scalene#
scalene creates profiles for CPU and memory very quickly. The overhead is usually very low at 10–20%.
See also
Installation#
Linux, MacOS and WSL:
$ pipenv install scalene
Use#
An example programme for profiling
[1]:
import numpy as np
def profile_me():
for i in range(6):
x = np.array(range(10**7))
y = np.array(np.random.uniform(0, 100, size=(10**8)))
Load scalene
[2]:
%load_ext scalene
Scalene extension successfully loaded. Note: Scalene currently only
supports CPU+GPU profiling inside Jupyter notebooks. For full Scalene
profiling, use the command line version.
NOTE: in Jupyter notebook on MacOS, Scalene cannot profile child
processes. Do not run to try Scalene with multiprocessing in Jupyter
Notebook.
Profile with only one line of code
[ ]:
%scrun profile_me()
import numpy as np
def profile_me():
for i in range(6):
x = np.array(range(10**7))
y = np.array(np.random.uniform(0, 100, size=(10**8)))
Create a reduced profile (only rows with non-zero counts)
[ ]:
%scrun --reduced-profile profile_me()
import numpy as np
def profile_me():
for i in range(6):
x = np.array(range(10**7))
y = np.array(np.random.uniform(0, 100, size=(10**8)))
For a complete list of options, contact:
[5]:
%scrun --help
usage: scalene [-h] [--version] [--column-width COLUMN_WIDTH] [--outfile OUTFILE] [--html] [--json] [--cli] [--stacks] [--web] [--viewer] [--reduced-profile] [--profile-interval PROFILE_INTERVAL] [--cpu] [--cpu-only] [--gpu] [--memory] [--profile-all] [--profile-only PROFILE_ONLY] [--profile-exclude PROFILE_EXCLUDE] [--use-virtual-time] [--cpu-percent-threshold CPU_PERCENT_THRESHOLD] [--cpu-sampling-rate CPU_SAMPLING_RATE] [--allocation-sampling-window ALLOCATION_SAMPLING_WINDOW] [--malloc-threshold MALLOC_THRESHOLD] [--program-path PROGRAM_PATH] [--memory-leak-detector] [--on | --off] Scalene: a high-precision CPU and memory profiler, version 1.5.23 (2023.07.26) https://github.com/plasma-umass/scalene command-line: % scalene [options] your_program.py [--- --your_program_args] or % python3 -m scalene [options] your_program.py [--- --your_program_args] in Jupyter, line mode: %scrun [options] statement in Jupyter, cell mode: %%scalene [options] your code here options: -h, --help show this help message and exit --version prints the version number for this release of Scalene and exits --column-width COLUMN_WIDTH Column width for profile output (default: 132) --outfile OUTFILE file to hold profiler output (default: stdout) --html output as HTML (default: web) --json output as JSON (default: web) --cli forces use of the command-line --stacks collect stack traces --web opens a web tab to view the profile (saved as 'profile.html') --viewer only opens the web UI (https://plasma-umass.org/scalene-gui/) --reduced-profile generate a reduced profile, with non-zero lines only (default: False) --profile-interval PROFILE_INTERVAL output profiles every so many seconds (default: inf) --cpu profile CPU time (default: True ) --cpu-only profile CPU time (deprecated: use --cpu ) --gpu profile GPU time and memory (default: False ) --memory profile memory (default: True ) --profile-all profile all executed code, not just the target program (default: only the target program) --profile-only PROFILE_ONLY profile only code in filenames that contain the given strings, separated by commas (default: no restrictions) --profile-exclude PROFILE_EXCLUDE do not profile code in filenames that contain the given strings, separated by commas (default: no restrictions) --use-virtual-time measure only CPU time, not time spent in I/O or blocking (default: False) --cpu-percent-threshold CPU_PERCENT_THRESHOLD only report profiles with at least this percent of CPU time (default: 1%) --cpu-sampling-rate CPU_SAMPLING_RATE CPU sampling rate (default: every 0.01s) --allocation-sampling-window ALLOCATION_SAMPLING_WINDOW Allocation sampling window size, in bytes (default: 10485767 bytes) --malloc-threshold MALLOC_THRESHOLD only report profiles with at least this many allocations (default: 100) --program-path PROGRAM_PATH The directory containing the code to profile (default: the path to the profiled program) --memory-leak-detector EXPERIMENTAL: report likely memory leaks (default: True) --on start with profiling on (default) --off start with profiling off When running Scalene in the background, you can suspend/resume profiling for the process ID that Scalene reports. For example: % python3 -m scalene yourprogram.py & Scalene now profiling process 12345 to suspend profiling: python3 -m scalene.profile --off --pid 12345 to resume profiling: python3 -m scalene.profile --on --pid 12345
Profile with more than one line of code in a cell
[ ]:
%%scalene --reduced-profile
x = 0
for i in range(1000):
for j in range(1000):
x += 1