
${{ github.token }} CI_NODE_INDEX
${{ strategy.job-total }} CI_NODE_TOTAL

continues on next page

7.1. Manage code with Git 463



Python for Data Science, Release 24.1.0

Table 1 – continued from previous page
GitHub GitLab
${{ github.repository}}/${{ github.workflow }} CI_PIPELINE_ID
${{ github.workflow }} CI_PIPELINE_IID
${{ github.event_name }} CI_PIPELINE_SOURCE
${{ github.actions }} CI_PIPELINE_TRIGGERED
${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }} CI_PIPELINE_URL
${{ github.workspace }} CI_PROJECT_DIR
${{ github.repository }} CI_PROJECT_ID CI_PROJECT_PATH_SLUG, CI_PROJECT_PATH, CI_MERGE_REQUEST_PROJECT_ID, CI_MERGE_REQUEST_PROJECT_PATH
${{ github.event.repository.name }} CI_PROJECT_NAME
${{ github.repository_owner }} CI_PROJECT_NAMESPACE CI_PROJECT_ROOT_NAMESPACE
${{ github.event.repository.full_name }} CI_PROJECT_TITLE
${{ github.server_url }}/${{ github.repository }} CI_PROJECT_URL
${{ github.event.repository.clone_url }} CI_REPOSITORY_URL
${{ runner.os }} CI_RUNNER_EXECUTABLE_ARCH
${{ github.server_url }} CI_SERVER_HOST, CI_SERVER_URL
${{ github.actions }} CI_SERVER, GITLAB_CI
${{ github.actor }} GITLAB_USER_EMAIL, GITLAB_USER_ID, GITLAB_USER_LOGIN, GITLAB_USER_NAME
${{ github.event_path }} TRIGGER_PAYLOAD
${{ github.event.pull_request.assignees }} CI_MERGE_REQUEST_ASSIGNEES
${{ github.event.pull_request.number }} CI_MERGE_REQUEST_ID, CI_MERGE_REQUEST_IID
${{ github.event.pull_request.labels }} CI_MERGE_REQUEST_LABELS
${{ github.event.pull_request.milestone }} CI_MERGE_REQUEST_MILESTONE
${{ github.event.pull_request.head.ref }} CI_MERGE_REQUEST_SOURCE_BRANCH_NAME, CI_EXTERNAL_PULL_REQUEST_SOURCE_BRANCH_NAME
${{ github.event.pull_request.head.sha }} CI_MERGE_REQUEST_SOURCE_BRANCH_SHA, CI_EXTERNAL_PULL_REQUEST_SOURCE_BRANCH_SHA
${{ github.event.pull_request.head.repo.full_name }} CI_MERGE_REQUEST_SOURCE_BRANCH_SHA, CI_MERGE_REQUEST_SOURCE_PROJECT_PATH
${{ github.event.pull_request.head.repo.url }} CI_MERGE_REQUEST_SOURCE_PROJECT_URL
${{ github.event.pull_request.base.ref }} CI_MERGE_REQUEST_TARGET_BRANCH_NAME, CI_EXTERNAL_PULL_REQUEST_TARGET_BRANCH_NAME
${{ github.event.pull_request.base.sha }} CI_MERGE_REQUEST_TARGET_BRANCH_SHA, CI_EXTERNAL_PULL_REQUEST_TARGET_BRANCH_SHA
${{ github.event.pull_request.title }} CI_MERGE_REQUEST_TITLE
${{ github.event.pull_request.number }} CI_EXTERNAL_PULL_REQUEST_IID
${{ github.event.pull_request.head.repo.full_name }} CI_EXTERNAL_PULL_REQUEST_SOURCE_REPOSITORY
${{ github.event.pull_request.base.repo.full_name }} RCI_EXTERNAL_PULL_REQUEST_TARGET_REPOSITORY

GitLab Package Registry

You can also publish your distribution packages in the package registry of your GitLab project and use them with both
Pip and twine.

See also:
GitLab Package Registry

464 Chapter 7. Create a product

https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-twine
https://python-basics-tutorial.readthedocs.io/en/latest/libs/gitlab.html


Python for Data Science, Release 24.1.0

git-big-picture

git-big-picture visualises Git repositories as DAGs. The tool comes with some filters to show only the interesting
areas, for example the hierarchy of tags and branches.

Examples

git big-picture -o git-big-picture.svg

$ git big-picture -ao git-big-picture_all.svg

Installation

You can easily install git-big-picture with:

$ pipenv install git-big-picture
Installing git-big-picture...
Adding git-big-picture to Pipfile's [packages]...
✓✓✓ Installation Succeeded
...

Git-Integration

You can easily integrate the tool into Git by adding the script git-big-picture to $PATH. Then you can use it, for
example with:

$ git big-picture -h
Usage: git-big-picture OPTIONS [<repo-directory>]

Options:
--version show program's version number and exit
-h, --help show this help message and exit
--pstats=FILE run cProfile profiler writing pstats output to FILE
-d, --debug activate debug output

Output Options:
Options to control output and format

-f FMT, --format=FMT
set output format [svg, png, ps, pdf, ...]

-g, --graphviz output lines suitable as input for dot/graphviz
-G, --no-graphviz disable dot/graphviz output
-p, --processed output the dot processed, binary data
-P, --no-processed disable binary output
-v CMD, --viewer=CMD

write image to tempfile and start specified viewer
-V, --no-viewer disable starting viewer
-o FILE, --outfile=FILE

(continues on next page)

7.1. Manage code with Git 465



Python for Data Science, Release 24.1.0

(continued from previous page)

write image to specified file
-O, --no-outfile disable writing image to file

Filter Options:
Options to control commit/ref selection

-a, --all include all commits
-b, --branches show commits pointed to by branches
-B, --no-branches do not show commits pointed to by branches
-t, --tags show commits pointed to by tags
-T, --no-tags do not show commits pointed to by tags
-r, --roots show root commits
-R, --no-roots do not show root commits
-m, --merges include merge commits
-M, --no-merges do not include merge commits
-i, --bifurcations include bifurcation commits
-I, --no-bifurcations

do not include bifurcation commits

Configuration

The standard git config infrastructure can be used to configure git-big-picture. Most of the command line
arguments can be configured in a [big-picture] section. For example, to configure firefox as a viewer with

$ git config --global big-picture.viewer firefox

will create the following section in your ~/.gitconfig file:

[big-picture]
viewer = firefox

Note: However, this disables other options at the same time. For example, you can no longer display the graph with
Graphviz:

$ git-big-picture -g
fatal: Options '-g | --graphviz' and '-p | --processed' are incompatible with other␣
→˓output options.

In this case you must also specify the -V or --no-viewer option:

$ git-big-picture -g -V
digraph {

"c509669a01b156900eed9f1c9f927b6d2f7bb95b"[label="origin/pyup-scheduled-update-2020-
→˓11-16", color="/pastel13/2", style=filled];
...

466 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

etckeeper

etckeeper is a collection of tools that can be used to manage the /etc directory in a Git repository. This allows changes
to be checked and undone if necessary. It also connects to package managers such as apt to automatically commit
changes made to /etc during a package upgrade. Finally, it also takes into account metadata of files that Git does not
normally manage, but which are important for /etc, such as the permissions of /etc/shadow.

Installation

etckeeper can be easily installed with

$ sudo apt install git etckeeper

Configuration

1. The configuration of etckeeper is done in the etckeeper.conf file:

# The VCS to use.
#VCS="hg"
VCS="git"
#VCS="bzr"
#VCS="darcs"
...

2. In addition, the following two automatic commits should be avoided:

# Uncomment to avoid etckeeper committing existing changes
# to /etc automatically once per day.
AVOID_DAILY_AUTOCOMMITS=1
...
# Uncomment to avoid etckeeper committing existing changes to
# /etc before installation. It will cancel the installation,
# so you can commit the changes by hand.
AVOID_COMMIT_BEFORE_INSTALL=1

3. Now git itself should be configured, see Configuration.

4. Finally, the /etc directory can be taken under Git version control with:

$ cd /etc/
$ sudo etckeeper init
Initialized empty Git repository in /etc/.git/
$ sudo etckeeper commit "Initial commit"

7.1. Manage code with Git 467

https://etckeeper.branchable.com
https://en.wikipedia.org/wiki/APT_(software)


Python for Data Science, Release 24.1.0

Use

If a configuration file is now edited, the changes can now be easily logged with Git.

Managing metadata

Since Git itself does not record complete metadata, etckeeper has set up a pre-commit hook in /etc/.git/hooks/
pre-commit. This hook logs the chmod and chgrp entries for all files that do not correspond to the standard permis-
sions in the file /etc/.etckeeper:

maybe chmod 0755 '.'
maybe chmod 0700 './.etckeeper'
maybe chmod 0644 './.gitignore'
...
. gitignore

Files that are not to be versioned with Git in the /etc directory can be added in the file /etc/.gitignore. This file
is created when etckeeper is initiated and can be extended if necessary after the comment

# end section managed by etckeeper

Git’s database internals

See also:
• Commits are snapshots, not diffs

• Git’s database internals

– Part I: packed object store

– Part II: commit history queries

– Part III: file history queries

– Part IV: distributed synchronization

– Part V: scalability

Git glossary

Branch
A branch is a development line. The last commit on a branch is called the tip of the branch, which is referenced
by a head and which moves on as more development is done on the branch. A single Git repository can have
any number of branches, but its Working Tree is associated with only one of them – the current or checked-out
branch – and HEAD points to that branch.

Cache
Obsolete for Index.

Clone
Local version of a repository including all commits and branches.

Commit
A snapshot of the entire Git repository, compressed in a SHA.

468 Chapter 7. Create a product

https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
https://github.blog/2022-08-29-gits-database-internals-i-packed-object-store/
https://github.blog/2022-08-30-gits-database-internals-ii-commit-history-queries/
https://github.blog/2022-08-31-gits-database-internals-iii-file-history-queries/
https://github.blog/2022-09-01-gits-database-internals-iv-distributed-synchronization/
https://github.blog/2022-09-02-gits-database-internals-v-scalability/
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms


Python for Data Science, Release 24.1.0

Fork
A copy of a repository on GitLab that belongs to another user or group.

Git
Git is a distributed version control system.

GitLab
Web application for version management based on git. Later, GitLab CI/CD, a system for continuous integration,
GitLab Runner, Container Registry and many other things were added.

See also:
• GitLab

HEAD
The HEAD pointer represents your current working directory and can be moved to different branches, tags or
commits using git switch.

Index
A collection of files with status information whose content is saved as objects. The index is a saved version of
your Working Tree.

origin
The usual upstream repository. Most projects have at least one upstream project that they track. By de-
fault, origin is used for this purpose. New upstream updates are fetched into branches named origin/
NAME_OF_UPSTREAM_BRANCH , which you can see with git branch -r.

Merge request
Place to compare and discuss the changes introduced in a branch with ratings, comments, tests etc..

See also:
• Merge requests.

Remote repository
shared repository, for example on GitLab, for exchanging changes in a team.

Trunk-Based Development
TBD

Git workflow with short-lived topic branches that are quickly merged into a single main branch.

See also:
• Trunk Based Development

Working Tree
The tree of the files actually checked out. The working tree normally contains the content of the HEAD commit
tree as well as all local changes that you have made but not yet transferred.

7.2 Manage data with DVC

For data analysis, and especially machine learning, it is extremely valuable to be able to reproduce different versions
of analyses that have been carried out with different data sets and parameters. However, in order to obtain reproducible
analyses, both the data and the model (including the algorithms, parameters, etc.) must be versioned. Versioning data
for reproducible analysis is a bigger problem than versioning models because of the size of the data. Tools like DVC
help manage data by allowing users to transfer it to a remote data store using a Git like workflow. This simplifies the
retrieval of certain versions of data in order to reproduce an analysis.

7.2. Manage data with DVC 469

https://dvc.org/


Python for Data Science, Release 24.1.0

DVC was developed to be able to use ML models and data sets together and to manage them in a comprehensi-
ble manner. It works with different version managements, but does not need them. In contrast to DataLad/git-
annex, for example, it is not limited to Git as version management, but can also be used together with Mercurial, see
github.com/crobarcro/dvc/dvc/scm.py. It also uses its own system for storing files with support for SSH and HDFS,
among others.

DataLad, on the other hand, focuses more on discovering and consuming datasets, which are then easily managed with
Git. DVC, on the other hand, stores each step in the pipeline in a separate .dvc file that can then be managed by Git.

These .dvc files, however, allow practical tools for manipulating and visualizing DAGs, see, for example, visualisation
of DAGs.

External dependencies can also be specified with dvc remote.

See also:
• Tutorial

• Documentation

• Git Repository

7.2.1 Installation

Finally, external dependencies can also be specified with Pipenv.

Note: You have to explicitly state the extras. This can be [ssh], [s3], [gs], [azure], and [oss] or [all]. For
ssh the command looks like this:

$ pipenv install dvc[ssh]

Alternatively, DVC can also be installed via other package managers:

$ sudo wget https://dvc.org/deb/dvc.list -O /etc/apt/sources.list.d/dvc.list
$ sudo apt update
$ sudo apt install dvc

$ brew install iterative/homebrew-dvc/dvc

Note: The following example was created with a current DVC version (1.0.0a9), which partly uses a different syntax
than earlier versions. You can currently (8th June 2020) only install this with pip:

$ pipenv install dvc[all]==1.0.0a9

470 Chapter 7. Create a product

https://www.datalad.org/
https://git-annex.branchable.com/
https://git-annex.branchable.com/
https://github.com/crobarcro/dvc/blob/master/dvc/scm.py
https://dvc.org/doc/tutorial
https://dvc.org/doc
https://github.com/iterative/dvc


Python for Data Science, Release 24.1.0

Create a project

DVC can be easily initialised with:

$ mkdir -p dvc-example/data
$ cd dvc-example
$ git init
$ dvc init
$ git add .dvc
$ git commit -m "Initialise DVC"

dvc init
creates a directory .dvc/ with config, .gitignore and cache directory.

git commit
puts .dvc/config and .dvc/.gitignore under version control.

Configure

Before DVC is used, even a remote storage is established. This should be accessible to everyone who should access the
data or the model. It’s similar to using a Git server. Often, however, this is also an NFS mount, which can be integrated
as follows, for example:

$ sudo mkdir -p /var/dvc-storage
$ dvc remote add -d local /var/dvc-storage
Setting 'local' as a default remote.
$ git commit .dvc/config -m "Configure local remote"
[master efaeb84] Configure local remote
1 file changed, 4 insertions(+)

-d, --default
Default value for the space removed

local
Name of the remote location

/var/dvc-storage
URL of the remote location

In addition, other protocols are supported, which are preceded by the path, including ssh:, hdfs: and https:.

Another remote data storage can simply be added, for example with:

$ dvc remote add webserver https://dvc.example.org/myproject

The associated configuration file .dvc/config looks like this:

['remote "local"']
url = /var/dvc-storage
[core]
remote = local
['remote "webserver"']
url = https://dvc.example.org/myproject

7.2. Manage data with DVC 471



Python for Data Science, Release 24.1.0

Add data and directories

With DVC you can save and version files, ML models, directories and intermediate results with Git without having to
check the file content into Git:

$ dvc get https://github.com/iterative/dataset-registry get-started/data.xml \
-o data/data.xml

$ dvc add data/data.xml

This will add the file data/data.xml in data/.gitignore and write the meta information in data/data.xml.dvc.
Further information on the file format of the *.dvc can be found under DVC-File Format.

In order to be able to manage different versions of your project data with Git, you only have to add the CVS file:

$ git add data/.gitignore data/fortune500.csv.dvc
$ git commit -m "Add raw data to project"

Store and retrieve data

The data can be copied from the working directory of your Git repository to the remote storage space with

$ dvc push

If you want to call up more current data, you can do so with

$ dvc pull

Import and update

You can also import data and models from another project with the command dvc import, for example:

$ dvc import https://github.com/iterative/dataset-registry get-started/data.xml
Importing 'get-started/data.xml (https://github.com/iterative/dataset-registry)' ->
→˓'data.xml'

This loads the file from the dataset-registry into the current working directory, adds .gitignore and creates data.
xml.dvc.

With dvc update we can update these data sources before we reproduce a pipeline that depends on these data sources,
for example

$ dvc update data.xml.dvc
Stage 'data.xml.dvc' didn't change.
Saving information to 'data.xml.dvc'.

472 Chapter 7. Create a product

https://dvc.org/doc/user-guide/dvc-file-format
https://github.com/iterative/dataset-registry


Python for Data Science, Release 24.1.0

Pipelines

Connect code and data

Commands like dvc add, dvc push and dvc pull can be made independently of changes in the Git repository
and therefore only provide the basis for managing large amounts of data and models. In order to actually achieve
reproducible results, code and data must be linked together.

Fig. 4: Design: André Henze, Berlin

With dvc run you can create individual processing levels, each level being described by a source code file managed
with Git as well as other dependencies and output data. All stages together then form the DVC pipeline.

In our example dvc-example, the first stage is to split the data into training and test data:

$ dvc run -n split -d src/split.py -d data/data.xml -o data/splitted \
python src/split.py data/data.xml

-n
indicates the name of the processing stage.

-d
dependencies on the reproducible command.

The next time dvc repo is called to reproduce the results, DVC checks these dependencies and decides whether
they need to be updated or run again to get more current results.

-o
specifies the output file or directory.

In our case, the work area should have changed to:

.
data

data.xml
data.xml.dvc

(continues on next page)

7.2. Manage data with DVC 473

https://github.com/veit/dvc-example


Python for Data Science, Release 24.1.0

(continued from previous page)

+ splitted
+ test.tsv
+ train.tsv
+ dvc.lock
+ dvc.yaml

requirements.txt
src

split.py

The generated dvc.yaml file looks like this, for example:

stages:
split:
cmd: pipenv run python src/split.py data/data.xml
deps:
- data/data.xml
- src/split.py
outs:
- data/splitted

Since the data in the output directory should never be versioned with Git, dvc run has already written the file data/
.gitignore:

/data.xml
+ /splitted

Then the changed data only has to be transferred to Git or DVC:

$ git add data/.gitignore dvc.yaml
$ git commit -m "Create split stage"
$ dvc push

If several phases are now created with dvc run and the output of one command being specified as a dependency of
another, a DVC Pipeline is created.

Parameterisation

In the next phase of our example, we parameterise the processing and create the file params.yaml with the following
content:

max_features: 6000
ngram_range:
lo: 1
hi: 2

To read the parameters, the option -p <filename>:<params_list> must be added to the ommand dvc run, in our
example:

$ dvc run -n featurise -d src/featurisation.py -d data/splitted \
-p params.yaml:max_features,ngram_range.lo,ngram_range.hi -o data/features \
python src/featurisation.py data/splitted data/features

This adds to the dvc.yaml file:

474 Chapter 7. Create a product

https://dvc.org/doc/commands-reference/pipeline


Python for Data Science, Release 24.1.0

featurise:
cmd: python src/featurization.py data/splitted data/features
deps:
- data/splitted
- src/featurization.py
params:
- max_features
- ngram_range.lo
- ngram_range.hi
outs:
- data/features

So that this phase can be repeated, the MD5 hash values and parameter values are stored in the file dvc.lock:

featurise:
cmd: python src/featurisation.py data/splitted data/features
deps:
- path: data/splitted
md5: 1ce9051bf386e57c03fe779d476d93e7.dir

- path: src/featurisation.py
md5: a56570e715e39134adb4fdc779296373

params:
params.yaml:
max_features: 1000
ngram_range.hi: 2
ngram_range.lo: 1

Finally dvc.lock, dvc.yaml and data/.gitignore in the Git repository need to be updated:

$ git add dvc.lock dvc.yaml data/.gitignore

See also:
• dvc params

Trial metrics

With the dvc metrics command, DVC is also a framework for recording and comparing the performance of experiments.

evaluate.py calculates the AUC (A rea U nder the C urve). It uses the test data set, reads the features from the file
features/test.pkl and creates the metrics file auc.metric. It can be identified as a DVC metric with the -M
option of dvc run, in our example with:

$ dvc run -n evaluate -d src/evaluate.py -d model.pkl -d data/features \
-M auc.json python src/evaluate.py model.pkl data/features auc.json

evaluate:
cmd: python src/evaluate.py model.pkl data/features auc.json
deps:
- data/features
- model.pkl
- src/evaluate.py
metrics:

(continues on next page)

7.2. Manage data with DVC 475

https://dvc.org/doc/command-reference/params
https://dvc.org/doc/commands-reference/metrics
https://github.com/veit/dvc-example/blob/main/src/evaluate.py
https://dvc.org/doc/commands-reference/run


Python for Data Science, Release 24.1.0

(continued from previous page)

- auc.json:
cache: false

With dvc metrics show experiments can be compared then through various branches and tags:

$ dvc metrics show
auc.json: 0.514172

Now to complete our first version of the DVC pipeline, let’s add the files and a tag to the Git repository:

$ git add dvc.yaml dvc.lock auc.json
$ git commit -m 'Add stage ‹evaluate›'
$ git tag -a 0.1.0 -m "Initial pipeline version 0.1.0"

View pipelines

Such data pipelines can be displayed or represented as a dependency graph with dvc dag:

$ dvc dag

+-------------------+
| data/data.xml.dvc |
+-------------------+

*
*
*

+-------+
| split |
+-------+

*
*
*

+-----------+
| featurize |
+-----------+
** **

** *
* **

+-------+ *
| train | **
+-------+ *

** **
** **
* *

+----------+
| evaluate |
+----------+

data/data.xml.dvc
prepare.dvc
featurize.dvc

(continues on next page)

476 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

train.dvc
evaluate.dvc

• With dvc dag --dot a .dot file for Graphviz is generated:

data/data.xml.dvc

split

featurize

train

evaluate

Reproduce

To reproduce the results of a project, we first clone the data managed with DVC:

$ git clone https://github.com/veit/dvc-example.git
$ cd dvc-example
$ dvc pull -TR
A data/data.xml
1 file added
$ ls data/
data.xml data.xml.dvc

Then you can easily reproduce the results with dvc repro:

7.2. Manage data with DVC 477

http://www.graphviz.org/
https://dvc.org/doc/command-reference/repro


Python for Data Science, Release 24.1.0

$ dvc repro
Verifying data sources in stage: 'data/data.xml.dvc'
Stage 'split' didn't change, skipping
Stage 'featurize' didn't change, skipping
Stage 'train' didn't change, skipping
Stage 'evaluate' didn't change, skipping

You can now, for example, change parameters in the params.yaml file and then run through the pipeline again:

$ dvc repro
Stage 'data/data.xml.dvc' didn't change, skipping
Stage 'split' didn't change, skipping
Running stage 'featurize' with command:

python src/featurization.py data/splitted data/features
...
Stage 'train' didn't change, skipping
Stage 'evaluate' didn't change, skipping
To track the changes with git, run:

git add dvc.lock

In our case, changing the parameters had no effect on the result.

Note: DVC recognises changes to dependencies and outputs via md5 hash values in dvc.lock.

Vim and IDE integration

Vim

To recognize DVC files in Vim as YAML, you should add the following in ~/.vimrc:

" DVC
autocmd! BufNewFile,BufRead Dvcfile,*.dvc setfiletype yaml

Visual Studio Code

For Visual Studio Code, there is an extension for DVC that can be downloaded from the Visual Studio Marketplace.

IntelliJ IDEs

intellij-dvc is a plugin for IntelliJ IDEs including PyCharm, IntelliJ IDEA and CLion. It can be downloaded from the
JetBrains Plugins-Repository.

478 Chapter 7. Create a product

https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=Iterative.dvc
https://marketplace.visualstudio.com
https://plugins.jetbrains.com/plugin/11368-data-version-control-dvc-support
https://plugins.jetbrains.com/plugin/11368-data-version-control-dvc-support/


Python for Data Science, Release 24.1.0

FastDS

FastDS is an open source tool that combines Git and DVC to allow easy versioning of code and data.

Installation

FastDS can be easily installed with:

$ pipenv install fastds

Introduction

Even the creation of the initial repository is greatly simplified:

$ git init
$ dvc init
$ git add .
$ dvc add data/data.xml
$ git add data/.gitignore data/data.xml.dvc
$ git commit -m "Initial commit"
$ dvc push -r origin
$ git push origin

becomes:

$ fds init
$ fds add .
$ fds save -m "Initial commit"

FastDS abbreviates Git and DVC commands to minimise input errors and automate repetitive tasks:

init
initialises both the Git and DVC repositories.

status
returns the status of both repositories.

add
adds files to the Git or DVC repository.

commit
commits changes to the Git or DVC repository.

clone
clones the Git repository and fetches data from the remote DVC repository.

push
pushes data to the remote Git and DVC repositories.

save
adds changes to the project and commits them to the remote Git and DVC repositories.

7.2. Manage data with DVC 479

https://dagshub.com/pages/fds


Python for Data Science, Release 24.1.0

7.3 Reproduce environments

Reproducible and secure Python environments are difficult to ensure. With the Python package manager pip, the call
would look like this:

$ python -m pip install --no-deps --require-hashes ----only-binary=:all:

Dedicated environments (for example with Pipenv, devpi and Spack simplify this if you save the file with ther specifi-
cations, for example Pipfile, Pipfile.lock, package-lock.json etc. In this way, you and others can reproduce
the environments.

7.3.1 Spack

Modeling and simulation environments are very heterogeneous. Spack therefore supports many different production
environments:

• 7 different compilers: Intel, GCC, Clang, PGI, . . .

• Resolving dependencies

• Resolving different versions of dependencies

See also:
• Docs

• Tutorial

• Spack Encyclopedia

• GitHub

Previous systems

They usually do not offer any support for combinatorial versioning.

• Traditional binary package managers like RPM, yum, APT, yast, etc.

– are designed to manage a single software stack

– install one version of a package

– usually problem-free upgrades to a stable, well-tested stack

• Port systems

– BSD Ports, portage, NixOS, Macports, Homebrew, etc.

– mostly little support for builds that are parameterised by compilers or dependent versions

• Virtual machines and Linux containers

– Containers allow the creation of different environments for different applications

– However, they do not solve the build problem for the image

– Performance, security and upgrades become very complex with many different builds.

480 Chapter 7. Create a product

https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-devpi
https://spack-tutorial.readthedocs.io/en/latest/index.html
https://spack.readthedocs.io/
https://spack-tutorial.readthedocs.io/
https://spack.github.io/spackpedia/
https://github.com/spack


Python for Data Science, Release 24.1.0

Spack installation

Requirements

• Interpreter for Spack:

– Python 2.7 or Python 3.5–3.9

• Building software

– C/C++ compilers

– make, patch and bash

• Create and extract archives

– tar, gzip and bzip

• Manage software repositories

– git

• Sign and verify Build caches

– gnupg2

$ sudo apt install build-essential patch tar gzip bzip2 git gnupg2

$ xcode-select --install
$ brew install make bash gzip bzip2 git gnupg
$ brew link gnupg

Installation

To install Spack the repository is cloned and then changed from the develop branch to the branch of the current release,
in our case to v0.17.1:

$ git clone https://github.com/spack/spack.git
Cloning into 'spack'...
...
$ cd spack
$ git switch v0.19

Configure the shell

1. To configure the bash environment, the following is entered in the ~/.bashrc:

export SPACK_ROOT=~/spack
. $SPACK_ROOT/share/spack/setup-env.sh

2. The changed configuration is read with

$ source ~/.bashrc

7.3. Reproduce environments 481



Python for Data Science, Release 24.1.0

Bootstrapping clingo

Spack uses clingo to resolve optimal versions and variants of dependencies when installing packages. To install clingo
from pre-built binaries you can simply specify a package:

$ spack spec zlib
==> Bootstrapping clingo from pre-built binaries
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.4/build_cache/linux-
→˓centos7-x86_64-gcc-10.2.1-clingo-bootstrap-spack-idkenmhnscjlu5gjqhpcqa4h7o2a7aow.spec.
→˓json
==> Fetching https://mirror.spack.io/bootstrap/github-actions/v0.4/build_cache/linux-
→˓centos7-x86_64/gcc-10.2.1/clingo-bootstrap-spack/linux-centos7-x86_64-gcc-10.2.1-
→˓clingo-bootstrap-spack-idkenmhnscjlu5gjqhpcqa4h7o2a7aow.spack
==> Installing "clingo-bootstrap@spack%gcc@10.2.1~docs~ipo+python+static_libstdcpp␣
→˓build_type=Release arch=linux-centos7-x86_64" from a buildcache
Input spec
--------------------------------
zlib

Concretized
--------------------------------
zlib@1.2.13%gcc@11.3.0+optimize+pic+shared build_system=makefile arch=linux-ubuntu22.04-
→˓sandybridge

Note: When bootstrapping from pre-built binaries, Spack requires patchelf on Linux or otool on macOS. Other-
wise Spack built it from sources and with a C++ compiler.

Bootstrap store

All tools Spack needs are installed in a separate store, which lives in the $HOME/.spack directory. The software
installed there can be queried with:

$ spack find --bootstrap
==> Showing internal bootstrap store at "/srv/jupyter/.spack/bootstrap/store"
==> 3 installed packages
-- linux-rhel5-x86_64 / gcc@9.3.0 -------------------------------
clingo-bootstrap@spack python@3.8

-- linux-ubuntu20.04-sandybridge / gcc@9.3.0 --------------------
patchelf@0.13

482 Chapter 7. Create a product

https://potassco.org/clingo/


Python for Data Science, Release 24.1.0

Compiler configuration

$ spack compilers
==> Available compilers
-- gcc ubuntu22.04-x86_64 ---------------------------------------
gcc@11.3.0

Build your own compiler

$ spack install gcc
...
==> gcc: Successfully installed gcc-11.2.0-azhiay4ugfrs634hqlez7u3f2li3wvzd
Fetch: 12.09s. Build: 2h 8m 13.92s. Total: 2h 8m 26.01s.

[+] /Users/veit/spack/opt/spack/darwin-bigsur-cannonlake/apple-clang-13.0.0/gcc-11.2.0-
→˓azhiay4ugfrs634hqlez7u3f2li3wvzd

However, Spack doesn’t find the compiler at first:

$ spack compilers
==> Available compilers
-- gcc ubuntu20.04-x86_64 ---------------------------------------
gcc@9.3.0

Now, you can add the compiler with spack compiler find:

$ spack compiler find /srv/jupyter/spack/opt/spack/linux-ubuntu22.04-sandybridge/gcc-11.
→˓3.0/gcc-12.2.0-gbaw464qxjuz6i3uud42cd5mb4xujxia/
==> Added 1 new compiler to /srv/jupyter/.spack/linux/compilers.yaml

gcc@12.2.0
==> Compilers are defined in the following files:

/srv/jupyter/.spack/linux/compilers.yaml

spack compilers should now also find the newly installed compiler:

$ spack compilers
==> Available compilers
-- gcc ubuntu22.04-x86_64 ---------------------------------------
gcc@12.2.0 gcc@11.3.0

If you want to overwrite the default and site settings, you can edit $HOME/.spack/packages.yaml:

packages:
all:
compiler: [gcc@12.2.0]

7.3. Reproduce environments 483



Python for Data Science, Release 24.1.0

GPG signing

Spack supports the signing and verification of packages with GPG keys. A separate key ring is used for Spack, why no
keys are available from users’ home directories.

When Spack is first installed, this key ring will be empty. The keys stored in /var/spack/gpg are the standard keys
for a Spack installation. These keys are imported by spack gpg init. This will import the standard keys into the
keyring as trusted keys.

Trust keys

Additional keys can be added to the key ring using spack gpg trust <keyfile>. Once a key is trusted, packages
signed by the owner of that key can be installed.

Create a key

You can also create your own keys to be able to sign your own packages with

$ spack gpg export <location> [<key>...]

List keys

The keys available in the keyring can be listed with

$ spack gpg list

Remove a key

Keys can be removed with

$ spack gpg untrust <keyid>

Key IDs can be email addresses, names or fingerprints.

Combinatorial builds

Environment modules

$ module avail
--------------------------- /opt/modules/modulefiles ----------------------------
acml-gnu/4.4 intel/12.0 mvapich2-pgi-ofa/1.7
acml-gnu_mp/4.4 intel/13.0 mvapich2-pgi-psm/1.7
acml-intel/4.4 intel/14.0(default) mvapich2-pgi-shmem/1.7...
$ module load intel/13.0
$ module load mvapich2-pgi-shmem/1.7

• Pros

– replace different versions dynamically in the shell

484 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

– abstract a lot from the complexity of the environment

• Cons

– Users need to keep in mind which versions of the build were made

– It’s easy to load the wrong module and cause a build to fail

Dependency DAG

mpileaks

callpath

mpi

dyninst

libdwarf

libelf

Installation layout

$ tree /Users/veit/spack/opt/spack/
/Users/veit/spack/opt/spack/

darwin-mojave-x86_64
clang-10.0.1-apple

autoconf-2.69-ymadj7a7gg52r76payi7jd7qu7qcuasp
bin

autoconf
autoheader

...

• Each unique dependency graph is given a unique configuration

• Each configuration is installed in a unique directory

– Configurations of the same package coexist

• The hash value of a directed acyclic graph is appended

• Installed packages automatically find their dependencies

– Spack embeds RPATH in binary files

– There is no need to use modules or to set the LD_LIBRARY_PATH

spack list shows the available packages:

$ spack list
==> 3250 packages.
abinit py-fiona
abyss py-fiscalyear

(continues on next page)

7.3. Reproduce environments 485



Python for Data Science, Release 24.1.0

(continued from previous page)

accfft py-flake8
...

Spack provides a spec syntax for describing custom DAGs:

• without restrictions

$ spack install mpileaks

• @: custom version

$ spack install mpileaks@3.3

• %: custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3

• +/-: Build option

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads

• =: Cross compile

$ spack install mpileaks@3.3 =bgq

• ^: Version of dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

• Spack ensures a configuration of each library per DAG

– ensures the consistency of the Application Binary Interface (ABI)

– The user does not need to know the DAG structure, just the names of the dependent libraries

• Spack can ensure that builds use the same compiler

• Different compilers can also be specified for different libraries of a DAG

• Spack can also provide ABI-incompatible, versioned interfaces such as the Message Passing Interface (MPI)

• For example, you can create mpi in different ways:

$ spack install mpileaks ^mvapich@1.9
$ spack install mpileaks ^openmpi@1.4

• Alternatively, Spack can also choose the right build himself if only the MPI 2 interface is implemented:

$ spack install mpileaks ^mpi@2

• Spack packages are simple Python scripts:

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”
homepage = "https://paradyn.org"

(continues on next page)

486 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

version('8.2.1', 'abf60b7faabe7a2e’, url="http://www.paradyn.org/release8.2/
→˓DyninstAPI-8.2.1.tgz")

version('8.1.2', 'bf03b33375afa66f’, url="http://www.paradyn.org/release8.1.2/
→˓DyninstAPI-8.1.2.tgz")

version('8.1.1', 'd1a04e995b7aa709’, url="http://www.paradyn.org/release8.1/
→˓DyninstAPI-8.1.1.tgz")

depends_on("libelf")
depends_on("libdwarf")
depends_on("boost@1.42:")

def install(self, spec, prefix):
libelf = spec['libelf'].prefix
libdwarf = spec['libdwarf'].prefix

with working_dir('spack-build', create=True):
cmake('..',

'-DBoost_INCLUDE_DIR=%s' % spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=%s' % spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’
*std_cmake_args)

make()
make("install")

@when('@:8.1')
def install(self, spec, prefix):

configure("--prefix=" + prefix)
make()
make("install")

• Dependencies in Spack can be optional:

– You can define named variants, for example in ~/spack/var/spack/repos/builtin/packages/vim/
package.py:

class Vim(AutotoolsPackage):
...
variant("python", default=False, description="build with Python")
depends_on("python", when="+python")

variant("ruby", default=False, description="build with Ruby")
depends_on("ruby", when="+ruby")

– . . . and use to install:

$ spack install vim +python
$ spack install vim –python

– Depending on other conditions, dependencies can optionally apply, for example gcc dependency on mpc
from version 4.5:

depends_on("mpc", when="@4.5:")

7.3. Reproduce environments 487



Python for Data Science, Release 24.1.0

• DAGs are not always complete before they are specified. Concretisations fill in the missing configuration details
if you do not name them explicitly:

1. Normalisation

$ spack install mpileaks ^callpath@1.0+debug ^libelf@0.8.11

2. Specification

The detailed origin is saved with the installed package in spec.yaml:

spec:
- mpileaks:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

1. If unspecified, values based on the user settings are selected during the specification.

2. During the concretisation, new dependencies are added taking the constraints into account.

3. With the current algorithm, it is not possible to trace why a decision was made.

4. In the future there should be a full constraint solver.

488 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Benefits of the build automation

• Spack makes it easy for teams to share their code

– Recipes for common libraries

– reduce the effort for reproducible builds

– making it easier to share builds.

• Patches allow bug fixes to be provided quickly

– Application developers who use a library often do not have write access to their repositories.

– Library developers may not be able to fix problems as quickly as desired.

– With Spack, application developers can quickly make corrections and undo changes.

• Python allows rapid adoption by development teams.

– Many application developers are already familiar with Python.

– The yaml syntax of the specs are expressive.

Use case 1: managing combinatorial installations

Display all installed configurations

$ spack find
==> 103 installed packages.
-- linux-x86_64 / gcc@4.8.2 --------------------------------
gdk-pixbuf@2.31.2 libpng@1.6.16 otf2@1.4 qhull@1.0
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.
→˓0.4
adept-utils@1.0.1 cmake@5.6 dyninst@8.1.2 libelf@0.8.13 openmpi@1.8.2
-- linux-x86_64 / intel@14.0.2 -----------------------------
hwloc@1.9 mpich@3.0.4 starpu@1.1.4
-- linux-x86_64 / intel@15.0.0 -----------------------------
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.
→˓0.4
-- linux-x86_64 / intel@15.0.1 -----------------------------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4
boost@1.55.0 hwloc@1.9 libelf@0.8.13 starpu@1.1.4

• spack find shows all installed configurations

• There can also be different versions of the same package

• Packages are differentiated between architecture and compiler

• Spack also generates modulefiles, but these do not have to be used

7.3. Reproduce environments 489



Python for Data Science, Release 24.1.0

Spack syntax to restrict the requests

$ spack find mpich
==> 5 installed packages.
-- linux-x86_64 / gcc@4.4.7 --------------------------------
mpich@3.0.4
-- linux-x86_64 / gcc@4.8.2 --------------------------------
mpich@3.0.4
-- linux-x86_64 / intel@14.0.2 -----------------------------
mpich@3.0.4

$ spack find libelf %intel
-- linux-x86_64 / intel@15.0.0 ------
libelf@0.8.13
-- linux-x86_64 / intel@15.0.1 ------
libelf@0.8.13

$ spack find libelf %intel@15.0.1
-- linux-x86_64 / intel@15.0.1 ------
libelf@0.8.13

Spack syntax for displaying the dependencies

$ spack find callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ———————— -- linux-x86_64 / gcc@4.9.2 -------------
callpath@1.0.2 callpath@1.0.2

$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ----------- -- linux-x86_64 / gcc@4.9.2 -----------
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

490 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Use case 2: Python and other interpreted languages

$ spack install python@2.7.10
==> Building python.
==> Successfully installed python.
Fetch: 5.01s. Build: 97.16s. Total: 103.17s.

[+] /srv/jupyterhub/spack/opt/spack/linux-x86_64/gcc-4.9.2/python-2.7.10-y2zr767
$ spack extensions python@2.7.10
==> python@2.7.10%gcc@4.9.2=linux-x86_64-y2zr767
==> 49 extensions:
geos py-h5py py-numpy py-pypar py-setuptools
libxml2 py-ipython py-pandas py-pyparsing py-shiboken
py-basemap py-libxml2 py-pexpect py-pyqt py-sip
py-biopython py-lockfile py-pil py-pyside py-six
py-cffi py-mako py-pmw py-python-daemon py-sphinx
py-cython py-matplotlib py-pychecker py-pytz py-sympy
py-dateutil py-mock py-pycparser py-rpy2 py-virtualenv
py-epydoc py-mpi4py py-pyelftools py-scientificpython py-yapf
py-genders py-mx py-pygments py-scikit-learn thrift
py-gnuplot py-nose py-pylint py-scipy
==> 3 installed:
-- linux-x86_64 / gcc@4.9.2 ------------------------------------
py-nose@1.3.6 py-numpy@1.9.2 py-setuptools@18.1
==> None currently activated.

$ spack activate py-numpy
==> Activated extension py-setuptools-18.1-gcc-4.9.2-ru7w3lx
==> Activated extension py-nose-1.3.6-gcc-4.9.2-vudjpwc
==> Activated extension py-numpy-1.9.2-gcc@4.9.2-45hjazt

$ spack deactivate -a py-numpy
==> Deactivated extension py-numpy-1.9.2-gcc@4.9.2-45hjazt
==> Deactivated extension py-nose-1.3.6-gcc-4.9.2-vudjpwc
==> Deactivated extension py-setuptools-18.1-gcc-4.9.2-ru7w3lx

Future features

• Lmod (Lua based module system) integration

• Resolve external dependencies

• Custom compiler flag injection

• XML test results (JUnit)

See also:
Pull requests

7.3. Reproduce environments 491

https://github.com/spack/spack/pulls


Python for Data Science, Release 24.1.0

Use spack

List the available packages

$ spack list
==> 3247 packages.
abinit py-fiona
abyss py-fiscalyear
...

or to filter for certain packages, for example

$ spack list numpy
==> 2 packages.
py-numpy py-numpydoc

List the installed packages

$ spack find
==> 17 installed packages
-- darwin-mojave-x86_64 / clang@10.0.1-apple --------------------
bzip2@1.0.8 libffi@3.2.1 perl@5.26.2 python@3.7.4 zlib@1.2.11
diffutils@3.7 ncurses@6.1 pkgconf@1.6.1 readline@7.0
expat@2.2.5 openblas@0.3.6 py-numpy@1.16.4 sqlite@3.28.0
gdbm@1.18.1 openssl@1.1.1b py-setuptools@41.0.1 xz@5.2.4

spack info

$ spack info py-numpy
PythonPackage: py-numpy

Description:
NumPy is the fundamental package for scientific computing with Python.
It contains among other things: a powerful N-dimensional array object,
sophisticated (broadcasting) functions, tools for integrating C/C++ and
Fortran code, and useful linear algebra, Fourier transform, and random
number capabilities

Homepage: http://www.numpy.org/

Tags:
None

Preferred version:
1.16.4 https://pypi.io/packages/source/n/numpy/numpy-1.16.4.zip

Safe versions:
1.16.4 https://pypi.io/packages/source/n/numpy/numpy-1.16.4.zip
1.16.3 https://pypi.io/packages/source/n/numpy/numpy-1.16.3.zip

(continues on next page)

492 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

1.16.2 https://pypi.io/packages/source/n/numpy/numpy-1.16.2.zip
1.16.1 https://pypi.io/packages/source/n/numpy/numpy-1.16.1.zip
1.16.0 https://pypi.io/packages/source/n/numpy/numpy-1.16.0.zip
1.15.4 https://pypi.io/packages/source/n/numpy/numpy-1.15.4.zip
1.15.3 https://pypi.io/packages/source/n/numpy/numpy-1.15.3.zip
1.15.2 https://pypi.io/packages/source/n/numpy/numpy-1.15.2.zip
1.15.1 https://pypi.io/packages/source/n/numpy/numpy-1.15.1.zip
1.15.0 https://pypi.io/packages/source/n/numpy/numpy-1.15.0.zip
1.14.6 https://pypi.io/packages/source/n/numpy/numpy-1.14.6.zip
1.14.5 https://pypi.io/packages/source/n/numpy/numpy-1.14.5.zip
1.14.4 https://pypi.io/packages/source/n/numpy/numpy-1.14.4.zip
1.14.3 https://pypi.io/packages/source/n/numpy/numpy-1.14.3.zip
1.14.2 https://pypi.io/packages/source/n/numpy/numpy-1.14.2.zip
1.14.1 https://pypi.io/packages/source/n/numpy/numpy-1.14.1.zip
1.14.0 https://pypi.io/packages/source/n/numpy/numpy-1.14.0.zip
1.13.3 https://pypi.io/packages/source/n/numpy/numpy-1.13.3.zip
1.13.1 https://pypi.io/packages/source/n/numpy/numpy-1.13.1.zip
1.13.0 https://pypi.io/packages/source/n/numpy/numpy-1.13.0.zip
1.12.1 https://pypi.io/packages/source/n/numpy/numpy-1.12.1.zip
1.12.0 https://pypi.io/packages/source/n/numpy/numpy-1.12.0.zip
1.11.3 https://pypi.io/packages/source/n/numpy/numpy-1.11.3.zip
1.11.2 https://pypi.io/packages/source/n/numpy/numpy-1.11.2.zip
1.11.1 https://pypi.io/packages/source/n/numpy/numpy-1.11.1.zip
1.11.0 https://pypi.io/packages/source/n/numpy/numpy-1.11.0.zip
1.10.4 https://pypi.io/packages/source/n/numpy/numpy-1.10.4.zip
1.9.3 https://pypi.io/packages/source/n/numpy/numpy-1.9.3.zip
1.9.2 https://pypi.io/packages/source/n/numpy/numpy-1.9.2.zip
1.9.1 https://pypi.io/packages/source/n/numpy/numpy-1.9.1.zip

Variants:
Name [Default] Allowed values Description

blas [on] True, False Build with BLAS support
lapack [on] True, False Build with LAPACK support

Installation Phases:
build install

Build Dependencies:
blas lapack py-setuptools python

Link Dependencies:
blas lapack python

Run Dependencies:
python

Virtual Packages:
None

7.3. Reproduce environments 493



Python for Data Science, Release 24.1.0

spack version

spack version shows the available versions, for example

$ spack versions python
==> Safe versions (already checksummed):
3.7.4 3.7.0 3.6.5 3.6.1 3.5.1 3.3.6 2.7.15 2.7.11
3.7.3 3.6.8 3.6.4 3.6.0 3.5.0 3.2.6 2.7.14 2.7.10
3.7.2 3.6.7 3.6.3 3.5.7 3.4.10 3.1.5 2.7.13 2.7.9
3.7.1 3.6.6 3.6.2 3.5.2 3.4.3 2.7.16 2.7.12 2.7.8

==> Remote versions (not yet checksummed):
3.8.0b2 3.6.9 3.5.7rc1 3.5.0a2 3.4.0 3.1.2 2.7 2.4.3
3.8.0b1 3.6.8rc1 3.5.6rc1 3.5.0a1 3.3.7rc1 3.1.1 2.6.9 2.4.2
...

Installation of certain packages

for example:

$ spack install python@3.7.4

or to install py-numpy for Python 3.7.4:

$ spack install py-numpy ^python@3.7.4

Then the installation can be checked with

$ spack find --deps py-numpy
==> 1 installed package
-- darwin-mojave-x86_64 / clang@10.0.1-apple --------------------

py-numpy@1.16.4
^openblas@0.3.6
^python@3.7.4

^bzip2@1.0.8
^expat@2.2.5
^gdbm@1.18.1

^readline@7.0
^ncurses@6.1

^libffi@3.2.1
^openssl@1.1.1b

^zlib@1.2.11
^sqlite@3.28.0
^xz@5.2.4

494 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Uninstall

$ spack uninstall py-numpy

or

$ spack uninstall --dependents py-numpy

Extensions and Python support

The Spack installation model assumes that each package lives in its own installation prefix. Modules in
interpreted languages such as Python are typically installed in $prefix/lib/python-3.7/site-packages/
, for example /Users/veit/spack/opt/spack/darwin-mojave-x86_64/clang-10.0.1-apple/py-numpy-1.
16.4-45sqnufha2yprpx6rxyelsokky65ucdy/lib/python3.7/site-packages/numpy. However, packages in-
stalled in a different prefix can also be used. Such a package is called an extension in Spack.

Suppose Python was installed with

$ spack find python
==> 1 installed package
-- darwin-mojave-x86_64 / clang@10.0.1-apple --------------------
python@3.7.4

so Extensions can be found with

$ spack extensions python
==> python@3.7.4%clang@10.0.1-apple+bz2+ctypes+dbm+lzma~nis~optimizations␣
→˓patches=210df3f28cde02a8135b58cc4168e70ab91dbf9097359d05938f1e2843875e57␣
→˓+pic+pyexpat+pythoncmd+readline~shared+sqlite3+ssl~tix~tkinter~ucs4~uuid+zlib␣
→˓arch=darwin-mojave-x86_64/jqlxzxp
==> 623 extensions:
adios2 py-munch
antlr py-mx
...

==> 2 installed:
-- darwin-mojave-x86_64 / clang@10.0.1-apple --------------------
py-numpy@1.16.4 py-setuptools@41.0.1

==> None activated.

numpy can be added to the PYTHONPATH of the current shell with load:

$ spack load python
$ spack load py-numpy
$ python
Python 3.7.4 (default, Jul 28 2019, 20:00:06)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>>

7.3. Reproduce environments 495



Python for Data Science, Release 24.1.0

Often, however, certain packages should be permanently available to a Python installation. Spack offers activate for
this:

$ spack activate py-numpy
==> Activating extension py-numpy@1.16.4%clang@10.0.1-apple+blas+lapack arch=darwin-
→˓mojave-x86_64/45sqnuf for python@3.7.4%clang@10.0.1-apple+bz2+ctypes+dbm+lzma~nis~
→˓optimizations patches=210df3f28cde02a8135b58cc4168e70ab91dbf9097359d05938f1e2843875e57␣
→˓+pic+pyexpat+pythoncmd+readline~shared+sqlite3+ssl~tix~tkinter~ucs4~uuid+zlib␣
→˓arch=darwin-mojave-x86_64/jqlxzxp

Environments, spack.yaml and spack.lock

1. Create a virtual environment:

$ spack env create python-311
==> Created environment 'python-311' in /srv/jupyter/spack/var/spack/environments/
→˓python-311
==> You can activate this environment with:
==> spack env activate python-311

Alternatively, it can also be saved in any other location, for example:

$ cd spackenvs/
$ spack env create -d python-311
==> Created environment in /srv/jupyter/jupyter-tutorial/spackenvs/python-311
==> You can activate this environment with:
==> spack env activate /srv/jupyter/jupyter-tutorial/spackenvs/python-311

2. Check the virtual environment:

$ spack env list
==> 1 environments

python-311

3. Activate the virtual environment:

$ spack env activate python-311

4. Check activation:

If you have activated an environment, you will only see what is in the current environment. That shouldn’t be
anything immediately after activation:

$ spack find
==> In environment python-311
==> No root specs
==> 0 installed packages

And if you want to check what environment you are in, you can query this with:

$ spack env status
==> In environment python-311

5. Finally, you can leave the activated environment with spack env deactivate or briefly despacktivate.

496 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

$ despacktivate
$ spack env status
==> No active environment

Install packages

$ spack env activate python-311
$ spack add python@3.11.0
$ spack install
==> Concretized python@3.11.0
- 4nvposf python@3.11.0%gcc@11.3.0+bz2+ctypes+dbm~debug+libxml2+lzma~nis~

→˓optimizations+pic+pyexpat+pythoncmd+readline+shared+sqlite3+ssl~tix~tkinter~
→˓ucs4+uuid+zlib build_system=generic patches=13fa8bf,b0615b2,f2fd060 arch=linux-
→˓ubuntu22.04-sandybridge
- 6fefzf3 ^bzip2@1.0.8%gcc@11.3.0~debug~pic+shared build_system=generic␣

→˓arch=linux-ubuntu22.04-sandybridge
- 27f7g74 ^diffutils@3.8%gcc@11.3.0 build_system=autotools arch=linux-

→˓ubuntu22.04-sandybridge
...
==> python: Successfully installed python-3.11.0-4nvposf6bicf5ogp6nqacfo4dfvwm7zv
Fetch: 5.19s. Build: 3m 48.84s. Total: 3m 54.03s.

[+] /srv/jupyter/spack/opt/spack/linux-ubuntu22.04-sandybridge/gcc-11.3.0/python-3.11.0-
→˓4nvposf6bicf5ogp6nqacfo4dfvwm7zv
==> Updating view at /srv/jupyter/python-311/.spack-env/view
$ spack find
==> In environment /home/veit/python-311
==> Root specs
python@3.11.0
==> Installed packages
-- linux-ubuntu22.04-sandybridge / gcc@11.3.0 -------------------
berkeley-db@18.1.40 libiconv@1.16 readline@8.1.2
bzip2@1.0.8 libmd@1.0.4 sqlite@3.39.4
ca-certificates-mozilla@2022-10-11 libxml2@2.10.1 tar@1.34
diffutils@3.8 ncurses@6.3 util-linux-uuid@2.38.1
expat@2.4.8 openssl@1.1.1s xz@5.2.7
gdbm@1.23 perl@5.36.0 zlib@1.2.13
gettext@0.21.1 pigz@2.7 zstd@1.5.2
libbsd@0.11.5 pkgconf@1.8.0
libffi@3.4.2 python@3.11.0
==> 25 installed packages

With spack cd -e python-311 you can change to this directory, for example:

$ spack cd -e python-311
$ pwd
/srv/jupyter/spack/var/spack/environments/python-311

There you will find the two files spack.yaml and spack.lock.

spack.yaml
is the configuration file for the virtual environment. It is created in ~/spack/var/spack/environments/
when you call spack env create.

7.3. Reproduce environments 497



Python for Data Science, Release 24.1.0

As an alternative to spack install, Python and other packages can also be installed by adding them to the
specs list in spack.yaml:

specs: [python@3.11.0, ...]

concretization
The specifications can be made either separately or together. When concretising specs together the
entire set of specs will be re-concretised after any addition of new user specs, to ensure the environment
remains consistent.

view
True is the default value and equivalent to:

default:
root: .spack-env/view

See also:
• spack.yaml

spack.lock
With spack install the specs are concretised, written in spack.lock and installed. In contrast to spack.
yaml spack.lock is written in json format and contains the necessary information to be able to create repro-
ducible builds of the environment:

{
"_meta": {
"file-type": "spack-lockfile",
"lockfile-version": 4,
"specfile-version": 3

},
"roots": [

{
"hash": "4nvposf6bicf5ogp6nqacfo4dfvwm7zv",
"spec": "python@3.11.0"

}
],
"concrete_specs": {
"4nvposf6bicf5ogp6nqacfo4dfvwm7zv": {
"name": "python",
"version": "3.11.0",
"arch": {
"platform": "linux",
"platform_os": "ubuntu22.04",
"target": {
"name": "sandybridge",
"vendor": "GenuineIntel",
"features": [
"aes",
"avx",
...

]
}

}
}

(continues on next page)

498 Chapter 7. Create a product

https://spack.readthedocs.io/en/latest/environments.html#environments-spack-yaml


Python for Data Science, Release 24.1.0

(continued from previous page)

}
}

Installation of additional packages

Additional packages can be installed in the virtual environment with spack add and spack install. For Matplotlib
it looks like this:

$ spack add py-numpy
==> Adding py-numpy to environment /srv/jupyter/jupyter-tutorial/spackenvs/python-311
$ spack install
==> Concretized python@3.11.0
[+] 4nvposf python@3.11.0%gcc@11.3.0+bz2+ctypes+dbm~debug+libxml2+lzma~nis~
→˓optimizations+pic+pyexpat+pythoncmd+readline+shared+sqlite3+ssl~tix~tkinter~
→˓ucs4+uuid+zlib build_system=generic patches=13fa8bf,b0615b2,f2fd060 arch=linux-
→˓ubuntu22.04-sandybridge
[+] 6fefzf3 ^bzip2@1.0.8%gcc@11.3.0~debug~pic+shared build_system=generic␣
→˓arch=linux-ubuntu22.04-sandybridge
[+] 27f7g74 ^diffutils@3.8%gcc@11.3.0 build_system=autotools arch=linux-
→˓ubuntu22.04-sandybridge
...
==> Installing environment /srv/jupyter/jupyter-tutorial/spackenvs/python-311
...
==> Successfully installed py-numpy

Note: If a Pipenv environment has already been derived from this Spack environment, it must be rebuilt in order to
receive the additional Spack package:

$ pipenv install --python=/srv/jupyter/spack/var/spack/environments/python-311/.spack-
→˓env/view/bin/python

Creating a virtualenv for this project...
Pipfile: /srv/jupyter/jupyter-tutorial/pipenvs/python-311/Pipfile
Using /srv/jupyter/spack/var/spack/environments/python-311/.spack-env/view/bin/python␣

→˓(3.11.0) to create virtualenv...
Creating virtual environment...Using base prefix '/srv/jupyter/jupyterhub/spackenvs/

→˓python-374/.spack-env/view'
creator Venv(dest=/srv/jupyter/.local/share/virtualenvs/python-311-aGnPz55z,␣

→˓clear=False, no_vcs_ignore=False, global=False, describe=CPython3Posix)
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle,␣

→˓via=copy, app_data_dir=/srv/jupyter/.local/share/virtualenv)
added seed packages: pip==22.3.1, setuptools==65.5.1, wheel==0.38.4

activators BashActivator,CShellActivator,FishActivator,NushellActivator,
→˓PowerShellActivator,PythonActivator

✓✓✓ Successfully created virtual environment!
Virtualenv location: /srv/jupyter/.local/share/virtualenvs/python-311-aGnPz55z
Creating a Pipfile for this project...
Pipfile.lock not found, creating...
Locking [packages] dependencies...
Locking [dev-packages] dependencies...
Updated Pipfile.lock␣

(continues on next page)

7.3. Reproduce environments 499

https://matplotlib.org/


Python for Data Science, Release 24.1.0

(continued from previous page)

→˓(a3aa656db1de341c375390e74afd03f09eb681fe6881c58a71a85d6e08d77619)!
Installing dependencies from Pipfile.lock (d77619)...
To activate this project's virtualenv, run pipenv shell.
Alternatively, run a command inside the virtualenv with pipenv run.

The installation can then be checked with:

$ pipenv run python
Python 3.11.0 (main, Nov 19 2022, 11:29:15) [GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import matplotlib.pyplot as plt

Configuration

spack spec specifies the dependencies of certain packages, for example

$ spack spec py-matplotlib
Input spec
--------------------------------
py-matplotlib

Concretized
--------------------------------
py-matplotlib@3.6.2%gcc@11.3.0~animation~fonts~latex~movies backend=agg build_
→˓system=python_pip arch=linux-ubuntu22.04-sandybridge

^freetype@2.11.1%gcc@11.3.0 build_system=autotools arch=linux-ubuntu22.04-
→˓sandybridge

^bzip2@1.0.8%gcc@11.3.0~debug~pic+shared build_system=generic arch=linux-
→˓ubuntu22.04-sandybridge

^diffutils@3.8%gcc@11.3.0 build_system=autotools arch=linux-ubuntu22.04-
→˓sandybridge

^libpng@1.6.37%gcc@11.3.0 build_system=autotools arch=linux-ubuntu22.04-sandybridge
...

With spack config get you can look at the configuration of a certain environment:

$ spack config get
# This is a Spack Environment file.
#
# It describes a set of packages to be installed, along with
# configuration settings.
spack:
# add package specs to the `specs` list
specs: [python@3.11.0, py-numpy]
view: true
concretizer:
unify: true

With spack config edit the configuration file spack.yaml can be edited.

500 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Note: If packages are already installed in the environment, all dependencies should be specified again with spack
concretize -f.

Loading the modules

With spack env loads -r <env> all modules are loaded with their dependencies.

Note: However, this does not currently work when loading modules from environments that are not in $SPACK_ROOT/
var/environments.

Therefore we replace the directory $SPACK_ROOT/var/environments with a symbolic link:

$ rm $SPACK_ROOT/var/environments
$ cd $SPACK_ROOT/var/
$ ln -s /srv/jupyter/jupyter-tutorial/spackenvs environments

See also:
• Environments Tutorial

Spack mirrors

Some machines may not have internet access to get packages. Then you will need a local repository of tarballs from
which to retrieve your files. Spack supports this with Spack mirrors. A mirror is a URL that points to a directory on
the local file system or on a server and contains tarballs for all Spack packages.

Here is an example of the directory structure of a mirror:

$ tree /path/to/mirror/
/path/to/mirror/

autoconf
autoconf-2.69.tar.gz

automake
automake-1.16.1.tar.gz

bzip2
bzip2-1.0.8.tar.gz

diffutils
diffutils-3.7.tar.xz

expat
expat-2.2.5.tar.bz2

gcc
gcc-9.1.0.tar.xz

...

7.3. Reproduce environments 501

https://spack-tutorial.readthedocs.io/en/latest/tutorial_environments.html


Python for Data Science, Release 24.1.0

spack mirror create

You can create a mirror with the command spack mirror create, provided you are on a machine that can access
the Internet. The command iterates through all of Spack’s packages and downloads the ones you want.

spack mirror add

Once you’ve created a mirror, you need to let Spack know about it. It’s relatively easy. First find out the URL of your
mirror. If it’s a directory, you can use a file url like this:

$ spack mirror add local_filesystem file://$HOME/spack-mirror

Order of mirrors

spack mirror ad adds a line in ~/.spack/mirrors.yaml:

mirrors:
local_filesystem: file:///home/veit/spack-mirror
remote_server: https://spack-mirror.cusy.io

If you want to change the order in which mirrors are searched for packages, you can edit this file and rearrange the
sections: Spack searches them from top to bottom until a suitable entry is found.

Local default cache

Spack creates a cache for resources that are downloaded as part of installations. This cache is a valid Spack mirror:
it uses the same directory structure and naming scheme as other Spack mirrors. The mirror is managed locally in the
Spack installation directory at ~/spack/var/spack/cache/.

7.3.2 Pipenv

Pipenv is a Python package manager. He uses Pip to install Python packages, but also simplifies the management and
maintenance of dependencies.

Installation

This section covers the basics of installing Python packages.

Requirements for installing packages

Before installing Python packages, a few prerequisites must be met.

1. Make sure you are using the version of Python you want:

$ python --version
Python 3.10.6

Note: In iPython or a Jupyter Notebook you can find out the version with:

502 Chapter 7. Create a product

https://docs.pipenv.org/
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-distribution-package


Python for Data Science, Release 24.1.0

In [1]: import sys
sys.version_info

sys.version_info(major=3, minor=10, micro=6, releaselevel='final', serial=0)

Note: If you use the system Python of your Linux distribution, you should first create a virtual environment
with Python 3 and Pip.

2. Make sure Pip is installed:

$ pip --version
pip 22.0.2 from /usr/lib/python3/dist-packages/pip (python 3.10)

1. If Pip is not yet installed, you can install it

$ sudo apt install python3-venv python3-pip

$ sudo apt install python-pip

Install Pipenv

pipenv is a dependency manager for Python projects. It to install Python packages, but it simplifies dependency man-
agement. Pip can be used to install Pipenv, but the --user flag should be used so that it is only available to that user.
This is to prevent system-wide packages from being accidentally overwritten:

$ python3 -m pip install --user pipenv
...
Successfully installed distlib-0.3.4 filelock-3.4.2 pipenv-2022.1.8 platformdirs-2.4.1␣
→˓virtualenv-20.13.0 virtualenv-clone-0.5.7

Note: If pipenv is not available in the shell after the installation, the USER_BASE/bin directory may have to be
specified in PATH.

The USER_BASE can be determined with:

$ python3 -m site --user-base
/srv/jupyter/.local

Then the bin directory must be appended and added to PATH. Alternatively, PATH can be set permanently by changing
~/.profile or ~/.bash_profile, in my case:

export PATH=/srv/jupyter/.local/bin:$PATH

The directory can be determined with py -m site --user-site and then site-packages can be replaced by
Scripts. this then gives, for example:

C:\Users\veit\AppData\Roaming\Python38\Scripts

In order to be permanently available, this path can be entered in PATH in the control panel.

7.3. Reproduce environments 503

https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-Pipenv


Python for Data Science, Release 24.1.0

See also:
Further information on user-specific installations can be found in User Installs.

Create virtual environments

Python virtual environments allow Python packages to be installed in an isolated location for a specific application,
rather than installing them globally. So you have your own installation directories and do not share libraries with other
virtual environments:

$ mkdir myproject
$ cd !$
cd myproject
$ pipenv install requests
Creating a virtualenv for this project...
...
Virtualenv location: /srv/jupyter/.local/share/virtualenvs/myproject-CZKj6mqJ
Creating a Pipfile for this project...
Installing requests...
Adding requests to Pipfile's [packages]...
...

Usage

Example

Now that requests is installed, it can be used.

1. As an example, we create the file main.py with the following content:

import requests

response = requests.get("https://cusy.io")

print(response.status_code)

1. Then the script can be executed with:

$ pipenv run python main.py

1. As a result of the call you should receive the HTTP status code 200.

Using pipenv run ensures that your installed packages are available for your script.

Alternatively, you can also create a new shell pipenv shell with which all installed packages can be accessed:

$ pipenv shell
Launching subshell in virtual environment...
. /srv/jupyter/.local/share/virtualenvs/myproject-CZKj6mqJ/bin/activate

504 Chapter 7. Create a product

https://pip.readthedocs.io/en/latest/user_guide.html#user-installs
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-Virtual-environment


Python for Data Science, Release 24.1.0

Options

-venv
specifies the path to the Virtualenv, usually in ~/.local/share/virtualenvs/. However, if you have created
a directory myproject/.venv, pipenv use this folder to create the associated Python environment there.

--py
specifies the path to the Python interpreter.

--envs
outputs options of the environment variables.

For PIPENV_DONT_LOAD_ENV, PIPENV_DONT_USE_PYENV and PIPENV_DOTENV_LOCATION see Environment
variables.

If you want to set these environment variables per project, you can use direnv.

Also note that pip itself supports environment variables in case you need additional adjustments: Pip Environ-
ment Variables.

Here is another example:

$ PIP_INSTALL_OPTION="-- -DCMAKE_BUILD_TYPE=Release" pipenv install -e .

Further information can be found at Configuration With Environment Variables

--three, --two, --python
uses Python 2 or Python 3 or a specific Python to which the path is given.

--site-packages
enables site packages for the virtual environment.

--pypi-mirror
indicates a PyPI mirror. The standard is the Python Package Index (PyPI)`.

However, you can also specify your own mirrors:

• with the environment variable PIPENV_PYPI_MIRROR

• in the command line, for example with:

$ pipenv install --pypi-mirror https://pypi.cusy.io/simple
$ pipenv update --pypi-mirror https://pypi.cusy.io/simple
...

• or in pipfile:

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[[source]]
url = "https://pypi.cusy.io/simple"
verify_ssl = true
name = "cusy-mirror"

[dev-packages]

(continues on next page)

7.3. Reproduce environments 505

https://direnv.net/
https://pip.pypa.io/en/stable/user_guide/#environment-variables
https://pip.pypa.io/en/stable/user_guide/#environment-variables
https://docs.pipenv.org/advanced/#configuration-with-environment-variables
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-Python-Package-Index
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-PyPI


Python for Data Science, Release 24.1.0

(continued from previous page)

[packages]
requests = {version="*", index="cusy-mirror"}
maya = {version="*", index="pypi"}
records = "*"

Note: If a private index is used, there are currently still problems with hashing the packages.

You can find more options at pipenv.

check

pipenv check checks for security holes and for PEP 508 markers in the pip ile. For this it uses safety.

Example:

$ pipenv install django==1.10.1
Installing django==1.10.1...
...
$ pipenv check
Checking PEP 508 requirements...
Passed!
Checking installed package safety...

33075: django >=1.10,<1.10.3 resolved (1.10.1 installed)!
Django before 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3, when␣
→˓settings.DEBUG is True, allow remote attackers to conduct DNS rebinding attacks by␣
→˓leveraging failure to validate the HTTP Host header against settings.ALLOWED_HOSTS.

33076: django >=1.10,<1.10.3 resolved (1.10.1 installed)!
Django 1.8.x before 1.8.16, 1.9.x before 1.9.11, and 1.10.x before 1.10.3 use a␣
→˓hardcoded password for a temporary database user created when running tests with an␣
→˓Oracle database, which makes it easier for remote attackers to obtain access to the␣
→˓database server by leveraging failure to manually specify a password in the database␣
→˓settings TEST dictionary.

33300: django >=1.10,<1.10.7 resolved (1.10.1 installed)!
CVE-2017-7233: Open redirect and possible XSS attack via user-supplied numeric redirect␣
→˓URLs
============================================================================================

Django relies on user input in some cases (e.g.
:func:`django.contrib.auth.views.login` and :doc:`i18n </topics/i18n/index>`)
to redirect the user to an "on success" URL. The security check for these
redirects (namely ``django.utils.http.is_safe_url()``) considered some numeric
URLs (e.g. ``http:999999999``) "safe" when they shouldn't be.

Also, if a developer relies on ``is_safe_url()`` to provide safe redirect
targets and puts such a URL into a link, they could suffer from an XSS attack.

CVE-2017-7234: Open redirect vulnerability in ``django.views.static.serve()``
(continues on next page)

506 Chapter 7. Create a product

https://docs.pipenv.org/#pipenv
https://peps.python.org/pep-0508/
https://github.com/pyupio/safety


Python for Data Science, Release 24.1.0

(continued from previous page)

=============================================================================

A maliciously crafted URL to a Django site using the
:func:`~django.views.static.serve` view could redirect to any other domain. The
view no longer does any redirects as they don't provide any known, useful
functionality.

Note, however, that this view has always carried a warning that it is not
hardened for production use and should be used only as a development aid.

Note: Pipenv embeds an API client key from pyup.io, instead of including a full copy of the CC BY-NC-SA licensed
database.

In order to install the complete database you can check it out with:

$ pipenv install -e git+https://github.com/pyupio/safety-db.git#egg=safety-db

To use the local database, you have to enter the path to this database, in my case:

$ pipenv check --db /Users/veit/.local/share/virtualenvs/myproject-9TTuTZjx/src/safety-
→˓db/data

/$$$$$$ /$$
/$$__ $$ | $$

/$$$$$$$ /$$$$$$ | $$ \__//$$$$$$ /$$$$$$ /$$ /$$
/$$_____/ |____ $$| $$$$ /$$__ $$|_ $$_/ | $$ | $$
| $$$$$$ /$$$$$$$| $$_/ | $$$$$$$$ | $$ | $$ | $$
\____ $$ /$$__ $$| $$ | $$_____/ | $$ /$$| $$ | $$
/$$$$$$$/| $$$$$$$| $$ | $$$$$$$ | $$$$/| $$$$$$$
|_______/ \_______/|__/ \_______/ \___/ \____ $$

/$$ | $$
| $$$$$$/

by pyup.io \______/

REPORT
checked 21 packages, using local DB

No known security vulnerabilities found.

7.3. Reproduce environments 507

https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-Pipenv
https://pyup.io
https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.en


Python for Data Science, Release 24.1.0

clean

pipenv clean uninstalls all packages not specified in Pipfile.lock.

graph

pipenv graph displays the dependency graph information for the currently installed packages.

install

pipenv install installs the provided packages and adds them to the pipfile. pipenv install knows the following
options:

-d, --dev
installs the packages in [dev-packages], for example:

$ pipenv install --dev pytest
...
$ cat Pipfile
...
[dev-packages]
pytest = "*"

--deploy
aborts if Pipfile.lock is out of date or an incorrect Python version is used.

-r, --requirements <requirements.txt>
imports a requirements.txt file.

--sequential
installs the dependency in a specific order, not at the same time.

While this slows down the installation, it increases the determinability of the builds.

sdist vs. wheel

pip can install packages as Source Distribution (sdist) or Wheel If both are present on PyPI, pip will prefer a compatible
Wheel.

Note: However, dependencies on wheels are not covered by $ pipenv lock.

Requirement specifier

Requirement specifier specify the respective package.

• The latest version can be installed, for example:

$ pipenv install requests

• A specific version can be installed, for example:

508 Chapter 7. Create a product

https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-source-distribution
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-sdist
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-wheel
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-PyPI
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-wheel
https://www.python.org/dev/peps/pep-0508/


Python for Data Science, Release 24.1.0

$ pipenv install requests==2.18.4

• If the version has to be in a specific version range, this can also be specified:

$ pipenv install requests>=2,<3

• A compatible version can also be installed:

$ pipenv install requests~=2.18

This is compatible with ==2.18.*.

• For some packages, optional dependencies can also be specified with square brackets:

$ pipenv install requests[security]

• It can also be specified that certain packages are only installed on certain systems, so for the following Pipfile
the module pywinusb is only installed on Windows systems.

[packages]
pywinusb = {version = "*", sys_platform = "== 'win32'"}

A more complex example differentiates which module versions should be installed with which Python versions:

[packages]
unittest2 = {version = ">=1.0,<3.0", markers="python_version < '2.7.9' or (python_
→˓version >= '3.0' and python_version < '3.4')"}

VCS

You can also install Python packages from version control, for example:

$ pipenv install -e git+https://github.com/requests/requests.git#egg=requests

Note: If editable=false, sub-dependencies are not resolved.

Further information on pipenv and VCS can be found in Pipfile spec.

The version management credentials can also be specified in the pipfile, for example

[[source]]
url = "https://$USERNAME:${PASSWORD}@pypi.cusy.io/simple"
verify_ssl = true
name = "cusy-pypi"

Note: pipenv hashes Pipfile before the environment variables are determine, and the environment variables are
also written to Pipfile.lock, so that no credentials need to be stored in the version control.

7.3. Reproduce environments 509

https://setuptools.pypa.io/en/latest/userguide/dependency_management.html#optional-dependencies
https://github.com/pypa/pipfile


Python for Data Science, Release 24.1.0

lock

pipenv lock generates the file Pipfile.lock that lists all the dependencies and sub-dependencies of your project
including the latest available versions and the current hash values for the downloaded files. This ensures repeatable
and, above all, deterministic builds.

Note: In order to increase the determinism, the installation sequence can also be guaranteed in addition to the hash
values. The --sequential flag is used for this.

Security features

pipfile.lock uses some security enhancements from pip: by default, sha256 hashes are generated for each down-
loaded package.

We strongly recommend lock using to deploy development environments to production. In the development environ-
ment you use pipenv lock to compile your dependencies and then you can use the compiled file Pipfile.lock in
the production environment for reproducible builds.

open

pipenv open MODULE shows a specific module in your editor.

If you use PyCharm, you have to configure pipenv for your Python project. How to do this is described in Configuring
Pipenv Environment.

run

pipenv run spawns a command that is installed in the virtual environment, for example:

$ pipenv run python main.py

shell

pipenv shell spawns a shell in the virtual environment. This gives you a Python interpreter that contains all Python
packages and is therefore ideal for debugging and testing, for example:

$ pipenv shell --fancy
Launching subshell in virtual environment...
bash-4.3.30$ python
Python 3.6.4 (default, Jan 6 2018, 11:51:59)
>>> import requests
>>>

Note: Shells are usually not configured so that a subshell can be used. This can lead to unexpected results. In these
cases pipenv shell should be used instead of pipenv shell --fancy as this uses a compatibility mode.

510 Chapter 7. Create a product

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/help/pycharm/pipenv.html
https://www.jetbrains.com/help/pycharm/pipenv.html


Python for Data Science, Release 24.1.0

sync

pipenv sync installs all packages specified in Pipfile.lock.

uninstall

pipenv uninstall uninstalls all provided packages and removes them from the Pipfile. uninstall supports all
parameters of install plus the following two options:

--all
deletes all files from the virtual environment, but leaves the Pipfile untouched.

--all-dev
removes all development packages from the virtual environment and removes them from the Pipfile.

update

pipenv update runs first pipenv lock, then pipenv sync.

pipenv update has the following options:

--clear
clears the dependency cache.

--outdated
lists obsolete dependencies.

Deterministic builds

All you have to do is specify what you want:

For example, pipenv install requests creates a Pipfile like the following:

[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"

[packages]
requests = "*"

[dev-packages]

[requires]
python_version = "3.6"

However, the associated Pipfile.lock file specifies the packages exactly, for example:

{
"default": {

"requests": {
"hashes": [

"sha256:63b52e3c866428a224f97cab011de738c36aec0185aa91cfacd418b5d58911d1
(continues on next page)

7.3. Reproduce environments 511



Python for Data Science, Release 24.1.0

(continued from previous page)

→˓",
"sha256:ec22d826a36ed72a7358ff3fe56cbd4ba69dd7a6718ffd450ff0e9df7a47ce6a"

],
"index": "pypi",
"version": "==2.19.1"

},
"urllib3": {

"hashes": [
"sha256:a68ac5e15e76e7e5dd2b8f94007233e01effe3e50e8daddf69acfd81cb686baf

→˓",
"sha256:b5725a0bd4ba422ab0e66e89e030c806576753ea3ee08554382c14e685d117b5"

],
"markers": "python_version != '3.2.*' and python_version != '3.1.*' and␣

→˓python_version < '4' and python_version != '3.3.*' and python_version >= '2.6' and␣
→˓python_version != '3.0.*'",

"version": "==1.23"
}

},
"develop": {}

}

Pipfile.lock also specifies all the dependencies of your project, whereby the hash values of the downloaded files
are saved. This is to ensure repeatable and deterministic builds.

Workflows

Import and export of requirements.txt files

If you already have a requirements.txt file in an existing project, pipenv can resolve dependencies. If the
requirements.txt file is in the same directory, simply with $ pipenv install or, if it is in a different directory,
with $ pipenv install -r /path/to/requirements.txt.

Conversely, you can also create a requirements.txt file from an existing Pipenv environment with:

$ pipenv run pip freeze > requirements.txt

Upgrade workflow

1. Find out what has changed upstream:

$ pipenv update --outdated
Package 'requests' out-of-date: '==2.13.0' installed, '==2.19.1' available.

2. To update the Python packages, you have the following two options:

• update everything with $ pipenv update

• update individual packages, for example requests with $ pipenv update requests

512 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Pipfile vs. setup.py

A distinction must be made whether you are developing an application or a library.

Libraries
They offer reusable functions for other libraries and applications/projects. You have to work with other libraries,
each with their own dependencies. To avoid version conflicts in dependencies between different libraries within
a project, libraries should never commit dependency versions. However, you can specify lower or upper limits if
you are relying on a particular feature or bug fix. Library dependencies are noted in install_requires of the
setup.py file.

Applications
They use libraries and are mostly not dependent on other projects. They should be implemented in a specific
environment and only then should the exact versions of all their dependencies and sub-dependencies be specified.
Facilitating this process is the main goal of Pipenv.

Environment variables

pipenv environment variables

pipenv --envs outputs options of the environment variables.

For more information, see Configuration With Environment Variables.

.env file

If an .env file exists in your virtual environment, $ pipenv shell and $ pipenv run will automatically load it:

$ cat .env
USERNAME=veit

$ pipenv run python
Loading .env environment variables...
...

>>> import os
>>> os.environ["USERNAME"]
'veit'

The credentials of the version management, can also be specified in the Pipfile, for example:

[[source]]
url = "https://$USERNAME:${PASSWORD}@ce.cusy.io/api/v4/projects/$PROJECT_ID/packages/
→˓pypi/simple"
verify_ssl = true
name = "gitlab"

Note: pipenv hashes the pipfile before determining the environment variables, and the environment variables from
the pipfile.lock are also replaced so that no credentials need to be stored in the version management.

You can also save the .env file outside your virtual environment. You then only have to specify the path to this file in
PIPENV_DOTENV_LOCATION:

7.3. Reproduce environments 513

https://docs.pipenv.org/advanced/#configuration-with-environment-variables


Python for Data Science, Release 24.1.0

$ PIPENV_DOTENV_LOCATION=/PATH/TO/.env pipenv shell

You can also prevent pipenv from using an existing .env file with:

$ PIPENV_DONT_LOAD_ENV=1 pipenv shell

Pipenv and Spack

We need Pipenv for our Spack environments to be able to generate binary-compatible builds with Spack on the one
hand and to be able to easily use Python packages for data collection, visualization, etc. on the other.

To do this, first activate the appropriate Python version from the Spack environment:

$ spack env activate python-311
$ spack env status
==> In environment python-311
$ which python
/srv/jupyter/spack/var/spack/environments/python-311/.spack-env/view/bin/python

Then you can install the existing Pipenv environment with:

$ cd ~/jupyter-tutorial/pipenvs/python-311/
$ pipenv --python=/Users/veit/jupyter-tutorial/spackenvs/python-311/.spack-env/
→˓view/bin/python --site-packages
$ pipenv install
Creating a virtualenv for this project...
Pipfile: /Users/veit/jupyter-tutorial/pipenvs/python-311/Pipfile
Using /Users/veit/jupyter-tutorial/spackenvs/python-311/.spack-env/view/bin/
→˓python3.11 (3.11.4) to create virtualenv...
...

This uses the environment installed with Spack and installs additional packages.

See also:
• Pipenv and Other Python Distributions

7.4 Creating programme libraries and packages

Learn how to create programme libraries and packages in our Python Basics Tutorial.

7.5 Document

So that your product can be used effectively, documentation is required for the target groups of data scientists and data
engineers as well as for system engineers:

• Data scientists want to see documented

– which problems your product solves and what the main functions and limitations of the software are
(README)

– how the product can be used

514 Chapter 7. Create a product

https://pipenv.pypa.io/en/latest/advanced.html#pipenv-and-other-python-distributions
https://python-basics-tutorial.readthedocs.io/en/latest/libs/distribution.html


Python for Data Science, Release 24.1.0

– which changes have come in more recent software versions (CHANGELOG)

• Data engineers want to know how troubleshooting can help improve the product (CONTRIBUTING) and how they
can communicate with others (CODE_OF_CONDUCT)

• System engineers need installation instructions for your product and the required dependencies

Together, they all need information about how the product is licensed (LICENSE file or LICENSES folder and how they
can get help if needed.

See also:
• Document

• Read the Docs for Science

7.6 Licensing

In order for others to use your software, it should have one or more licences that describe the terms of use. Otherwise,
it is likely to be protected by copyright. Authors are those who have originally contributed to the software. If software
is to be licensed, the consent of all those who can claim authorship is required.

Note: This does not constitute legal advice. If in doubt, contact a lawyer or the legal department of your company.

See also:
• The Whys and Hows of Licensing Scientific Code

• A Quick Guide to Software Licensing for the Scientist-Programmer

• Karl Fogel: Producing Open Source Software

• Forschungsdaten veröffentlichen

7.6.1 Proprietary software licenses

Proprietary software licenses are rarely standardised; they can be commercial, shareware, or freeware.

7.6.2 Free and open source software licenses

They are defined by the Free Software Foundation (FSF) and the Open Source Initiative (OSI). A distinction can
essentially be made between copyleft, permissive and public domain licenses.

Copyleft or reciprocal licences

Copyleft licences oblige the licensees to place any adaptation of the software (so-called derivatives) under the licence
of the original work. This is intended to prevent restrictions on the use of the software. The best-known copyleft licence
is the GPL (GNU General Public License). The copyleft of the GPL (GNU General Public License) is considered very
strong, while that of the Mozilla Public License is considered very weak.

Since the licensors are not bound by their own copyleft, they can also publish new versions under a proprietary license
or allow third parties to do so (multiple licensing).

Copyleft licenses can quickly lead to incompatibilities with free licenses without copyleft. For example, the 3 Clause
BSD license is incompatible with the

7.6. Licensing 515

https://python-basics-tutorial.readthedocs.io/en/latest/document/index.html
https://docs.readthedocs.io/en/latest/science.html
https://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
https://doi.org/10.1371/journal.pcbi.1002598
https://producingoss.com/
https://forschungsdaten.info/themen/rechte-und-pflichten/forschungsdaten-veroeffentlichen/
https://www.fsf.org/de/?set_language=de
https://opensource.org/
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Mozilla_Public_License


Python for Data Science, Release 24.1.0

However, copyleft licences can quickly create incompatibilities when distributed together with software under other
free licences. For example, the 3-Clause BSD licence is incompatible with the GPL.

The EUPL, on the other hand, is a reciprocal licence that is at least compatible and interoperable with most other open
reciprocal licences: the compatible licence obligations take precedence if they conflict with the obligations arising from
the EUPL.

Permissive open source licenses

Permissive open source licenses allow broader reuse than copyleft licenses. Derivatives and copies of the source code
can be distributed under conditions that have fundamentally different properties than those of the original license. The
best known examples of such licenses are MIT and BSD.

Public domain licenses

With public domain licences, the copyrights are transferred to the general public. The WTFPL was created to mark the
public domain of software.

7.6.3 Non-software licences

Open source software licences can also be used for works that are not software. They are often also the best choice,
especially if the works in question are edited and versioned as source code.

Data, media, etc.

CC0 1.0, CC BY 4.0 and CC BY-SA 4.0 are open licences used for non-software material, from datasets to videos.
However, they are not recommended for software.

The Open Knowledge Foundation has also published a set of Open Data Commons licences for data/databases:

Open Data Commons Open Database License (ODbL) v1.0
Attribution and sharing under equal terms.

Open Data Commons Attribution License (ODC-By) v1.0
Attribution.

Open Data Commons Public Domain Dedication and License (PDDL) v1.0
The PDDL places the data in the public domain and waives all rights.

GovData has submitted the Data Licence Germany in two variants:

• Datenlizenz Deutschland – Namensnennung – Version 2.0

• Datenlizenz Deutschland – Zero – Version 2.0

When using the Community Data License Agreement – Permissive, Version 2.0 the copyright notices must be retained.

Another possible licence for artistic works is the Free Art License 1.3.

516 Chapter 7. Create a product

https://joinup.ec.europa.eu/collection/eupl/introduction-eupl-licence
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/WTFPL
https://creativecommons.org/publicdomain/zero/1.0/deed.de
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by-sa/4.0/deed.de
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://okfn.org
https://opendatacommons.org
https://opendatacommons.org/licenses/odbl/1-0/
https://opendatacommons.org/licenses/by/1-0/
https://opendatacommons.org/licenses/pddl/1-0/
https://www.govdata.de
https://www.govdata.de/dl-de/by-2-0
https://www.govdata.de/dl-de/zero-2-0
https://cdla.dev/permissive-2-0/
https://artlibre.org/licence/lal/en/


Python for Data Science, Release 24.1.0

Documentation

Any open source software licence or open media licence also applies to software documentation. If you use different
licences for your software and its documentation, you should make sure that the source code examples in the documen-
tation are also licensed under the software licence. In addition to the Creative Commons licences mentioned above, the
following licences are available specifically for free documentation.

GNU Free Documentation License (FDL)
Copyleft licence for documentation to be used for all GNU manuals. Its applicability is limited to textual works
(books).

FreeBSD Documentation License
Permissive documentation licence with copyleft, compatible with the GNU FDL.

Open Publication License, Version 1.0
Free documentation licence with copyleft, provided none of the licence options in Section VI of the licence are
used. In any case, it is incompatible with the GNU FDL.

Fonts

SIL Open Font License 1.1
Font licence that can be freely used in other works.

GNU General Public License 3
It can also be used for fonts, but it may only be included in documents with the font exception.

See also:
• Font Licensing

LaTeX ec fonts
Free European Computer Modern and Text Companion fonts commonly used with Latex.

Arphic Public License
Free licence with copyleft.

IPA Font license
Free licence with copyleft, but derived values may not use or contain the name of the original.

Hardware

Designs for open source hardware are covered by the CERN Open Hardware licences:

CERN-OHL-P-2.0
permissive

CERN-OHL-W-2.0
weakly reciprocal

CERN-OHL-S-2.0
strongly reciprocal

7.6. Licensing 517

https://www.gnu.org/licenses/fdl-1.3.txt
https://www.freebsd.org/copyright/freebsd-doc-license/
https://opencontent.org/openpub/
https://opensource.org/licenses/OFL-1.1
https://www.gnu.org/licenses/gpl-3.0
https://www.gnu.org/licenses/gpl-faq.html#FontException
https://www.fsf.org/blogs/licensing/20050425novalis
https://web.archive.org/web/20130212180815/https://dante.ctan.org/tex-archive/fonts/ec/src/copyrite.txt
https://spdx.org/licenses/Arphic-1999
https://spdx.org/licenses/IPA.html
https://www.oshwa.org/definition/
https://ohwr.org/cern_ohl_p_v2.txt
https://ohwr.org/cern_ohl_w_v2.txt
https://ohwr.org/cern_ohl_s_v2.txt


Python for Data Science, Release 24.1.0

7.6.4 Choosing a suitable license

Overviews of possible licenses can be found in the SPDX License List or OSI Open Source Licenses by Category.
When choosing suitable licences, the websites Choose an open source license and Comparison of free and open-source
software licenses will help you.

If you want to achieve the widest possible distribution of your package, for example, MIT or BSD versions are a good
choice. The Apache licence protects you better from from patent infringement, but it is not compatible with the GPL
v2.

Check dependencies

In addition, you should look at what licences those packages have that you depend on and should be compatible with:

Fig. 5: Licence compatibility for derivative works or combined works of own code and external code licensed under
an open source licence (from Licence compatibility, following The Rise of Open Source Licensing p. 119).

To analyse licences, you can look at license compatibility.

With liccheck you can check Python packages and their dependencies with a requirement.txt file, for example:

liccheck -s liccheck.ini -r requirements.txt
gathering licenses...
3 packages and dependencies.
check unknown packages...
3 packages.

cffi (1.15.1): ['MIT']
dependency:

cffi << cryptography
cryptography (41.0.3): ['Apache Software', 'BSD']

dependency:
cryptography

pycparser (2.21): ['BSD']
dependency:

pycparser << cffi << cryptography

Furthermore, it can also be useful to publish a package under several licences. An example of this is cryptogra-
phy/LICENSE:

This software is made available under the terms of either of the licenses found in LICENSE.APACHE or
LICENSE.BSD. Contributions to cryptography are made under the terms of both these licenses.

The code used in the OpenSSL locking callback and OS random engine is derived from the same in
CPython, and is licensed under the terms of the PSF License Agreement.

518 Chapter 7. Create a product

https://spdx.org/licenses/
https://opensource.org/licenses/category
https://choosealicense.com/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/License_compatibility
https://www.turre.com/pub/openbook_valimaki.pdf
https://en.wikipedia.org/wiki/License_compatibility
https://github.com/dhatim/python-license-check/tree/master
https://github.com/pyca/cryptography/blob/adf234e/LICENSE
https://github.com/pyca/cryptography/blob/adf234e/LICENSE


Python for Data Science, Release 24.1.0

7.6.5 GitHub

On GitHub you can have an open source license created in your repository.

1. Go to the main page of your repository.

2. Click on Create new file and then enter LICENSE or LICENSE.md as the file name.

3. Then you can click on Choose a license template.

4. Now you can select the open source license that is suitable for your repository.

5. You will now be asked for additional information if the selected license requires this.

6. After you have given a commit message, for example Add license, you can click on Commit new file.

If you’ve already added a /LICENSE file to your repository, GitHub uses licensee to compare the file with a short list
of open source licenses. If GitHub can’t detect your repository’s license, it might contain multiple licenses or be too
complex. Then consider whether you can simplify the license, for example by outsourcing complexity to the /README
file.

Conversely, you can also search for repositories with specific licenses or license families on GitHub. You can get an
overview of the license keywords in Searching GitHub by license type.

Finally, you can have Shields.io generate a license badge for you, which you can include in your README file, for example

|License|

.. |License| image:: https://img.shields.io/github/license/veit/python4datascience.svg
:target: https://github.com/veit/python4datascience/blob/main/LICENSE

7.6.6 Standard format for licensing

SPDX stands for Software Package Data Exchange and defines a standardised method for the exchange of copyright and
licensing information between projects and people. You can choose the appropriate SPDX identifiers from the SPDX
License List and then add to the header of your licence files:

# SPDX-FileCopyrightText: [year] [copyright holder] <[email address]>
#
# SPDX-License-Identifier: [identifier]

7.6.7 Check conformity

REUSE

REUSE was initiated by the Free Software Foundation Europe (FSFE) to facilitate the licensing of free software
projects. The REUSE tool checks licenses and supports you in compliance with the license, for example:

reuse lint
# MISSING COPYRIGHT AND LICENSING INFORMATION

The following files have no copyright and licensing information:
* .gitattributes
* .github/ISSUE_TEMPLATE/openssl-release.md

(continues on next page)

7.6. Licensing 519

https://github.com/
https://github.com/licensee/licensee
https://choosealicense.com/appendix/
https://choosealicense.com/appendix/
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/licensing-a-repository#searching-github-by-license-type
https://shields.io/
https://github.com/veit/python4datascience/blob/main/LICENSE
https://spdx.dev/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://reuse.software/
https://git.fsfe.org/reuse/tool


Python for Data Science, Release 24.1.0

(continued from previous page)

...
* vectors/cryptography_vectors/x509/wosign-bc-invalid.pem
* vectors/pyproject.toml

The following files have no licensing information:
* docs/_ext/linkcode_res.py
* src/cryptography/__about__.py

# SUMMARY

* Bad licenses: 0
* Deprecated licenses: 0
* Licenses without file extension: 0
* Missing licenses: 0
* Unused licenses: 0
* Used licenses: 0
* Read errors: 0
* files with copyright information: 2 / 2806
* files with license information: 0 / 2806

Unfortunately, your project is not compliant with version 3.0 of the REUSE Specification␣
→˓:-(

With the REUSE API you can also generate a dynamic compliance badge:

CI workflow

You can easily integrate REUSE into your continuous integration workflow:

You can automatically run reuse lint as a pre-commit hook on every commit by adding the following to your .
pre-commit-config.yaml:

repos:
- repo: https://github.com/fsfe/reuse-tool
rev: v2.1.0
hooks:
- id: reuse

Add the following to the .gitlab-ci.yml file:

reuse:
image:
name: fsfe/reuse:latest
entrypoint: [""]

script:
- reuse lint

On GitHub you can integrate the REUSE action into your workflow with the GitHub Action REUSE Compliance
Check, for example, by adding the following to your workflow .yml file:

520 Chapter 7. Create a product

https://reuse.software/dev/#api
https://github.com/marketplace/actions/reuse-compliance-check
https://github.com/marketplace/actions/reuse-compliance-check


Python for Data Science, Release 24.1.0

name: REUSE Compliance Check

on: [push, pull_request]

jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: REUSE Compliance Check
uses: fsfe/reuse-action@v2

Alternatives

ISO/IEC 5230/OpenChain
recommends REUSE as a component to improve license and copyright clarity, but sets higher requirements to
achieve full compliance.

It is based on OpenChain Specification 2.1 and is an international standard on software supply chains, simplified
procurement, and open source license compliance.

See also:
• OpenChain project

• OpenChain Self Certification

• Reference-Material

ScanCode
offers a range of tools and applications for scanning software codebases and packages to determine the origin
and licence (provenance) of open source software (and other third-party software).

DeltaCode
compares two codebase scans to detect significant changes.

ClearlyDefined
collects and displays information about the licensing and copyright situation of a software project.

FOSSology
is a free software compliance toolkit that stores information in a database with license, copyright, and export
scanners.

OSS Review Toolkit (ORT)
is a toolkit for automating and orchestrating FOSS policies, allowing you to manage your (open source) software
dependencies. It

• generates OWASP CycloneDX, SPDX Software Bill of Materials (SBOM) or custom FOSS attribution
documentation for your software project

• automates your FOSS policy to check your software project and its dependencies for licensing, security
vulnerabilities, source code and technical standards

• create a source code archive for your software project and its dependencies to comply with specific licenses

• correct package metadata or license findings yourself

See also:
• GitHub Action for ORT

7.6. Licensing 521

https://de.wikipedia.org/wiki/ISO/IEC_5230
https://github.com/OpenChain-Project/License-Compliance-Specification/raw/master/2.1/de/OpenChain-2.1_original_de.pdf
https://www.openchainproject.org
https://www.openchainproject.org/get-started
https://github.com/OpenChain-Project/Reference-Material
https://www.aboutcode.org/projects/scancode.html
https://github.com/nexB/deltacode
https://clearlydefined.io/
https://www.fossology.org/
https://github.com/oss-review-toolkit/ort
https://cyclonedx.org
https://github.com/opensbom-generator/spdx-sbom-generator
https://github.com/oss-review-toolkit/ort-ci-github-action


Python for Data Science, Release 24.1.0

• ORT for GitLab

licensechecker
A command line tool that scans installation directories for licences.

7.6.8 Python package metadata

With PEP 658 the METADATA file from distributions becomes available in the PEP 503 repository API on PyPI. This
allows the metadata of distribution packages to be analysed without having to download the whole package.

In Python packages there are other fields where licence information is stored, such as the core metadata specifications,
which are also limited. This leads not only to problems for authors to specify the correct licence, but also to problems
when re-packaging for various Linux distributions.

Currently, although some common cases are covered and the licence classification can also be extended, there are some
popular classifications such as License :: OSI Approved :: BSD License that will be abolished. However, this
means that backwards compatibility is no longer guaranteed and the packages have to be relicensed. At least you have
a way to check your trove classifications with trove-classifiers.

See also:
• PEP 639 – Improving License Clarity with Better Package Metadata

• PEP 621 – Storing project metadata in pyproject.toml

• PEP 643 – Metadata for Package Source Distributions

522 Chapter 7. Create a product

https://github.com/oss-review-toolkit/ort-gitlab-ci
https://boyter.org/2018/03/licensechecker-command-line-application-identifies-software-license/
https://peps.python.org/pep-0658/
https://peps.python.org/pep-0503/
https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-PyPI
https://python-basics-tutorial.readthedocs.io/en/latest/libs/distribution.html
https://packaging.python.org/en/latest/specifications/core-metadata/
https://github.com/pypa/trove-classifiers
https://peps.python.org/pep-0639/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0643/


Python for Data Science, Release 24.1.0

7.7 Citing

Today software and data are integral parts of scientific research. Software is used to create, process and analyse research
data and to model and simulate complex processes. Despite their increasing importance in research, it’s little known
how they can be embedded in the scientific recognition and reputation systems. Quotations are an essential option in
these systems, but few researchers know how software and data could be cited.

Unfortunately, there are no recognised guidelines for software and data authorship. In addition to the programmers
role, other roles such as software architects, technical writers and maintainers can also be defined.

See also:
• ICMJE: Defining the Role of Authors and Contributors

• Bot Recognize All Contributors

7.7.1 Cite data

DataCite Metadata Schema

The DataCite Metadata Working Group published the DataCite Metadata Schema Documentation for the publication
and citation of research data in 2019: DataCite Metadata Schema 4.3 together with a XSD (XML Schema Definition):
metadata.xsd.

A simple datacite example can look like this:

<?xml version="1.0" encoding="UTF-8"?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.
→˓org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://
→˓schema.datacite.org/meta/kernel-4.3/metadata.xsd">
<identifier identifierType="DOI">10.5072/D3P26Q35R-Test</identifier>
<creators>
<creator>
<creatorName nameType="Personal">Fosmire, Michael</creatorName>
<givenName>Michael</givenName>
<familyName>Fosmire</familyName>

</creator>
<creator>
<creatorName nameType="Personal">Wertz, Ruth</creatorName>
<givenName>Ruth</givenName>
<familyName>Wertz</familyName>

</creator>
<creator>
<creatorName nameType="Personal">Purzer, Senay</creatorName>
<givenName>Senay</givenName>
<familyName>Purzer</familyName>

</creator>
</creators>
<titles>
<title xml:lang="en">Critical Engineering Literacy Test (CELT)</title>

</titles>
<publisher xml:lang="en">Purdue University Research Repository (PURR)</publisher>
<publicationYear>2013</publicationYear>
<subjects>

(continues on next page)

7.7. Citing 523

http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://allcontributors.org/
https://doi.org/10.14454/7xq3-zf69
https://schema.datacite.org/meta/kernel-4.3/metadata.xsd


Python for Data Science, Release 24.1.0

(continued from previous page)

<subject xml:lang="en">Assessment</subject>
<subject xml:lang="en">Information Literacy</subject>
<subject xml:lang="en">Engineering</subject>
<subject xml:lang="en">Undergraduate Students</subject>
<subject xml:lang="en">CELT</subject>
<subject xml:lang="en">Purdue University</subject>

</subjects>
<language>en</language>
<resourceType resourceTypeGeneral="Dataset">Dataset</resourceType>
<version>1.0</version>
<descriptions>
<description xml:lang="en" descriptionType="Abstract">
We developed an instrument, Critical Engineering Literacy Test (CELT), which is a␣

→˓multiple choice instrument designed to measure undergraduate students’ scientific and␣
→˓information literacy skills. It requires students to first read a technical memo

and, based on the memo’s arguments, answer eight multiple choice and six open-
→˓ended response questions. We collected data from 143 first-year engineering students␣
→˓and conducted an item analysis. The KR-20 reliability of the instrument was .39. Item

difficulties ranged between .17 to .83. The results indicate low reliability index␣
→˓but acceptable levels of item difficulties and item discrimination indices. Students␣
→˓were most challenged when answering items measuring scientific and mathematical

literacy (i.e., identifying incorrect information).
</description>

</descriptions>
</resource>

W3C-PROV

The PROV document family of the W3C working group defines various aspects that are necessary to be able to exchange
provenance information interoperably.

See also:
• Provenance: An Introduction to PROV by Luc Moreau and Paul Groth

• Provenance storage and distribution

• ProvStore’s API documentation

Python prov

With prov, a Python3 library is available that supports the import and export of the PROV data model into the following
serialisation formats:

• PROV-O (RDF)

• PROV-XML

• PROV-JSON

In addition, PROV documents can be created with NetworkX MultiDiGraph and vice versa. Finally, PROV documents
can also be generated as graphs in PDF, PNG and SVG formats.

See also:

524 Chapter 7. Create a product

https://www.w3.org/TR/prov-overview/
https://www.provbook.org/
https://openprovenance.org/store/
https://openprovenance.org/store/help/api/
https://prov.readthedocs.io/
https://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/2013/NOTE-prov-xml-20130430/
https://www.w3.org/Submission/prov-json/
https://pyviz-tutorial.readthedocs.io/de/latest/matplotlib/networkx.html
https://networkx.org/documentation/stable/reference/classes/multidigraph.html


Python for Data Science, Release 24.1.0

• A Short Tutorial for Prov Python by Dong Huynh

• PROV Tutorial.ipynb

7.7.2 Cite software

James Howison and Julia Bullard listed the following examples in descending reputations in their 2016 article Software
in the scientific literature:

1. citing publications that describe the respective software

2. citing operating instructions

3. citing the software project website

4. link to a software project website

5. mention the software name

The situation remains unsatisfactory for the authors of software, especially if they differ from the authors of the software
description. Conversely, research software is unfortunately not always well suited to being cited. For example, others
will hardly be able to cite your software directly if you send it to them as an email attachment. Even a download link
is not really useful here. It is better to provide a persistent identifier (PID) to ensure the long-term availability of your
software. Both Zenodo and figshare repositories accept source code including binaries and provide Digital Object
Identifiers (DOI) for them. The same applies to CiteAs, which can be used to retrieve citation information for software.

See also:
• Should I cite?

• How to cite software “correctly”

• Daniel S. Katz: Compact identifiers for software: The last missing link in user-oriented software citation?

• Neil Chue Hong: How to cite software: current best practice

• Recognizing the value of software: a software citation guide

• Stephan Druskat, Radovan Bast, Neil Chue Hong, Alexander Konovalov, Andrew Rowley, Raniere Silva: A
standard format for CITATION files

• Module-5-Open-Research-Software-and-Open-Source

• Software Heritage: Save and reference research software

• Mining software metadata for 80 M projects and even more

• Extensions to schema.org to support structured, semantic, and executable documents

• Guide to Citation File Format schema

• schema.json

7.7. Citing 525

https://trungdong.github.io/prov-python-short-tutorial.html
https://nbviewer.jupyter.org/github/trungdong/notebooks/blob/master/PROV%20Tutorial.ipynb
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://en.wikipedia.org/wiki/Persistent_identifier
https://zenodo.org/
https://figshare.com/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier
https://citeas.org/
https://mr-c.github.io/shouldacite/index.html
https://cite.research-software.org/
https://danielskatzblog.wordpress.com/2018/02/06/compact-identifiers-for-software-the-last-missing-link-in-user-oriented-software-citation/
https://zenodo.org/record/2842910
https://f1000research.com/articles/9-1257/v2
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://github.com/OpenScienceMOOC/Module-5-Open-Research-Software-and-Open-Source/blob/master/content_development/README.md/
https://www.softwareheritage.org/save-and-reference-research-software/
https://www.softwareheritage.org/2019/05/28/mining-software-metadata-for-80-m-projects-and-even-more/
https://github.com/stencila/schema
https://github.com/citation-file-format/citation-file-format/blob/main/schema-guide.md
https://github.com/citation-file-format/citation-file-format/blob/main/schema.json


Python for Data Science, Release 24.1.0

Create a DOI with Zenodo

Zenodo enables software to be archived and a DOI to be provided for it. In the following I will show which steps are
required on the example of the Jupyter tutorial:

1. If you haven’t already, create an account on Zenodo, preferably with GitHub.

2. In Upload → New Upload under Basic information activate the button Reserve DOI to reserve a DOI (Digital
Object Identifier) for your upload. Leave the form open to upload your software later.

3. Create or modify the CodeMeta- und Citation File Format files in your software directory.

4. Include the badge in the README file of your software:

Markdown:

[![DOI](https://zenodo.org/badge/307380211.svg)](https://zenodo.org/badge/latestdoi/
→˓307380211)

reStructedText:

.. image:: https://zenodo.org/badge/307380211.svg
:target: https://zenodo.org/badge/latestdoi/307380211

5. Now select the repository that you want to archive:

6. Check whether Zenodo has created a webhook in your repository for the Releases event:

7. Create a new release:

526 Chapter 7. Create a product

https://zenodo.org/
https://zenodo.org/signup/


Python for Data Science, Release 24.1.0

7.7. Citing 527



Python for Data Science, Release 24.1.0

Metadata formats

The FORCE11 working group has published a paper in which the principles of scientific software citation are presented:
FORCE11 Software Citation Working Group by Arfon Smith, Daniel Katz and Kyle Niemeyer 2016. Two projects are
currently emerging for structured metadata:

CodeMeta
is an exchange scheme for general software metadata and reference implementation for JSON for Linking Data
(JSON-LD).

Citation File Format
is a scheme for software citation metadata in machine-readable YAML format.

CodeMeta

CodeMeta is an exchange scheme for general software metadata and reference implementation for JSON for Linking
Data (JSON-LD).

A codemeta.json file is expected in the root directory of the software repository. The file can look like this:

{
"@context": "https://doi.org/10.5063/schema/codemeta-2.0",
"@type": "SoftwareSourceCode",
"author": [{

"@type": "Person",
"givenName": "Stephan",
"familyName": "Druskat",
"@id": "http://orcid.org/0000-0003-4925-7248"

}],
"name": "My Research Tool",
"softwareVersion": "2.0",
"identifier": "https://doi.org/10.5281/zenodo.1234",
"datePublished": "2017-12-18",
"codeRepository": "https://github.com/research-software/my-research-tool"

}

See also:
• CodeMeta generator

• Codemeta Terms

• GitHub Repository

Citation File Format

Citation File Format is a scheme for software citation metadata in machine-readable YAML format.

A file CITATION.cff should be stored in the root directory of the software repository.

The content of the file can look like this:

cff-version: "1.1.0"
message: "If you use this tutorial, please cite it as below."
authors:

(continues on next page)

528 Chapter 7. Create a product

https://www.force11.org/group/software-citation-working-group
https://doi.org/10.7717/peerj-cs.86
https://json-ld.org/
https://codemeta.github.io/
https://json-ld.org/
https://codemeta.github.io/codemeta-generator/
https://codemeta.github.io/terms/
https://github.com/codemeta/codemeta-generator/
https://citation-file-format.github.io/


Python for Data Science, Release 24.1.0

(continued from previous page)

-
family-names: Schiele
given-names: Veit
orcid: "https://orcid.org/https://orcid.org/0000-0002-2448-8958"

identifiers:
-
type: doi
value: "10.5281/zenodo.4147287"

keywords:
- "data-science"
- jupyter
- "jupyter-notebooks"
- "jupyter-kernels"
- ipython
- pandas
- spack
- pipenv
- ipywidgets
- "ipython-widget"
- dvc

title: "Jupyter tutorial"
version: "0.8.0"
date-released: 2020-10-08
license: "BSD-3-Clause"
repository-code: "https://github.com/veit/jupyter-tutorial"

You can easily adapt the example above to create your own CITATION.cff file or use the cffinit website.

With cff-validator you have a GitHub action that checks CITATION.cff files with the R package V8.

Tools

Git2PROV
generates PROV data from the information in a Git repository. generiert PROV-Daten aus den Informationen
eines Git-Repository.

HERMES
simplifies the publication of research software by continuously retrieving existing metadata in Citation File For-
mat, CodeMeta and Git.

Git2PROV

Git2PROV generates PROV data from the information in a Git repository.

On the command line, the conversion can be easily executed with:

$ git2prov git_url [serialization]

For example:

$ git2prov git@github.com:veit/python4datascience.git PROV-JSON

In total, the following serialisation formats are available:

7.7. Citing 529

https://citation-file-format.github.io/cff-initializer-javascript/
https://github.com/marketplace/actions/cff-validator
https://github.com/IDLabResearch/Git2PROV


Python for Data Science, Release 24.1.0

• PROV-N

• PROV-JSON

• PROV-O

• PROV-XML

Alternatively, Git2PROV also provides a web server with:

$ git2prov-server [port]

See also:
• Git2PROV: Exposing Version Control System Content as W3C PROV

• GitHub-Repository

HERMES

HERMES simplifies the publication of research software by continuously retrieving existing metadata in Citation File
Format, CodeMeta and Git. Subsequently, the metadata is also compiled appropriately for InvenioRDM and Dataverse.
Finally, CITATION.cff and codemeta.json are also updated for the publication repositories.

1. Add .hermes/ to the .gitignore file

2. Provide CITATION.cff file with additional metadata

Important: Make sure license is defined in the CITATION.cff file; otherwise, your release will not be accepted
as open access by the Zenodo sandbox.

3. Configure HERMES workflow

The HERMES workflow is configured in the file TOML, where each step gets its own section.

If you want to configure HERMES to use the metadata from Git and CITATION.cff , and to file in the Zenodo
sandbox built on InvenioRDM, the hermes.toml file looks like this:

Listing 2: hermes.toml

# SPDX-FileCopyrightText: 2021 Veit Schiele
#
# SPDX-License-Identifier: BSD-3-Clause

[harvest]
from = [ "git", "cff" ]

[deposit]
mapping = "invenio"
target = "invenio"

[deposit.invenio]
site_url = "https://sandbox.zenodo.org"
access_right = "open"

[postprocess]
execute = [ "config_record_id" ]

530 Chapter 7. Create a product

http://ceur-ws.org/Vol-1035/iswc2013_demo_32.pdf
https://github.com/IDLabResearch/Git2PROV
https://project.software-metadata.pub
https://invenio-software.org/products/rdm/
https://dataverse.org/


Python for Data Science, Release 24.1.0

4. Access token for Zenodo Sandbox

In order for GitHub Actions to publish your repository in the Zenodo Sandbox, you need a personal access token.
To do this, you need to log in to Zenodo Sandbox and then create a personal access token in your user profile
with the name HERMES workflow and the scopes deposit:actions und deposit:write:

5. Copy the newly created token to a new GitHub secret named ZENODO_SANDBOX in your repository: Settings –>
Secrets and Variables –> Actions –> New repository secret:

6. Configure the GitHub action

The HERMES project provides templates for continuous integration in a special repository: hermes-hmc/ci-
templates. Copy the template file TEMPLATE_hermes_github_to_zenodo.yml into the .github/workflows/
directory of your repository and rename it, for example to hermes_github_to_zenodo.yml.

Then you should go through the file and look for comments marked # ADAPT. Modify the file to suit your needs.

7.7. Citing 531

https://sandbox.zenodo.org/
https://sandbox.zenodo.org/account/settings/applications/tokens/new/
https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions#creating-secrets-for-a-repository
https://github.com/hermes-hmc/ci-templates
https://github.com/hermes-hmc/ci-templates
https://github.com/hermes-hmc/ci-templates/blob/main/TEMPLATE_hermes_github_to_zenodo.yml


Python for Data Science, Release 24.1.0

Finally, add the workflow file to version control and push it to the GitHub server:

$ git add .github/workflows/hermes_github_to_zenodo.yml
$ git commit -m ":construction_worker: GitHub action for automatic publication with␣
→˓HERMES"
$ git push

7. GitHub actions should be allowed to create pull requests in your repository

The HERMES workflow will not publish metadata without your approval. Instead, it will create a pull request so
that you can approve or change the metadata that is stored. To enable this, go to Settings → Actions → General
in your repository and in the Workflow permissions section, enable Allow GitHub Actions to create and approve
pull requests.

7.7.3 Software journals

General

• IEEE Computer Society Digital Library

• Wiley Online Library

• Journal of Open Source Software

• Journal of Open Research Software (JORS)

• Journal of Software: Practice and Experience

• Nature Toolbox

• Research Ideas and Outcomes (RIO)

• SIAM Journal on Scientific Computing (SISC) Software section

• SoftwareX

Image processing

• Image Processing On Line

• Insight Journal

Biology

• American Journal of Human Genetics

• Artificial Life

• Psychonomic Society: Behaviour Research Methods

• Oxford Academic: Bioinformatics

• Bioinformatics and Biology Insights

• Biophysical Journal

• BMC Bioinformatics

• BMC Systems Biology

• Bone

532 Chapter 7. Create a product

https://www.computer.org/csdl/home
https://onlinelibrary.wiley.com/
https://joss.theoj.org/
https://openresearchsoftware.metajnl.com/
https://onlinelibrary.wiley.com/journal/1097024x
https://www.nature.com/nature/articles?type=toolbox
https://riojournal.com/
https://www.siam.org/publications/journals/siam-journal-on-scientific-computing-sisc/editorial-policy
https://www.journals.elsevier.com/softwarex
http://www.ipol.im/
http://insight-journal.org/
https://www.cell.com/ajhg/home
https://direct.mit.edu/artl
https://www.psychonomic.org/page/brm
https://academic.oup.com/bioinformatics/
https://journals.sagepub.com/home/bbia
https://www.cell.com/biophysj/home
https://bmcbioinformatics.biomedcentral.com/
https://bmcneurosci.biomedcentral.com/
https://www.sciencedirect.com/journal/bone


Python for Data Science, Release 24.1.0

• Computer Methods and Programs in Biomedicine

• Current Protocols in Bioinformatics

• Database: The Journal of Biological Databases and Curation

• Ecography

• eLife

• Epidemiology

• Evolutionary Bioinformatics

• F1000 Research

• Frontiers in Neuroinformatics

• Gigascience

• Methods in Ecology and Evolution

• Nature Methods

• Neurocomputing

• Neuroinformatics

• Nucleic Acids Research

• PeerJ - Life and Environment

• PLoS Computational Biology: Software collection

• PLoS ONE

• Trends in Parasitology

Chemistry

• International Journal of Quantum Chemistry

• Journal of Applied Crystallography

• Journal of Chemical Theory and Computation

• Journal of Chemical Information and Modelling

• Journal of Cheminformatics

• Journal of Computational Chemistry

• Molecular Simulation

• Wiley Interdisciplinary Reviews: Computational Molecular Science

7.7. Citing 533

https://www.journals.elsevier.com/computer-methods-and-programs-in-biomedicine
https://currentprotocols.onlinelibrary.wiley.com/journal/1934340x
https://academic.oup.com/database
http://www.ecography.org/
http://elifesciences.org/category/tools-and-resources
https://journals.lww.com/epidem/pages/default.aspx
https://journals.sagepub.com/home/evb
https://f1000research.com/
https://www.frontiersin.org/journals/neuroinformatics
https://academic.oup.com/gigascience
https://besjournals.onlinelibrary.wiley.com/journal/2041210x
https://www.nature.com/nmeth/
https://www.journals.elsevier.com/neurocomputing
https://www.springer.com/journal/12021
https://academic.oup.com/nar
https://peerj.com/life-environment/
https://collections.plos.org/collection/software/
https://journals.plos.org/plosone/
https://www.cell.com/trends/parasitology/home
https://onlinelibrary.wiley.com/journal/1097461x
https://journals.iucr.org/j/
https://pubs.acs.org/journal/jctcce
https://pubs.acs.org/journal/jcisd8
https://jcheminf.biomedcentral.com/
https://onlinelibrary.wiley.com/journal/1096987x
https://www.tandfonline.com/loi/gmos20
https://onlinelibrary.wiley.com/journal/17590884


Python for Data Science, Release 24.1.0

Human and social sciences

• Digital Humanities Quarterly

• Journal of Artificial Societies and Social Simulation

• Journal of Economic Dynamics and Control

Engineering

• Advances in Engineering Software

• Coastal Engineering

• Renewable Energy

Computer science, mathematics and statistics

• ACM Transactions on Mathematical Software

• The Archive of Numerical Software

• Future Generation Computer Systems

• Journal of Machine Learning Research: Machine Learning Open Source Software track

• Journal of Multiscale Modelling and Simulation

• Journal of Parallel and Distributed Computing

• Journal of Software for Algebra and Geometry

• Journal of Statistical Software

• Knowledge-Based Systems

• LMS Journal of Computation and Mathematics

• The Mathematica Journal

• Mathematical Programming Computation

• Numerical Algorithms

• PeerJ Computer Science

• The R Journal

• Science of Computer Programming

• The Stata Journal

Physics and Earth Sciences

• AAS: The Astronomy Journal

• AAS: The Astrophysical Journal

• AAS: The Astrophysical Journal Supplement Series

• Astronomy and Computing

• Communications in Computational Physics

534 Chapter 7. Create a product

http://www.digitalhumanities.org/dhq/
http://jasss.soc.surrey.ac.uk/JASSS.html
https://www.journals.elsevier.com/journal-of-economic-dynamics-and-control
https://www.sciencedirect.com/journal/advances-in-engineering-software
https://www.journals.elsevier.com/coastal-engineering
https://www.sciencedirect.com/journal/renewable-energy
https://dl.acm.org/journal/toms
https://journals.ub.uni-heidelberg.de/index.php/ans/
https://www.sciencedirect.com/journal/future-generation-computer-systems
https://jmlr.csail.mit.edu/mloss/mloss-info.html
https://www.siam.org/publications/journals/multiscale-modeling-and-simulation-a-siam-interdisciplinary-journal-mms
https://www.journals.elsevier.com/journal-of-parallel-and-distributed-computing
https://msp.org/jsag/
https://www.jstatsoft.org/
https://www.journals.elsevier.com/knowledge-based-systems/
https://www.lms.ac.uk/publications/jcm
https://www.mathematica-journal.com/
https://www.springer.com/journal/12532
https://www.springer.com/journal/11075
https://peerj.com/computer-science/
https://journal.r-project.org/
https://www.journals.elsevier.com/science-of-computer-programming
https://www.stata-journal.com/
https://iopscience.iop.org/journal/1538-3881/
https://iopscience.iop.org/journal/0004-637X/
https://iopscience.iop.org/journal/0067-0049/
https://www.journals.elsevier.com/astronomy-and-computing
http://www.global-sci.com/index/index.html


Python for Data Science, Release 24.1.0

• Computational Astrophysics and Cosmology

• Computer Physics Communications

• Computers and Geosciences

• Computing and Software for Big Science

• Environmental Modelling & Software

• Geoscientific Model Development

7.8 Testing

All the options you have for testing your notebooks are also available for Python packages. In addition, you can also
check the test coverage of your package and have your tests executed automatically on a regular basis.

See also:
Testing

7.9 Logging

The logging module is part of the Python standard library. It is described in PEP 0282.r You can get a first introduction
to the module in the Basic Logging Tutorial.

Logging usually serves two different purposes:

• Diagnosis:

– You can display the context of certain events.

– Tools like Sentry group related events and facilitate user identification, etc., so that developers can find the
cause of the error more quickly.

• Monitoring:

– The logging records events for user-defined heuristics, for example for business analyses. These records
can be used for reports or optimisation of the business goals and, if necessary, visualised.

What are the advantages of logging over print?

• The log file contains all available diagnostic information such as file name, path, function and line number.

• All events are automatically available via the root logger unless they are explicitly filtered out.

• Logging can be muted using either of the following two methods: logging.Logger.setLevel() or logging.disabled.

See also:
• loguru, which makes logging almost as easy as using print instructions.

• structlog adds structure to your log entries.

7.8. Testing 535

https://comp-astrophys-cosmol.springeropen.com/
https://www.sciencedirect.com/journal/computer-physics-communications
https://www.journals.elsevier.com/journal-of-economic-dynamics-and-control
https://www.springer.com/journal/41781
https://www.journals.elsevier.com/environmental-modelling-and-software
https://www.geoscientific-model-development.net/index.html
https://jupyter-tutorial.readthedocs.io/en/latest/notebook/testing/index.html
https://python-basics-tutorial.readthedocs.io/en/latest/test/index.html
https://docs.python.org/3/library/logging.html#module-logging
https://peps.python.org/pep-0282/
https://docs.python.org/3/howto/logging.html#logging-basic-tutorial
https://sentry.io/
https://docs.python.org/3/library/logging.html#logging.Logger.setLevel
https://docs.python.org/3/library/logging.html#logging.disable
https://github.com/Delgan/loguru
https://www.structlog.org/


Python for Data Science, Release 24.1.0

7.9.1 Logging examples

Creating a log file

[1]: import logging

logging.warning("This is a warning message")
logging.critical("This is a critical message")
logging.debug("debug")

WARNING:root:This is a warning message
CRITICAL:root:This is a critical message

Logging levels

Level Description
CRITICAL The programme was stopped
ERROR A serious error has occurred
WARNING An indication that something unexpected has happened (default level)
INFO Confirmation that things are working as expected
DEBUG Detailed information that is usually only of interest when diagnosing problems

Setting the logging level

[2]: import logging

logging.basicConfig(filename="example.log", filemode="w", level=logging.INFO)

logging.info("Informational message")
logging.error("An error has happened!")

ERROR:root:An error has happened!

Creating a Logger Object

[3]: import logging

logging.basicConfig(filename="example.log")
logger = logging.getLogger("example")
logger.setLevel(logging.INFO)

try:
raise RuntimeError

except Exception:
logger.exception("Error!")

536 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

ERROR:example:Error!
Traceback (most recent call last):
File "/var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_65916/2646645271.py",␣

→˓line 9, in <module>
raise RuntimeError

RuntimeError

Logging exceptions

[4]: try:
1 / 0

except ZeroDivisionError:
logger.exception("You can’t do that!")

ERROR:example:You can’t do that!
Traceback (most recent call last):
File "/var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_65916/760044062.py",␣

→˓line 2, in <module>
1 / 0
~~^~~

ZeroDivisionError: division by zero

Logging handler

Handler types

Handler Description
StreamHandler stdout, stderr or file-like objects
FileHandler for writing to disk
RotatingFileHandler supports log rotation
TimedRotatingFileHandler supports the rotation of log files on the hard disk at specific time intervals
SocketHandler sends logging output to a network socket
SMTPHandler supports sending logging messages to an e-mail address via SMTP

See also
Further handlers can be found at Logging handlers

StreamHandler

[5]: import logging

logger = logging.getLogger("stream_logger")
logger.setLevel(logging.INFO)

console = logging.StreamHandler()
(continues on next page)

7.9. Logging 537

https://docs.python.org/3/library/logging.handlers.html#module-logging.handlers


Python for Data Science, Release 24.1.0

(continued from previous page)

logger.addHandler(console)
logger.info("This is an informational message")

This is an informational message
INFO:stream_logger:This is an informational message

SMTPHandler

[6]: import logging
import logging.handlers

logger = logging.getLogger("email_logger")
logger.setLevel(logging.INFO)
fh = logging.handlers.SMTPHandler(

"localhost",
fromaddr="python-log@localhost",
toaddrs=["logs@cusy.io"],
subject="Python log",

)
logger.addHandler(fh)
logger.info("This is an informational message")

--- Logging error ---
Traceback (most recent call last):
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/logging/handlers.py", line 1081, in emit
smtp = smtplib.SMTP(self.mailhost, port, timeout=self.timeout)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/smtplib.py", line 255, in __init__
(code, msg) = self.connect(host, port)

^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/smtplib.py", line 341, in connect
self.sock = self._get_socket(host, port, self.timeout)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/smtplib.py", line 312, in _get_socket
return socket.create_connection((host, port), timeout,

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/socket.py", line 851, in create_connection
raise exceptions[0]

File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.
→˓11/lib/python3.11/socket.py", line 836, in create_connection

sock.connect(sa)
ConnectionRefusedError: [Errno 61] Connection refused
Call stack:
File "<frozen runpy>", line 198, in _run_module_as_main

(continues on next page)

538 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

File "<frozen runpy>", line 88, in _run_code
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/ipykernel_launcher.py", line 17, in <module>
app.launch_new_instance()

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/traitlets/config/application.py", line 1043, in launch_instance

app.start()
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/ipykernel/kernelapp.py", line 736, in start
self.io_loop.start()

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/tornado/platform/asyncio.py", line 195, in start

self.asyncio_loop.run_forever()
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/asyncio/base_events.py", line 607, in run_forever
self._run_once()

File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.
→˓11/lib/python3.11/asyncio/base_events.py", line 1922, in _run_once

handle._run()
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.

→˓11/lib/python3.11/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/ipykernel/kernelbase.py", line 516, in dispatch_queue

await self.process_one()
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/ipykernel/kernelbase.py", line 505, in process_one
await dispatch(*args)

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/ipykernel/kernelbase.py", line 412, in dispatch_shell

await result
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/ipykernel/kernelbase.py", line 740, in execute_request
reply_content = await reply_content

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/ipykernel/ipkernel.py", line 422, in do_execute

res = shell.run_cell(
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/ipykernel/zmqshell.py", line 546, in run_cell
return super().run_cell(*args, **kwargs)

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/IPython/core/interactiveshell.py", line 3009, in run_cell

result = self._run_cell(
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/IPython/core/interactiveshell.py", line 3064, in _run_cell
result = runner(coro)

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runner

coro.send(None)
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/IPython/core/interactiveshell.py", line 3269, in run_cell_async
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

(continues on next page)

7.9. Logging 539



Python for Data Science, Release 24.1.0

(continued from previous page)

File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-
→˓packages/IPython/core/interactiveshell.py", line 3448, in run_ast_nodes

if await self.run_code(code, result, async_=asy):
File "/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-

→˓packages/IPython/core/interactiveshell.py", line 3508, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)

File "/var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_65916/3660210047.py",␣
→˓line 14, in <module>

logger.info("This is an informational message")
Message: 'This is an informational message'
Arguments: ()
INFO:email_logger:This is an informational message

Log formatting

You can use formatters to format log messages.

[7]: formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")

Besides %(asctime)s, %(name)s and %(message)s you will find other attributes in LogRecord attributes.

[8]: import logging

logger = logging.getLogger("stream_logger")
logger.setLevel(logging.INFO)

console = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")
console.setFormatter(formatter)

logger.addHandler(console)
logger.info("This is an informational message")

This is an informational message
2023-08-03 13:40:00,195 - stream_logger - This is an informational message
INFO:stream_logger:This is an informational message

Note
The logging module is thread-safe. However, logging may not work in asynchronous contexts. In such cases, however,
you can use the QueueHandler.

See also
Logging to a single file from multiple processes

540 Chapter 7. Create a product

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/logging.handlers.html#queuehandler
https://docs.python.org/3/howto/logging-cookbook.html#logging-to-a-single-file-from-multiple-processes


Python for Data Science, Release 24.1.0

Logging to multiple handlers

[9]: import logging

def log(path, multipleLocs=False):
logger = logging.getLogger("Example_logger_%s" % fname)
logger.setLevel(logging.INFO)
fh = logging.FileHandler(path)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(message)s")
fh.setFormatter(formatter)
logger.addHandler(fh)

if multipleLocs:
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
logger.addHandler(console)

logger.info("This is an informational message")
try:

1 / 0
except ZeroDivisionError:

logger.exception("You can’t do that!")

logger.critical("This is a no-brainer!")

Configure logging

See also
• logging configuration

. . . in an INI file

In the following example, the file development.ini is loaded in this directory:

[loggers]
keys=root

[handlers]
keys=stream_handler

[formatters]
keys=formatter

[logger_root]
level=DEBUG
handlers=stream_handler

[handler_stream_handler]
(continues on next page)

7.9. Logging 541

https://docs.python.org/3/howto/logging.html#configuring-logging


Python for Data Science, Release 24.1.0

(continued from previous page)

class=StreamHandler
level=DEBUG
formatter=formatter
args=(sys.stderr,)

[formatter_formatter]
format=%(asctime)s %(name)-12s %(levelname)-8s %(message)s

[10]: import logging
import logging.config

from logging.config import fileConfig

logging.config.fileConfig("development.ini")
logger = logging.getLogger("example")

logger.info("Program started")
logger.info("Done!")

Pro:
• Ability to update the configuration on the fly by using the logging.config.listen() function to listen on a

socket.

• Different configurations can be used in different environments, so for example, DEBUG can be specified as the log
level in development.ini, while WARN is used in production.ini.

Con:
• Less control for example over custom filters or loggers configured in code.

. . . in a dictConfig

[11]: import logging
import logging.config

dictLogConfig = {
"version": 1,
"handlers": {

"fileHandler": {
"class": "logging.FileHandler",
"formatter": "exampleFormatter",
"filename": "dict_config.log",

}
},
"loggers": {

"exampleApp": {
"handlers": ["fileHandler"],
"level": "INFO",

}
(continues on next page)

542 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

},
"formatters": {

"exampleFormatter": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s"

}
},

}

[13]: logging.config.dictConfig(dictLogConfig)

logger = logging.getLogger("exampleApp")

logger.info("Program started")
logger.info("Done!")

2021-12-12 21:22:14,326 exampleApp INFO Program started
2021-12-12 21:22:14,329 exampleApp INFO Done!

Pro:
• Update on the fly

Con:
• Less control than configuring a logger in code

. . . directly in the code

[12]: logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter(

"%(asctime)s %(name)-12s %(levelname)-8s %(message)s"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

7.9. Logging 543



Python for Data Science, Release 24.1.0

Magic Commands

Befehl Beschreibung
%logstart Starts logging anywhere in a session

%logstart [-o\|-r\|-t\|-q] [log_name [log_mode]]

If no name is given, ipython_log.py is used in the current directory.

log_mode is an optional parameter. The following modes can be specified:

* append appends the logging information to the end of an existing file

* backup renames the existing file to name~ and writes to name

* global appends the logging information at the end of an existing file

* over overwrites an existing log file

* rotate creates rotating log files: name.1~, name.2~, etc.

Options:

* -o also logs the output of IPython

* -r logs raw output

* -t writes a time stamp in front of each log entry

* -q suppresses the logging output

%logon Restart the logging
%logoff Temporary termination of logging

Pro:
• Complete control over the configuration

Con:
• Changes in the configuration require a change in the source code

Logs rotate

[13]: import logging
import time

from logging.handlers import RotatingFileHandler

def create_rotating_log(path):
logger = logging.getLogger("Rotating Log")
logger.setLevel(logging.INFO)

(continues on next page)

544 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

handler = RotatingFileHandler(path, maxBytes=20, backupCount=5)
logger.addHandler(handler)

for i in range(10):
logger.info("This is an example log line %s" % i)
time.sleep(1.5)

if __name__ == "__main__":
log_file = "rotated.log"
create_rotating_log(log_file)

2023-08-03 13:44:10,701 Rotating Log INFO This is an example log line 0
2023-08-03 13:44:10,701 Rotating Log INFO This is an example log line 0
2023-08-03 13:44:12,204 Rotating Log INFO This is an example log line 1
2023-08-03 13:44:12,204 Rotating Log INFO This is an example log line 1
2023-08-03 13:44:13,710 Rotating Log INFO This is an example log line 2
2023-08-03 13:44:13,710 Rotating Log INFO This is an example log line 2
2023-08-03 13:44:15,217 Rotating Log INFO This is an example log line 3
2023-08-03 13:44:15,217 Rotating Log INFO This is an example log line 3
2023-08-03 13:44:16,727 Rotating Log INFO This is an example log line 4
2023-08-03 13:44:16,727 Rotating Log INFO This is an example log line 4
2023-08-03 13:44:18,233 Rotating Log INFO This is an example log line 5
2023-08-03 13:44:18,233 Rotating Log INFO This is an example log line 5
2023-08-03 13:44:19,737 Rotating Log INFO This is an example log line 6
2023-08-03 13:44:19,737 Rotating Log INFO This is an example log line 6
2023-08-03 13:44:21,244 Rotating Log INFO This is an example log line 7
2023-08-03 13:44:21,244 Rotating Log INFO This is an example log line 7
2023-08-03 13:44:22,751 Rotating Log INFO This is an example log line 8
2023-08-03 13:44:22,751 Rotating Log INFO This is an example log line 8
2023-08-03 13:44:24,257 Rotating Log INFO This is an example log line 9
2023-08-03 13:44:24,257 Rotating Log INFO This is an example log line 9

Rotate logs time-controlled

[ ]: import logging
import time

from logging.handlers import TimedRotatingFileHandler

def create_timed_rotating_log(path):
""""""
logger = logging.getLogger("Rotating Log")
logger.setLevel(logging.INFO)

handler = TimedRotatingFileHandler(
path, when="s", interval=5, backupCount=5

)
logger.addHandler(handler)

(continues on next page)

7.9. Logging 545



Python for Data Science, Release 24.1.0

(continued from previous page)

for i in range(6):
logger.info("This is an example!")
time.sleep(75)

if __name__ == "__main__":
log_file = "timed_rotation.log"
create_timed_rotating_log(log_file)

2023-08-03 13:45:00,510 Rotating Log INFO This is an example!
2023-08-03 13:45:00,510 Rotating Log INFO This is an example!
2023-08-03 13:46:15,510 Rotating Log INFO This is an example!
2023-08-03 13:46:15,510 Rotating Log INFO This is an example!
2023-08-03 13:47:30,517 Rotating Log INFO This is an example!
2023-08-03 13:47:30,517 Rotating Log INFO This is an example!
2023-08-03 13:48:45,521 Rotating Log INFO This is an example!
2023-08-03 13:48:45,521 Rotating Log INFO This is an example!
2023-08-03 13:50:00,525 Rotating Log INFO This is an example!
2023-08-03 13:50:00,525 Rotating Log INFO This is an example!
2023-08-03 13:51:15,530 Rotating Log INFO This is an example!
2023-08-03 13:51:15,530 Rotating Log INFO This is an example!

Create a logging decorator

See also
• How to Create an Exception Logging Decorator

Create a logging filter

[ ]: import logging
import sys

class ExampleFilter(logging.Filter):
def filter(self, record):

if record.funcName == "foo":
return False

return True

logger = logging.getLogger("filter_example")
logger.addFilter(ExampleFilter())

def foo():
"""
Ignore this function’s log messages
"""
logger.debug("Message from function foo")

(continues on next page)

546 Chapter 7. Create a product

https://www.blog.pythonlibrary.org/2016/06/09/python-how-to-create-an-exception-logging-decorator/


Python for Data Science, Release 24.1.0

(continued from previous page)

def bar():
logger.debug("Message from bar")

if __name__ == "__main__":
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
foo()
bar()

7.10 Check and improve code quality and complexity

If the quality of software is neglected, this quickly leads to superfluous code, also known as cruft. This then slows down
the further development of functions. This also happens to great teams who are not allowed to spend time maintaining
high code quality. High code quality reduces cruft to a minimum and allows the team to add features with less effort,
time and cost. Although there are some indicators that can be used to measure internal quality, these can only provide
an initial indication of further productivity. However, a recent study indicates that low quality code took more than
twice as long to fix as high quality code, and that low quality code had a 15 times higher defect density.

In the following, I will show you some Code-Smells and design principles and then some tools with which you can
perform automated static analyses and reformat the code. You can integrate some of these tools into your editor as well
as via the pre-commit framework. Finally, I’ll introduce you to Rope, a tool that supports you with refactorings.

See also:
• PyCQA Meta Documentation

• github.com/PyCQA

7.10.1 Code-Smells and design principles

Code smells are coding patterns that indicate that something is wrong with the design of a programme. For example,
the overuse of isinstance checks against concrete classes is a code smell, as it makes the programme more difficult to
extend to deal with new types in the future.

Recognising code smells

One way to better recognise code smells is to describe the characteristics of code. Make a note of the things you
recognise; add any patterns you see, like or don’t understand. The following questions may prompt you to think further:

• Are there methods that have the same form?

• Are there methods that have an argument with the same name?

• Do arguments with the same name always mean the same thing?

• If you want to add a private method to a class, where would it go?

• If you were to split the class into two parts, where would the dividing line be?

• Do the tests in the conditions have anything in common?

• How many branches do the conditions have?

7.10. Check and improve code quality and complexity 547

https://arxiv.org/abs/2203.04374
https://meta.pycqa.org/
https://github.com/PyCQA


Python for Data Science, Release 24.1.0

• Do the methods contain any code other than the condition?

• Does each method depend more on the argument passed or on the class as a whole?

SOLID principles

SOLID is an acronym for:

S – Single responsibility principle
The methods of a class should be orientated towards a single purpose.

O – Open-closed principle
Objects should be open for extensions but closed for changes.

L – Liskov’s principle of substitution
Subclasses should be substitutable by their superclasses.

I – Interface segregation principle
Objects should not depend on methods that they do not use.

D – Dependency inversion principle
Abstractions should not depend on details.

Open-closed principle

The decision as to whether refactoring should be carried out at all should depend on whether your code is already open
to new requirements. Open here means that your code should be open for extensions without having to change existing
code. Refactorings should not be mixed with the addition of new functions. Instead, these two processes should be kept
separate. When faced with a new requirement, first reorganise the existing code so that it is open to the new function
and only add the new code once this has been completed.

Refactoring is the process of changing a software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure.

– Martin Fowler: Refactoring

Note: Safe refactoring relies on tests. If you really refactor the code without changing the behaviour, the existing tests
should continue to succeed at every step. The tests are a safety net that justifies confidence in the new arrangement of
the code. If they fail,

• you have inadvertently broken the code,

• or the existing tests are flawed.

Single responsibility principle

The single responsibility principle states that each class should only fulfil one task:

There should never be more than one reason for a class to change.

– Robert C. Martin: SRP: The Single Responsibility Principle

548 Chapter 7. Create a product

https://en.wikipedia.org/wiki/SOLID
https://www.mitp.de/IT-WEB/Software-Entwicklung/Refactoring.html
https://python-basics-tutorial.readthedocs.io/en/latest/test/index.html
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://web.archive.org/web/20140407020253/http://www.objectmentor.com/resources/articles/srp.pdf


Python for Data Science, Release 24.1.0

Liskov’s principle of substitution

The Liskov substitution principle states that subclasses must be substitutable by their superclasses. The Liskov substi-
tution principle also applies to Duck typing: every object that claims to be a duck must fully implement the duck’s API.
Duck types should be interchangeable. Applying logic across different data types of objects is called polymorphism.

Interface segregation principle

the interface segregation principle applies the Single responsibility principle to interfaces in order to isolate a specific
behaviour. If a change to a part of your code is required, extracting an object that plays a role opens up the possibility of
supporting the new behaviour without having to change the existing code. This is preferable to coded concretisations.

In this context, Demeter’s law is also interesting, which states that objects should only communicate with objects in
their immediate environment. This effectively restricts the list of other objects to which an object can send a message
and reduces the coupling between objects: an object can only talk to its neighbours, but not to the neighbours of its
neighbours; objects can only send messages to those directly involved.

Dependency inversion principle

The Dependency inversion principle can be defined as

Abstractions should not depend upon details. Details should depend upon abstractions.

– Robert C. Martin: The Dependency Inversion Principle

Typical code smells in Python

Functions that should be objects

In addition to object-oriented programming, Python also supports procedural programming using functions and inher-
itable classes. Both paradigms should, however, be applied to the appropriate problems.

Typical symptoms of functional code that should be converted to classes are

• similar arguments across functions

• high number of distinct Halstead operands

• mix of mutable and immutable functions

For example, three functions with ambiguous usage can be reorganised so, that load_image() is replaced by .
__init__(), crop() becomes a class method, and get_thumbnail() a property:

class Image(object):
thumbnail_resolution = 128

def __init__(self, path):
...

def crop(self, width, height):
...

@property
def thumbnail(self):

(continues on next page)

7.10. Check and improve code quality and complexity 549

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://python-basics-tutorial.readthedocs.io/en/latest/oop/types.html#duck-typing
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://www.cs.utexas.edu/users/downing/papers/DIP-1996.pdf


Python for Data Science, Release 24.1.0

(continued from previous page)

...
return thumb

Objects that should be functions

Sometimes, however, object-oriented code should also be better broken down into functions, for example if a class
contains only one other method apart from .__init__() or only static methods.

Note: You do not have to search for such classes manually, but there is a pylint rule for it:

$ pipenv run pylint --disable=all --enable=R0903 requests
************* Module requests.auth
requests/auth.py:72:0: R0903: Too few public methods (1/2) (too-few-public-methods)
requests/auth.py:100:0: R0903: Too few public methods (1/2) (too-few-public-methods)
************* Module requests.models
requests/models.py:60:0: R0903: Too few public methods (1/2) (too-few-public-methods)

-----------------------------------
Your code has been rated at 9.99/10

This shows us that two classes with only one public method have been defined in auth.py, in lines 72ff. and 100ff.
Also in models.py there is a class with only one public method from line 60.

Nested code

«Flat is better than nested.»

– Tim Peters, Zen of Python

Nested code makes it difficult to read and understand. You need to understand and remember the conditions as you go
through the nestings. Objectively, the cyclomatic complexity increases as the number of code branches increases.

You can reduce nested methods with multiple nested if statements by replacing levels with methods that return False
if necessary. Then you can use .count() to check if the number of errors is > 0.

Another possibility is to use list comprehensions. This way the code

results = []
for item in iterable:

if item == match:
results.append(item)

can be replaced by

results = [item for item in iterable if item == match]

Note: The itertools of the Python standard library are often also good for reducing the nesting depth by creating
functions to create iterators from data structures.

550 Chapter 7. Create a product

https://www.python.org/dev/peps/pep-0020/
https://docs.python.org/3/library/itertools.html


Python for Data Science, Release 24.1.0

Note: You can also filter with itertools, for example with filterfalse:

>>> from itertools import filterfalse
>>> from math import isnan
>>> from statistics import median
>>> data = [20.7, float('NaN'),19.2, 18.3, float('NaN'), 14.4]
>>> sorted(data)
[20.7, nan, 14.4, 18.3, 19.2, nan]
>>> median(data)
16.35
>>> sum(map(isnan, data))
2
>>> clean = list(filterfalse(isnan, data))
>>> clean
[20.7, 19.2, 18.3, 14.4]
>>> sorted(clean)
[14.4, 18.3, 19.2, 20.7]
>>> median(clean)
18.75

Query tools for complex dicts

JMESPath, glom, asq and flupy can significantly simplify the query of dicts in Python.

Reduce code with dataclasses and attrs

dataclasses
are intended to simplify the definition of classes that are mainly created to store values and can then be ac-
cessed via attribute search. Some examples are collections.namedtuple(), typing.NamedTuple, recipes
for records and nested dicts. Data classes save you from having to write and manage these methods.

See also:
• PEP 557 – Data Classes

attrs
is a Python package that has been around much longer than dataclasses, is more comprehensive and can also
be used with older versions of Python.

See also:
• Effective Python by Brett Slatkin

• When Python Practices Go Wrong by Brandon Rhodes

7.10. Check and improve code quality and complexity 551

https://docs.python.org/3/library/itertools.html#itertools.filterfalse
https://jmespath.org/
https://github.com/mahmoud/glom
https://asq.readthedocs.io/en/latest/
https://flupy.readthedocs.io/en/latest/
https://python-basics-tutorial.readthedocs.io/en/latest/dataclasses.html
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://web.archive.org/web/20170904185553/http://code.activestate.com/recipes/576555-records/
https://web.archive.org/web/20100604034714/http://code.activestate.com/recipes/576586-dot-style-nested-lookups-over-dictionary-based-dat
https://peps.python.org/pep-0557/
https://www.attrs.org/en/stable/
https://effectivepython.com/
https://rhodesmill.org/brandon/slides/2019-11-codedive/


Python for Data Science, Release 24.1.0

7.10.2 Checker

flake8
is a wrapper around PyFlakes, pycodestyle and McCabe. However, automatic formatting, for example with Black,
is even more convenient.

Mypy
is a static type checker.

Pytype
is a static analysis tool that derives types from your Python code without the need for type annotations.

Wily
is a command line tool for checking the complexity of Python code in tests and applications.

Pystra
analyses the structural reliability of Python code and summarises it in a report.

Pysa
performs taint analysis to identify potential security problems. Pysa traces data streams from their origin to their
endpoint and identifies vulnerable code.

check-manifest
is a tool with which you can quickly check whether the file MANIFEST.in for Python packages is complete.

flake8

flake8 is a wrapper around PyFlakes, pycodestyle and McCabe. However, automatic formatting, for example with
Black, is even more convenient.

Installation

$ spack env activate python-311
$ spack install py-flake8

Check

$ flake8 PATH/TO/YOUR/CODE

Configuration

flake8 can be configured for tox in the tox.ini file of a package, for example:

[tox]
envlist = py38, py311, flake8, docs

[testenv:flake8]
basepython = python
deps =

flake8
flake8-isort

(continues on next page)

552 Chapter 7. Create a product

https://pypi.org/project/pyflakes/
https://pypi.org/project/pycodestyle/
https://pypi.org/project/mccabe/
https://en.wikipedia.org/wiki/Taint_checking
https://python-basics-tutorial.readthedocs.io/en/latest/libs/distribution.html#manifest-in
https://pypi.org/project/flake8/
https://pypi.org/project/pyflakes/
https://pypi.org/project/pycodestyle/
https://pypi.org/project/mccabe/
https://python-basics-tutorial.readthedocs.io/en/latest/test/tox.html


Python for Data Science, Release 24.1.0

(continued from previous page)

commands =
flake8 src tests setup.py conftest.py docs/conf.py

See also:
• Configuring flake8

• flake8 error/violation codes

• pycodestyle error codes

Mypy

With Mypy you can do a static type check.

See also:
• Home

• GitHub

• Docs

• PyPI

• Using Mypy in production at Spring

Installation

Mypy requires Python3.5. Then it can be installed, for example with:

$ pipenv install mypy

Check

Then you can check it, for example with:

$ pipenv run mypy myprogram.py

Note: Although Mypy needs to be installed with Python3, it can also parse Python2 code, for example with:

$ pipenv run mypy --py2 myprogram.py

7.10. Check and improve code quality and complexity 553

https://flake8.pycqa.org/en/latest/user/configuration.html
https://flake8.pycqa.org/en/latest/user/error-codes.html
https://pycodestyle.pycqa.org/en/latest/intro.html#error-codes
http://mypy-lang.org/
http://mypy-lang.org/
https://github.com/python/mypy
https://mypy.readthedocs.io/
https://pypi.org/project/mypy/
https://notes.crmarsh.com/using-mypy-in-production-at-spring


Python for Data Science, Release 24.1.0

Pytype

Pytype is a static analysis tool that derives types from your Python code without the need for type annotations. However,
it can also enforce type annotations that are in the code. Although annotations are optional for Pytype, they are checked
and applied if they are present. The type annotations generated by Pytype are stored in standalone .pyi files, which
can be merged back into Python using merge-pyi. Finally, it flags common errors such as misspelled attribute names
or function calls and much more, even across file boundaries.

See also:
• Home

• GitHub

• PyPI

• User guide

• FAQ

Requirements

• All common Linux distributions are supported

• macOS 10.7 and Xcode 8

• Windows with WSL. In addition, the following libraries must be installed:

$ sudo apt install build-essential python3-dev libpython3-dev

Installation

Pytype can be easily installed with

$ pipenv install pytype

The installation can then be checked with

$ pipenv run pytype file_or_directory

Configuration

For a Python package, you can set up Pytype by creating a pytype.cfg file with

$ pipenv run pytype --generate-config pytype.cfg

This then starts with for example

# NOTE: All relative paths are relative to the location of this file.

[pytype]

# Space-separated list of files or directories to exclude.
exclude =

(continues on next page)

554 Chapter 7. Create a product

https://www.python.org/dev/peps/pep-0484
https://github.com/google/pytype/tree/master/pytype/tools/merge_pyi
https://google.github.io/pytype/
https://github.com/google/pytype
https://pypi.org/project/pytype/
https://google.github.io/pytype/user_guide.html
https://google.github.io/pytype/faq.html
https://docs.microsoft.com/en-us/windows/wsl/faq


Python for Data Science, Release 24.1.0

(continued from previous page)

**/*_test.py
**/test_*.py

# Space-separated list of files or directories to process.
inputs =

.

Now you can customise the configuration file according to your requirements.

Additional scripts

annotate-ast
in-progress type annotator for ASTs

merge-pyi
Merge type information from a .pyi file into a Python file

pytd-tool
parser for .pyi files

pytype-single
debugging tool for pytype developers that analyses a single python file assuming that .pyi files have already
been generated for all dependencies

pyxref
cross-references generator

Wily

The Zen of Python1 emphasises complexity reduction in many ways:

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Wily is a command line tool for checking the complexity of Python code in tests and applications. For this purpose,
Wily uses the following metrics:

Cyclomatic complexity
measures the complexity of code by the number of linearly independent paths in the control flow graph.

The Software Engineering Institute at Carnegie Mellon University distinguishes the following four levels of risk2:

Cyclomatic complexity Risk assessment
1–10 Simple programme without much risk
11–20 moderate risk
21–50 complex, high-risk programme
> 50 untestable programme with very high risk

1 PEP 20 – The Zen of Python
2 C4 Software Technology Reference Guide, S. 147

7.10. Check and improve code quality and complexity 555

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://peps.python.org/pep-0020/
https://resources.sei.cmu.edu/asset_files/Handbook/1997_002_001_16523.pdf


Python for Data Science, Release 24.1.0

Halstead complexity measures
Statically analysing procedure that calculates the difficulty of the programme, the effort and the implementation
time from the number of operators and operands.

Maintainability Index
is based on the cyclomatic complexity, the Halstead complexity measures and the number of lines of code3:

Index Maintainability
0–25 unmaintainable
25–50 worrying
50–75 in need of improvement
75–100 Superhero code

See also:
• Docs

• GitHub

• PyPI

• wily-pycharm

Installation

Wily can be easily installed with

$ pipenv install wily

You can then check the installation with

$ pipenv run wily --help
Usage: wily [OPTIONS] COMMAND [ARGS]...
Version: 1.19.0
Inspect and search through the complexity of your source code. To get
started, run setup:
$ wily setup ...

Configuration

A wily.cfg file can be created in the project directory with the list of available operators:

[wily]
# list of operators, choose from cyclomatic, maintainability, mccabe and raw
operators = cyclomatic,raw
# archiver to use, defaults to git
archiver = git
# path to analyse, defaults to .
path = /path/to/target
# max revisions to archive, defaults to 50
max_revisions = 20

3 Using Metrics to Evaluate Software System Maintainability

556 Chapter 7. Create a product

https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://wily.readthedocs.io/en/latest/
https://github.com/tonybaloney/wily
https://pypi.org/project/wily/
https://github.com/tonybaloney/wily-pycharm
https://www.ecs.csun.edu/~rlingard/comp589/ColemanPaper.pdf


Python for Data Science, Release 24.1.0

Python code in .ipynb files is also usually recognised automatically. However, you may be able to disable this for a
Jupyter notebook with

ipynb_support = false

or for individual cells with

ipynb_cells = false

Use

. . . as a command line tool

1. Building a cache with the statistics of the project

Note: Wily assumes that your project folder is a Git repository. However, Wily does not create a cache if the
working directory is dirty.

$ pipenv run wily build

2. Show metric

$ pipenv run wily report

This outputs both the metric and the delta to the previous revision.

3. Show ranking

$ pipenv run wily rank

This shows the ranking of all files in a directory or a single file based on the specified metric, if present in .wily/.

4. Show graph

$ pipenv run wily graph

This displays a graph in the default browser.

5. Show build directory information

$ pipenv run wily index

6. List the metrics available in the Wily operators

$ pipenv run wily list-metrics

7.10. Check and improve code quality and complexity 557



Python for Data Science, Release 24.1.0

. . . as pre-commit hook

You can also use Wily as a pre-commit framework. To do this, you would have to add the following to the
pre-commit-config.yaml configuration file, for example:

repos:
- repo: local

hooks:
- id: wily

name: wily
entry: wily diff
verbose: true
language: python
additional_dependencies: [wily]

. . . in a CI/CD pipeline

Usually Wily compares the complexity with the previous revision. However, you can also specify other references, for
example HEAD^1 with

$ pipenv run wily build src/
$ pipenv run wily diff src/ -r HEAD^1

Pystra

Pystra (Python Structural Reliability Analysis) analyses the structural reliability of Python code and summarises it in
a report.

See also:
• Docs

• GitHub

Installation

$ pipenv install pystra

Reliability analysis

A FORM (first-order reliability method) analysis can lead to the following result, for example:

==================================================

RESULTS FROM RUNNING FORM RELIABILITY ANALYSIS

Number of iterations: 17
Reliability index beta: 1.75397614074

(continues on next page)

558 Chapter 7. Create a product

http://pystra.github.io/pystra/
https://github.com/pystra/pystra


Python for Data Science, Release 24.1.0

(continued from previous page)

Failure probability: 0.039717297753
Number of calls to the limit-state function: 164

==================================================

Pysa

The Python Static Analyzer Pysa performs taint analysis to identify potential security problems. Pysa traces data
streams from their origin to their endpoint and identifies vulnerable code.

See also:
• What Is Taint Analysis and Why Should I Care?

• How Pysa works

• Running Pysa

• Pysa Tutorial

Configuration

Pysa uses two file types for configuration:

• a taint.config file in JSON format, in which sources, sinks, features and rules are defined.

{
"comment": "UserControlled, Test, Demo sources are predefined. Same for Demo,␣

→˓Test and RemoteCodeExecution sinks",
"sources": [],
"sinks": [],
"features": [],
"rules": []

}

• files with the extension .pysa in a directory configured with taint_models_path in your .
pyre_configuration file.

You can find practical examples in the Pyre repository.

Use

Pyre can be called, for example with

$ $ pipenv run pyre analyze --save-results-to ./

The --save-results-to option stores detailed results in ./taint-output.json.

7.10. Check and improve code quality and complexity 559

https://en.wikipedia.org/wiki/Taint_checking
https://dzone.com/articles/what-is-taint-analysis-and-why-should-i-care
https://pyre-check.org/docs/pysa-basics
https://pyre-check.org/docs/pysa-running/
https://github.com/facebook/pyre-check/tree/master/documentation/pysa_tutorial
https://github.com/facebook/pyre-check/tree/master/stubs/taint/core_privacy_security


Python for Data Science, Release 24.1.0

Pysa postprozessor

Installation

$ pipenv install fb-sapp

Use

1. Parsing the JSON file, for example with

$ pipenv run sapp --database-name sapp.db analyze ./taint-output.json

The results are stored in the local SQLite file sapp.db.

2. Exploring the problems with

$ pipenv run sapp --database-name sapp.db explore

This starts an IPython interface connected to the SQLite database:

issues
lists all issues

issue 1
selects the first issue

trace
shows the data flow from source to sink

n
jumps to the next call

list
shows the source code of the call

jump 1
jumps to the first call and shows the source code

Further commands can be found in the SAPP Command-Line Interface.

check-manifest

check-manifest is a tool with which you can quickly check whether the file Manifest.in for Python packages is
complete.

560 Chapter 7. Create a product

https://github.com/facebook/sapp?tab=readme-ov-file#command-line-interface
https://pypi.org/project/check-manifest/


Python for Data Science, Release 24.1.0

Installation

$ pipenv install check-manifest

Check

$ cd /path/to/MANIFEST.in
$ pipenv run check-manifest

. . . or for an automatic update

$ pipenv run check-manifest -uv
listing source files under version control: 6 files and directories
building an sdist: check-manifest-0.7.tar.gz: 4 files and directories
lists of files in version control and sdist do not match!
missing from sdist:
tests.py
tox.ini

suggested MANIFEST.in rules:
include *.py
include tox.ini

updating MANIFEST.in

$ cat MANIFEST.in
include *.rst

# added by check_manifest.py
include *.py
include tox.ini

Configuration

You can configure check-manifest so that certain file patterns are ignored by creating a section [tool.
check-manifest] in your pyproject.toml file or a section [check-manifest] in your setup.cfg or tox.ini
file, for example:

[tool.check-manifest]
ignore = [".travis.yml"]

# setup.cfg or tox.ini
[check-manifest]
ignore =

.travis.yml

check-manifest knows the following options:

ignore
A list of filename patterns that are ignored by check-manifest. Use this option if you want to keep files in your
version control system that shouldn’t be in your source distributions. The standard list is:

7.10. Check and improve code quality and complexity 561



Python for Data Science, Release 24.1.0

PKG-INFO
* .egg-info
* .egg-info / *
setup.cfg
.hgtags
.hgsigs
.hgignore
.gitignore
.bzrignore
.gitattributes
.github / *
.travis.yml
Jenkinsfile
* .mo

ignore-default-rules
If true, your ignore entries replace the standard list instead of completing it.

ignore-bad-ideas
A list of filename patterns that will be ignored by checking the generated files. This allows you to keep generated
files in your version control system, even if this is usually a bad idea.

Integration with version control

With pre-commit framework, check-manifest can be part of your Git workflow. To do this, add the following to your
.pre-commit-config.yaml file:

repos:
- repo: https://github.com/mgedmin/check-manifest

rev: "0.39"
hooks:
- id: check-manifest

7.10.3 Formatter

Black
formats your code in a nice and deterministic format.

isort
formats your import statements in separate and sorted blocks.

prettier
offers automatic formatters for other file types.

562 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

Black

Black formats your code in a nice and deterministic format.

See also:
Was lesbaren Code auszeichnet, ist gut beschrieben im Trey Hunners Blog-Post Craft Your Python Like Poetry.

Installation

$ pipenv install black

Check

Then you can check the installation with

$ pipenv run black /PATH/TO/YOUR/SOURCE/FILE

Integration

With jupyter-black you can already use Black in your Jupyter notebooks.

See also:
Integration into other editors such as PyCharm, Wing IDE or Vim is also possible, see Editor integration

Configuration

In contrast to Black’s standard 88-character formatting, however, I prefer a line length of 79 characters.

For this you can enter the following in pyproject.toml:

[tool.black]
line-length = 79

See also:
You can get more information about the configuration of Black in the Toml file in pyproject.toml.

isort

isort formats your import statements in separate and sorted blocks.

7.10. Check and improve code quality and complexity 563

https://github.com/psf/black
https://treyhunner.com/2017/07/craft-your-python-like-poetry/
https://github.com/drillan/jupyter-black
https://black.readthedocs.io/en/stable/integrations/editors.html
https://black.readthedocs.io/en/stable/usage_and_configuration/the_basics.html#configuration-via-a-file
https://github.com/timothycrosley/isort


Python for Data Science, Release 24.1.0

Installation

$ pipenv install isort

Configuration

isort can be configured for example in the pyproject.toml file:

[tool.isort]
atomic=true
force_grid_wrap=0
include_trailing_comma=true
lines_after_imports=2
lines_between_types=1
multi_line_output=3
not_skip="__init__.py"
use_parentheses=true

known_first_party=["MY_FIRST_MODULE", "MY_SECOND_MODULE"]
known_third_party=["mpi4py", "numpy", "requests"]

In order to recognise third-party packages for your project imports, you can install your project together with isort.

Note: With isort 5 you can use profiles. This simplifies the configuration of isort in order to continue to play with
Black in the future:

isort --profile black .

prettier

prettier offers automatic formatters for other file types, including TypeScript, JSON, Vue, YAML, TOML and XML.

Installation

$ npm install prettier --save-dev --save-exact

Configuration

$ npx prettier --write path/to/my/file.js

564 Chapter 7. Create a product

https://prettier.io/
https://www.typescriptlang.org/
https://json.org/
https://vuejs.org/
https://yaml.org/
https://github.com/bd82/toml-tools/tree/master/packages/prettier-plugin-toml
https://github.com/prettier/plugin-xml


Python for Data Science, Release 24.1.0

Pre-commit hook for prettier

Installation

$ npm install pretty-quick husky --save-dev

Configuration

In the package.json file you can configure the pre-commit hook as follows:

{ "husky": { "hooks": { "pre-commit": "pretty-quick --staged" } } }

See also:
• Prettier docs

7.10.4 Refactoring

Rope
is a Python refactoring library.

Rope

Rope is a Python refactoring library.

Installation

Rope can be easily installed with

$pipenv install rope

Use

Now we first import the Project type and instantiate it with the path to the project:

[1]: from rope.base.project import Project

proj = Project("requests")

This creates a project folder named .ropeproject in our project.

[2]: [f.name for f in proj.get_files()]

[2]: ['hooks.py',
'utils.py',
'_internal_utils.py',
'status_codes.py',
'__version__.py',

(continues on next page)

7.10. Check and improve code quality and complexity 565

https://prettier.io/docs/en/index.html
https://github.com/python-rope/rope


Python for Data Science, Release 24.1.0

(continued from previous page)

'sessions.py',
'api.py',
'cookies.py',
'adapters.py',
'certs.py',
'exceptions.py',
'api_v1.py',
'auth.py',
'help.py',
'structures.py',
'compat.py',
'packages.py',
'__init__.py',
'models.py']

The proj variable can execute a number of commands such as get_files and get_file. In the following example
we use this to assign the variable api to the file api.py.

[3]: !cp requests/api.py requests/api_v1.py

[4]: api = proj.get_file("api.py")

[5]: from rope.refactor.rename import Rename

change = Rename(proj, api).get_changes("api.py")

proj.do(change)

[6]: !cd requests && git status

On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: __init__.py

Untracked files:
(use "git add <file>..." to include in what will be committed)

.ropeproject/
api_v1.py

Changes not staged for commit (use "git add" and/or "git commit -a")

[7]: !cd requests && git diff __init__.py

diff --git a/__init__.py b/__init__.py
index f8f9429..502e33a 100644
--- a/__init__.py
+++ b/__init__.py
@@ -118,7 +118,7 @@ from .__version__ import __copyright__, __cake__
from . import utils
from . import packages

(continues on next page)

566 Chapter 7. Create a product



Python for Data Science, Release 24.1.0

(continued from previous page)

from .models import Request, Response, PreparedRequest
-from .api import request, get, head, post, patch, put, delete, options
+from .api_v1 import request, get, head, post, patch, put, delete, options
from .sessions import session, Session
from .status_codes import codes
from .exceptions import (

With proj.do(change), the file requests/__init__.py has been changed to import from new_api instead of api.

Rope can be used not only for renaming files, but also in various other cases; see also Rope Refactorings.

See also:
• Martin Fowler: Refactoring

7.11 Security

In the previous chapters we have already given some hints that enable a safer operation. Here we want to summarise
and expand the individual elements. In doing so, we will be guided by the OpenSSF Scorecard. Alternatively, you can
also follow ISO/IEC 5230/OpenChain.

7.11.1 Check vulnerabilities

Risk: High

This check determines whether the project has open, unfixed vulnerabilities in its own code base or in its dependencies.
An open vulnerability can be easily exploited and should be closed as soon as possible.

For such a check, you can use for example pipenv check, which uses the Python library safety. Alternatively, you can
use osv or pip-audit, which uses the Open Source Vulnerability Database.

If a vulnerability is found in a dependency, you should update to a non-vulnerable version; if no update is available,
you should consider removing the dependency.

If you believe that the vulnerability does not affect your project, an osv-scanner.toml file can be created for osv,
including the ID to ignore and a reason, for example:

[[IgnoredVulns]]
id = "GO-2022-1059"
# ignoreUntil = 2022-11-09 # Optional exception expiry date
reason = "No external http servers are written in Go lang."

7.11.2 Maintenance

Are the dependencies updated automatically?

Risk: High

Outdated dependencies make a project vulnerable to attacks on known vulnerabilities. Therefore, the process of up-
dating dependencies should be automated by checking for outdated or insecure requirements and updating them if
necessary. You can use dependabot or PyUp for this purpose.

You can also update your Pipenv environments automatically with pipenv update.

7.11. Security 567

https://rope.readthedocs.io/en/latest/overview.html#refactorings
https://www.mitp.de/IT-WEB/Software-Entwicklung/Refactoring.html
https://securityscorecards.dev/
https://github.com/pyupio/safety
https://pypi.org/project/osv/
https://pypi.org/project/pip-audit/
https://osv.dev
https://github.com/dependabot
https://pyup.io


Python for Data Science, Release 24.1.0

Are the dependencies still maintained?

Risk: High

This indicates possible unpatched security vulnerabilities. Therefore, it should be checked regularly whether a project
has been archived. Conversely, the OSSF scorecard assumes that with at least one commit a week for 90 days, the
project is very actively maintained. However, a lack of active maintenance is not necessarily always a problem: smaller
utilities in particular usually do not need to be maintained, or only very rarely. So a lack of active maintenance only
tells you that you should investigate the situation more closely.

You can also display the activities of a project with badges, for example:

Is there a safety concept for the project?

Risk: Medium

Ideally, a SECURITY.md or similar file should have been published with the project. This file should contain information

• how a security vulnerability can be reported without it becoming publicly visible,

• on the procedure and schedule for disclosing the vulnerability,

• to links, for example URLs and emails, where support can be requested.

See also:
• Guide to implementing a coordinated vulnerability disclosure process for open source projects

• Adding a security policy to your repository

• Runbook

Does the project contain a usable licence?

Risk: Low

A license indicates how the source code may or may not be used. The absence of a licence complicates any kind of
security review or audit and poses a legal risk for potential use.

OSSF-Scorecard uses the GitHub License API for projects hosted on GitHub, otherwise it uses its own heuristics to
detect a published license file. Files in a LICENSES directory should be named with their SPDX licence identifier
followed by an appropriate file extension as described in the REUSE specification.

Are the best practices of the OpenSSF (Open Source Security Foundation) being followed?

Risk: Low

The Open Source Security Foundation (OpenSSF) Best Practices Program includes a set of security-oriented best
practices for open source software development:

• the vulnerability reporting procedure is published on the project page

• a working build system automatically rebuilds the software from source code

• a general policy that tests are added to an automated test suite when important new features are added

• various cryptography criteria are met, if applicable

• at least one static code analysis tool applied to each planned major production release

568 Chapter 7. Create a product

https://github.com/ossf/oss-vulnerability-guide/blob/main/maintainer-guide.md
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://github.com/ossf/oss-vulnerability-guide/blob/main/runbook.md
https://docs.github.com/en/rest/licenses/licenses?apiVersion=2022-11-28#get-the-license-for-a-repository
https://github.com/ossf/wg-best-practices-os-developers/


Python for Data Science, Release 24.1.0

You can also get a corresponding badge with the OpenSSF Best Practices Badge Programm.

7.11.3 Continuous testing

Are CI tests carried out in the project?

Risk: Low

Before code is merged into pull or merge requests, tests should be performed to help detect errors early and reduce the
number of vulnerabilities in a project.

Does the project use fuzzing tools?

risk: Medium

Fuzzing or fuzz testing passes unexpected or random data to your programme to detect bugs. Regular fuzzing is
important to detect vulnerabilities that can be exploited by others, especially since fuzzing can also be used in an attack
to find the same vulnerabilities.

• Does your project use fuzzing?

• Is the name of the repository included in the OSS fuzz project list?

• Is ClusterFuzzLite used in the repository?

• Are custom language-specific fuzzing features present in the repository, for example with atheris or OneFuzz?

Does your project use static code analysis tools?

Risk: Medium

Static code analysis tests the source code before the application is executed. This can prevent known bug classes from
being accidentally introduced into the codebase.

To check for vulnerabilities, you can use bandit, which you can also integrate into your .pre-commit-hooks.yaml:

repos:
- repo: https://github.com/PyCQA/bandit
rev: '1.7.5'
hooks:
- id: bandit

You can also use Pysa for taint analyses.

For GitHub repositories you can also use CodeQL; see codeql-action.

7.11. Security 569

https://bestpractices.coreinfrastructure.org/de
https://owasp.org/www-community/Fuzzing
https://github.com/google/oss-fuzz
https://google.github.io/clusterfuzzlite/
https://pypi.org/project/atheris/
https://github.com/microsoft/onefuzz
https://en.wikipedia.org/wiki/Static_program_analysis
https://github.com/PyCQA/bandit
https://en.wikipedia.org/wiki/Taint_checking
https://codeql.github.com
https://github.com/github/codeql-action?tab=readme-ov-file#usage


Python for Data Science, Release 24.1.0

7.11.4 Risk assessment of the source code

Is the project free of checked-in binaries?

Risk: High

Generated executables in the source code repository (for example Java .class files, Python .pyc files) increase risk
because they are difficult to verify, so they may be out of date or maliciously tampered with. These problems can be
countered with verified, reproducible builds, but their executables should not end up back in the source code repository.

Is the development process vulnerable to the introduction of malicious code?

Risk: High

With protected Git branches, rules can be defined for the adoption of changes in standard and release branches, for
example automated static code analyses with flake8, Pysa, Wily and code reviews via merge requests.

See also:
• Reproducible Builds

• Python 3.12.0 from a supply chain security perspective

• Defending against the PyTorch supply chain attack PoC

Are code reviews performed?

Risk: High

Code reviews can detect unintentional vulnerabilities or possible introduction of malicious code. Possible attacks can
be detected in which the account of a team member has been infiltrated.

Does the project involve people from several organisations?

Risk: Low

This is taken as an indication of a lower number of trustworthy code reviewers. For this purpose, you can search for
different entries in the * Company* field in the profiles. At least three different companies in the last 30 commits are
desirable, whereby each of these team members should have made at least five commits.

7.11.5 Risk assessment of the builds

Are dependencies declared and fixed in the project?

Risk: Medium

In your project, dependencies used during the build and release process should be pinned. A pinned dependency should
be explicitly set to a specific hash and not just to a mutable version or version range.

Spack writes these hashes for the respective environment in spack.lock, Pipenv in Pipfile.lock. These files should
therefore also be checked in with the source code.

This can reduce the following security risks:

• Testing and deployment are done with the same software, which reduces deployment risks, simplifies debugging
and enables reproducibility.

570 Chapter 7. Create a product

https://en.wikipedia.org/wiki/Static_program_analysis
https://reproducible-builds.org
https://sethmlarson.dev/security-developer-in-residence-weekly-report-13
https://sethmlarson.dev/security-developer-in-residence-weekly-report-25


Python for Data Science, Release 24.1.0

• Compromised dependencies do not undermine the security of the project.

• Substitution attacks, i.e. (id est) attacks that aim to confuse dependencies, can thus be countered.

However, fixing dependencies should not prevent software updates. You can reduce this risk by

• automated tools that notify you when dependencies in your project are out of date

• update applications that lock dependencies quickly.

7.11. Security 571



Python for Data Science, Release 24.1.0

572 Chapter 7. Create a product



CHAPTER

EIGHT

CREATE WEB APPLICATIONS

I will introduce you to three different types of web applications:

• Dashboards generated from Jupyter notebooks

• Web applications that go beyond notebooks, such as integrating bokeh plots, as demonstrated in Bokeh-Plots in
Flask einbinden

• Finally, the provision of your data via a RESTful API, for example with the FastAPI framework.

573

https://jupyter-tutorial.readthedocs.io/en/latest/dashboards/index.html
https://pyviz-tutorial.readthedocs.io/de/latest/bokeh/embedding-export/flask.html
https://pyviz-tutorial.readthedocs.io/de/latest/bokeh/embedding-export/flask.html
https://en.wikipedia.org/wiki/Representational_state_transfer


Python for Data Science, Release 24.1.0

574 Chapter 8. Create web applications



CHAPTER

NINE

INDEX

575



Python for Data Science, Release 24.1.0

576 Chapter 9. Index



INDEX

Symbols
$ git log MAIN..FEATURE, 386
$ git log -G"BA*", 385
$ git log -L :FUNCNAME_REGEX:PATH/TO/FILE,

386
$ git log -L LINE_START_INT|LINE_START_REGEX,LINE_END_INT|LINE_END_REGEX:PATH/TO/FILE,

386
$ git log -S"FOO" [-i], 385
$ git log -- PATH, 385
$ git log --author="VEIT", 385
$ git log --follow PATH/TO/FILE, 386
$ git log --grep="TERM" [-i], 385
$ git log --oneline --decorate --graph

--all|FEATURE, 386
$ git log --reverse, 386
$ git log --stat --patch|-p, 386
$ git log [--after="YYYY-MM-DD"]

[--before="YYYY-MM-DD"], 385
$ git log [-n COUNT], 385
$ git reflog, 387

A
ACID, 273

B
BASE, 273
Branch, 468

C
Cache, 468
CAP theorem, 274
Cassandra, 274
Clone, 468
Column Family, 274
Commit, 468
Consistency, 274
Consistent hash function, 274
CouchDB, 275

E
Eventual Consistency, 275

F
Fork, 469

G
Git, 469
GitLab, 469
Graph model, 275
Graph partitioning, 275
Graph traversal, 275

H
HBase, 275
HEAD, 469
Hypertable, 275

I
Index, 469

K
Key/value pair, 275

L
Locking, 276

M
MapReduce, 276
Merge request, 469
MongoDB, 276
MVCC – Multiversion Concurrency Control, 276

O
Optimistic concurrency, 276
origin, 469

P
Paxos, 276
Pessimistic locking, 276
PGM, 276
Property graph model, 276
Python Enhancement Proposals

PEP 0282, 535

577



Python for Data Science, Release 24.1.0

PEP 20, 555
PEP 249, 217
PEP 257, 439
PEP 307, 185
PEP 3154, 185
PEP 503, 522
PEP 508, 506
PEP 557, 551
PEP 621, 522
PEP 639, 522
PEP 643, 522
PEP 658, 522
PEP 659, 344

R
Redis, 276
Remote repository, 469
RFC

RFC 4122, 267
RFC 4180, 162
RFC 4506, 188
RFC 7158#section-9, 172
RFC 7159, 172
RFC 8259, 172

Riak, 276

S
Semantic integrity, 276

T
TBD, 469
Trunk-Based Development, 469
Two-phase locking (2PL), 276

V
Vector clock, 277

W
Working Tree, 469

X
XPATH, 277
XQuery, 277
XSLT, 277

578 Index


	Introduction
	Target groups
	Structure of the Python for Data Science tutorial
	Status
	Follow us
	Pull-Requests

	Workspace
	IPython
	Start the IPython shell
	IPython examples
	Running Python code
	Show Python version
	Show versions of Python packages
	Information about the host operating system and the versions of installed Python packages
	Only use Python versions ≥ 3.8

	Shell commands
	Tab completion
	Displaying information about an object

	IPython magic
	Execute external code: %run
	Run timing code: %timeit
	Execute code from other interpreters
	Configure standard script magic
	Help functions: ?, %magic and %lsmagic

	Shell commands in IPython
	Passing values to and from the shell

	Unix shell
	Navigate through files and directories
	ls options and arguments
	Show all options and arguments
	Illegal options
	Hidden Files

	Show directory treeThe command tree lists contents of directories in a tree-like format.
	Change directory
	Absolute and relative Paths


	Create, update and delete files and directories
	Transfering files
	wget
	cURL


	Pipes and filters
	Pipe |

	grep and find
	grep
	find

	Shell variables
	Display of all shell variables
	Showing the value of a variable
	The path variable
	Creating and changing variables
	Creating or overwriting variables
	Append additional specifications



	Show objects with display
	Images
	Non-embedded images

	HTML
	Javascript
	LaTeX
	Audio
	Links to local files
	Display notebooks

	foo.ipynb
	Import notebooks
	Notebook Loader
	Notebook Finder
	Register hook
	Check
	Reusable import hook

	IPython extensions
	Use extensions
	Writing IPython extensions

	Debugging
	Check exceptions with %xmode
	Debugging with %debug
	Essential commands of the ipdb



	Jupyter
	NumPy
	Introduction to NumPy
	ndarray – an N-dimensional array object
	dtype
	Arithmetic
	Indexing and slicing
	Boolean indexing
	Integer Array Indexing

	Transpose arrays and swap axes
	Universal functions (ufunc)
	Array-oriented programming – vectorisation
	Conditional logic as array operations – where
	Mathematical and statistical methods
	Methods for Boolean arrays
	Sort
	unique and other set logic
	File input and output with arrays

	pandas
	Introduction to the data structures of pandas
	Series
	Missing data

	DataFrame

	Converting Python data structures into pandas
	Series
	DataFrame

	Indexing
	Index objects
	Axis indices with double labels
	Some index methods and properties
	Re-indexing with Index.reindex
	Arguments of the function Index.reindex

	Rename axis indices
	Rename axis indices with Index.map
	Rename axis indices with Index.rename

	Hierarchical Indexing
	View vs. copy
	stack and unstack
	Rearranging and Sorting Levels
	Summary statistics by level

	Indexing with the columns of a DataFrame

	Date and Time
	Loading UTC time data
	Conversion of local time to UTC
	Conversion to Unix time
	Manipulation of dates
	Convert to strings


	Select and filter data
	Add, change and delete data
	Add data
	Change data
	Delete data

	Manipulation of strings
	Vectorised string functions in pandas

	Arithmetic
	Arithmetic methods with fill values
	Arithmetic methods
	Operations between DataFrame and Series
	Function application and mapping

	Descriptive statistics
	Options for reduction methods
	ydata-profiling
	Installation
	Example
	Configuration for large datasets
	1. minimal mode
	2. Sample
	3. Deactivate expensive calculations
	4 Concurrency



	Sorting and ranking
	Ranking
	Other methods with rank

	Subdividing and categorising data
	Combining and merging data sets
	Database-like DataFrame joins

	Group operations
	Iteration over groups
	Selecting a column or subset of columns
	Grouping with dicts and series
	Grouping with Functions
	Grouping by index levels

	Aggregation
	Additional functions column by column
	Return aggregated data without row indices

	Apply
	Suppression of the group keys
	Quantile and bucket analysis
	Populating data with group-specific values
	Group weighted average
	Correlation
	Performance problems with apply
	Optimising apply with Cython

	Pivot tables and crosstabs
	Crosstabs

	Convert dtype
	Automatic conversion
	Memory usage
	String and category types
	Ordered categories
	Conversion to other data types



	Read, persist and provide data
	Open data
	pandas IO tools
	Serialisation formats
	Data serialisation
	repr
	ast.literal_eval

	CSV
	Overview
	Example
	CSV example
	Reading in text files piece by piece
	Write DataFrame and Series as a CSV file
	Working with the csv module of Python
	Dialekte



	JSON
	Overview
	Example
	JSON example


	Excel
	XML/HTML
	Overview
	Example
	XML/HTML examples
	HTML
	XML
	lxml

	BeautifulSoup


	YAML
	Overview
	Example


	TOML
	Overview
	Example


	Pickle
	Overview
	Pickle examples
	Python pickle module
	pandas



	Protocol Buffers (Protobuf)
	Overview

	Other Formats

	Intake
	Install Intake
	Requirements
	Installation
	Create a catalog with sample data

	Intake for data scientists
	Load a data source
	Configure the search path for data sources

	Read data

	Intake-GUI: Exploring data in a graphical user interface
	Ad 1: Catalogs
	Ad 2. Sources
	Ad 3. Source view

	Intake for data engineers

	httpx
	httpx installation and sample application
	Installation
	Example OSM Nominatim API
	Clean Code
	Caching

	Create module

	Overview
	Remote storage media
	Geodata

	Geodata
	PostgreSQL
	Basic funtions
	Foreign Data Wrappers (FDW)
	Generic SQL wrappers
	Specific SQL wrappers
	NoSQL database wrappers
	File wrappers
	Geo wrappers
	Generic web wrappers

	Procedural programming languages
	DB-API 2.0
	Psycopg
	Install

	Object-relational mapping
	SQLAlchemy
	Database connection
	Data model
	Create tables
	Create Session
	Read
	Update
	Delete
	Extensions

	Alembic
	Create migration environment
	Templates
	Configure ini file
	Create a migration script
	Run migration
	Display Information
	Current version
	History


	ipython-sql
	Installation
	First steps
	Configuration
	pandas
	PostgreSQL features

	PostGIS
	Install PostGIS
	Optimising PostgreSQL for GIS database objects
	Loading geospatial data

	Database security
	Database permissions
	Save passwords
	id
	Time stamp

	PostgreSQL performance
	Cache and index hit rate
	Clean up unused indices
	Clean up unused data
	Analyse query performance with pg_stat_statements

	pgMonitor
	Installation and configuration

	pganalyze
	Installation
	Log analysis



	NoSQL databases
	Key-value database systems
	Database systems

	Column-oriented database systems
	Database systems

	Document-oriented database systems
	Database systems

	Graph database systems
	Graph model
	Graph traversal
	Database systems

	Object database systems
	Object-relational impedance mismatch
	Database systems

	XML database systems
	Database systems


	Application Programming Interface (API)
	FastAPI
	Installation
	Requirements
	Optional requirements


	Example
	1. Create
	2. Run
	3. Check
	4. Update

	Tips
	Project structure

	Extensions
	Administration
	Authentication
	ORMs
	SQL Query Builders
	ODMs
	Code generators
	Utilities
	Caching
	E-mail
	GraphQL
	Logging
	Prometheus
	Templating
	Pagination
	Websockets

	Other tools


	gRPC
	gRPC-Example
	Define the data structure
	Define the gRPC service
	Generate the gRPC Code
	Create server
	Create client
	Run client and server

	Test gRPC
	pytest-grpc
	Wireshark



	Glossary

	Data cleansing and validation
	Overview
	Managing missing data with pandas
	1. Check the data
	2. Remove all null values (including the indication n/a)
	2.1 …with pandas.read_csv
	2.2 …with pandas.DataFrame.dropna
	2.3 Find all columns where all data is present
	2.4 Find all columns where the most data is available
	2.5 Find all columns where data is missing
	2.6 Replace missing data
	2.7 Replace missing data using backfill


	Detecting and filtering outliers
	String comparisons
	1. Installation
	2. Imort
	3. Example
	String similarity
	Partial string similarity
	Token sorting
	Further information
	Extract from a list
	Known ports

	Deduplicating data
	1. Load sample data
	2. Deduplicate with pandas
	2.2 Show data types
	2.3 Determine missing values
	2.4 Determine duplicate records
	2.5 Delete duplicated data

	3. dedupe
	3.1 Configure Dedupe

	4. Create training data
	5. Active learning

	pandas DataFrame Validation with Bulwark
	1. Installation
	2. Use
	2.1 Checks
	2.2 Decorators
	CustomCheck
	MultiCheck


	Hypothesis: Property-based testing
	1. Imports
	2. Find range
	3. Test with strategies and given
	3. Check against regular expressions

	TDDA: Test-Driven Data Analysis
	1. Imports
	2. Check data
	3. Creating a constraints object
	4. Writing the constraints into a file
	5. Checking data frames

	Data validation with Voluptuous (schema definitions)
	1. Imports
	2. Logger
	3. Read sample data
	4. Examine data
	5. Define schema
	6. Adding a custom validation
	7. Valid date structures are not yet valid dates

	Normalisation and Preprocessing
	Example
	1. Imports
	2. Check data quality
	3. Attribute the mean value to missing values
	4. Scale


	Assigning satellite data to geo-locations
	Example: Tracking the International Space Station with Dask
	1. Imports
	2. Logger
	3. Latitude and longitude pairs from a list of cities

	4. Retrieve ISS data and determine transit times of cities
	5. Creating a delayed pipeline
	6. Show DAG
	7. compute()



	Visualise data
	Performance
	k-Means example
	Performance measurements
	iPython Profiler
	%timeit and %time
	Profiling for scripts: %prun
	Profiling line by line: %lprun
	Create a storage profile: %memit and %mprun
	pyheatmagic
	Loading the extension in IPython
	Display the heat map


	scalene
	Installation
	Use


	Search for existing implementations
	Find anti-patterns
	perflint

	Vectorisations with NumPy
	Special data structures
	Parallelise pandas
	cuDF
	Modin
	Dask


	Select compiler
	Faster Cpython
	Cython
	Numba

	Task planner
	Dask
	Scales from laptops to clusters
	Install Dask
	Testing the installation

	Familiar operation
	Dask DataFrame
	Dask Array
	Dask Bag
	Dask Delayed

	The concurrent.futures interface enables the submission of user-defined tasks.


	Multithreading, Multiprocessing and Async
	Introduction to multithreading, multiprocessing and async
	Martelli’s model of scalability
	Global Interpreter Lock (GIL)
	Overview
	Summary

	Threading example
	Updating and displaying a counter:
	Convert to functions
	Multi-Threading
	Test
	Detection of race conditions
	Fuzzing

	Careful threading with queues
	Careful threading with locks

	Multi-processing example
	What can be parallelised?
	Amdahl’s law

	Tips

	Threading and forking combined
	asyncio example
	Simple Hello world example
	A little bit closer to a real world example
	Exception Handling
	Testing with pytest
	Example:
	Third-party libraries

	Debugging
	Using the debug mode to identify slow async calls
	Debugging in oroduction with aiodebug
	Example


	Logging
	Asynchronous Widgets



	Create a product
	Manage code with Git
	Performance
	Security
	Flexibility
	Criticisms
	Read more
	Workspaces
	Basic Git commands

	Git installation and configuration
	Installation
	Configuration
	The ~/.gitconfig file
	Alternative configuration file
	Manage login data
	The .gitignore file
	Git-commit empty folder
	excludesfile
	Ignoring a file from the repository
	Commit an ignored file
	Troubleshooting .gitignore files


	Working with Git
	Start working on a project
	Start your own project
	Work on a project

	Work on a project

	Review
	log
	Filter and sort
	View

	reflog
	Show the reflog for HEAD
	Show the reflog for a branch
	Show timestamps of the entries
	Passes all options that git log supports
	Note the expiry of entries


	Git tags
	Git branches
	Merge conflicts
	rerere to reuse recorded conflict resolutions

	Delete branches
	Remote branches
	Add remote branches
	Delete remote branches

	Rename branches

	Git rebase
	Rebasing dependent branches with –update-refs
	Delete commits with git rebase
	Modify a commit message with rebase
	rebase as standard git pull strategy

	Undo changes
	Reference for common reset commands
	Undo all local changes to a branch
	Undo all commits in the current branch
	Undo all changes in the current branch
	Undo commit in the wrong branch
	Restoring a deleted branch
	Undoing a commit change
	Undoing a faulty rebase

	Remove a file from the history
	Remove a string from the history

	Git best practices
	Commit early
	Exclude undesired files
	Write a README
	Commit often
	Don’t change the published history
	Choose a Git workflow
	Write meaningful commit messages
	Specify co-authors

	Maintain your repository regularly
	Validate the repo
	Compresses the repo
	Clean up remote tracking branches
	Check forgotten work
	Check your repositories for unwanted files


	Git workflows
	Git Flow
	Drawbacks of Git Flow
	First steps
	Installation
	Initialise
	Feature branches
	Release branches
	Hotfix branches

	Feature branch workflows
	Merge or pull requests
	GitHub Flow
	Simple Git workflow
	Summary

	Deployment and release branches
	Deployment branches
	Release branches

	Trunk Based Development
	Merge strategies: merge vs. squash vs. rebase
	Change commits for a clean log
	… with git rebase
	…with git commit --fixup and git rebase --autosquash

	Monorepos and large repositories
	Definition
	Pros and cons
	Strategies for large repositories
	git clone --depth
	git filter-branch
	git clone --branch
	Git LFS
	git-sizer
	Installation
	Git file system monitor (FSMonitor)
	Scalar

	Splitting repos
	Scenario and goals

	CI-friendly Git Repos
	Store large files outside your repository
	Use shallow clones
	Cache the repo on build servers
	Choose triggers wisely


	Advanced Git
	Git cherry-pick
	git range-diff

	Find regressions with git bisect
	Mark non-testable commits with git bisect skip
	Automatic testing with git bisect run
	Automated testing of performance regressions
	Reproducing the binary search with git bisect log and git bisect replay

	Git Notes
	Git hooks
	pre-commit framework
	Installation
	Configuration
	Installing the git hook scripts
	Run
	pre-commit scripts
	Other pre-commit hooks
	pre-commit in CI pipelines
	Examples for GitHub Actions
	Example for GitLab Actions
	Skip hooks
	Template for Git repositories

	Jupyter Notebooks with Git
	Problems with version control of Jupyter Notebooks
	nbdev2
	jq
	Installation
	Example
	Set up
	ReviewNB
	nbdime
	nbstripout

	Git for binary files
	… for Excel files
	… for PDF files
	… for Word documents

	Visual Studio Code
	Clone
	Gutter indicators
	Commit
	Branches and tags
	Git status bar
	Extensions
	GitLab VS Code Extension

	GitLab
	Roles, groups and permissions
	Members of a project
	Permissions in GitLab
	Protected branches
	Configure protected branches
	Merge requests
	Merge request workflows
	GitLab CI/CD
	Activating CI/CD in a project
	CI/CD pipelines
	Show pipelines
	Migrating GitHub Actions
	Jobs
	GitHub Actions syntax for jobs
	GitLab CI/CD syntax for jobs
	Runners
	GitHub Actions syntax for Runner
	GitLab CI/CD syntax for Runner
	Docker images
	GitHub Actions syntax for Docker images
	GitLab CI/CD syntax for Docker images
	Syntax for conditions and expressions
	GitHub syntax for conditions and expressions
	GitLab syntax for conditions and expressions
	Dependencies between jobs
	GitHub Actions syntax for dependencies between jobs
	GitLab CI/CD syntax for dependencies between jobs
	Artefacts
	GitHub Actions syntax for artefacts
	GitLab CI/CD syntax for artefacts
	Databases and service containers
	GitHub Actions syntax for databases and service containers
	GitLab CI/CD syntax for database and service containers
	Mapping
	GitLab Package Registry

	git-big-picture
	Examples
	Installation
	Git-Integration
	Configuration

	etckeeper
	Installation
	Configuration
	Use
	Managing metadata

	Git’s database internals

	Git glossary


	Manage data with DVC
	Installation
	Create a project
	Configure
	Add data and directories
	Store and retrieve data
	Import and update

	Pipelines
	Connect code and data

	Parameterisation
	Trial metrics
	View pipelines
	Reproduce
	Vim and IDE integration
	Vim
	Visual Studio Code
	IntelliJ IDEs

	FastDS
	Installation
	Introduction



	Reproduce environments
	Spack
	Previous systems
	Spack installation
	Requirements
	Installation
	Configure the shell
	Bootstrapping clingo
	Bootstrap store
	Compiler configuration
	Build your own compiler
	GPG signing
	Trust keys
	Create a key
	List keys
	Remove a key

	Combinatorial builds
	Environment modules
	Dependency DAG
	Installation layout

	Benefits of the build automation
	Use case 1: managing combinatorial installations
	Display all installed configurations
	Spack syntax to restrict the requests
	Spack syntax for displaying the dependencies

	Use case 2: Python and other interpreted languages
	Future features
	Use spack
	List the available packages
	List the installed packages
	spack info
	spack version
	Installation of certain packages
	Uninstall
	Extensions and Python support

	Environments, spack.yaml and spack.lock
	Install packages
	Installation of additional packages
	Configuration
	Loading the modules

	Spack mirrors
	spack mirror create
	spack mirror add
	Order of mirrors
	Local default cache



	Pipenv
	Installation
	Requirements for installing packages
	Install Pipenv
	Create virtual environments

	Usage
	Example
	Options
	check
	clean
	graph
	install
	sdist vs. wheel
	Requirement specifier
	VCS

	lock
	Security features

	open
	run
	shell
	sync
	uninstall
	update

	Deterministic builds
	Workflows
	Import and export of requirements.txt files
	Upgrade workflow
	Pipfile vs. setup.py

	Environment variables
	pipenv environment variables
	.env file

	Pipenv and Spack


	Creating programme libraries and packages
	Document
	Licensing
	Proprietary software licenses
	Free and open source software licenses
	Copyleft or reciprocal licences
	Permissive open source licenses
	Public domain licenses

	Non-software licences
	Data, media, etc.
	Documentation
	Fonts
	Hardware

	Choosing a suitable license
	Check dependencies

	GitHub
	Standard format for licensing
	Check conformity
	REUSE
	CI workflow
	Alternatives


	Python package metadata

	Citing
	Cite data
	DataCite Metadata Schema
	W3C-PROV
	Python prov


	Cite software
	Create a DOI with Zenodo
	Metadata formats
	CodeMeta
	Citation File Format

	Tools
	Git2PROV
	HERMES


	Software journals
	General
	Image processing
	Biology
	Chemistry
	Human and social sciences
	Engineering
	Computer science, mathematics and statistics
	Physics and Earth Sciences


	Testing
	Logging
	Logging examples
	Creating a log file
	Logging levels
	Setting the logging level

	Creating a Logger Object
	Logging exceptions
	Logging handler
	Handler types
	StreamHandler
	SMTPHandler

	Log formatting
	Logging to multiple handlers
	Configure logging
	… in an INI file
	… in a dictConfig
	… directly in the code

	Magic Commands
	Logs rotate
	Rotate logs time-controlled

	Create a logging decorator
	Create a logging filter


	Check and improve code quality and complexity
	Code-Smells and design principles
	Recognising code smells
	SOLID principles
	Open-closed principle
	Single responsibility principle
	Liskov’s principle of substitution
	Interface segregation principle
	Dependency inversion principle

	Typical code smells in Python
	Functions that should be objects
	Objects that should be functions
	Nested code
	Query tools for complex dicts
	Reduce code with dataclasses and attrs


	Checker
	flake8
	Installation
	Check
	Configuration

	Mypy
	Installation
	Check

	Pytype
	Requirements
	Installation
	Configuration
	Additional scripts

	Wily
	Installation
	Configuration
	Use
	… as a command line tool
	… as pre-commit hook
	… in a CI/CD pipeline


	Pystra
	Installation
	Reliability analysis

	Pysa
	Configuration
	Use
	Pysa postprozessor
	Installation
	Use


	check-manifest
	Installation
	Check
	Configuration
	Integration with version control


	Formatter
	Black
	Installation
	Check
	Integration
	Configuration

	isort
	Installation
	Configuration

	prettier
	Installation
	Configuration
	Pre-commit hook for prettier
	Installation
	Configuration



	Refactoring
	Rope
	Installation
	Use



	Security
	Check vulnerabilities
	Maintenance
	Are the dependencies updated automatically?
	Are the dependencies still maintained?
	Is there a safety concept for the project?
	Does the project contain a usable licence?
	Are the best practices of the OpenSSF (Open Source Security Foundation) being followed?

	Continuous testing
	Are CI tests carried out in the project?
	Does the project use fuzzing tools?
	Does your project use static code analysis tools?

	Risk assessment of the source code
	Is the project free of checked-in binaries?
	Is the development process vulnerable to the introduction of malicious code?
	Are code reviews performed?
	Does the project involve people from several organisations?

	Risk assessment of the builds
	Are dependencies declared and fixed in the project?



	Create web applications
	Index
	Index

