

Python for Data Science

This is a tutorial on Data Science with Python. This immediately raises the
question: What is Data Science? The term has become ubiquitous, but there is no
single definition. Some even consider the term superfluous, because what
science does not have to do with data? Nevertheless, it seems to me that data
science is more than just hype: scientific data has become increasingly
voluminous and often can no longer be adequately tapped with conventional
mathematical and statistical methods alone – additional hacking skills are
needed. However, it is not a new field of knowledge that you need to learn, but
a set of skills that you can apply in your field. Whether you are analysing
astronomical objects, analysing machines, forecasting stock prices or working
with data in other fields, the goal of this tutorial is to enable you to solve
tasks programmatically in your field.

This tutorial is not intended to be an introduction to Python or programming in
general; for that there is the Python basics [https://python-basics-tutorial.readthedocs.io/en/latest/index.html] tutorial. Instead, it
is intended to show the Python data science stack – libraries such as
IPython, NumPy,
pandas, Matplotlib [https://pyviz-tutorial.readthedocs.io/de/latest/matplotlib/index.html] and related tools
– so that you can subsequently effectively analyse and visualise your data.

Introduction

Target groups

The target groups are diverse, from data scientists to data engineers and
analysts to systems engineers. Their skills and workflows are very different.
However, one of the great strengths of Python for Data Science is that it
allows these different experts to work closely together in cross-functional
teams.

	Data scientists
	explore data with different parameters and summarise the results.

	Data engineers
	check the quality of the code and make it more robust, efficient and
scalable.

	Data analysts
	use the code provided by data engineers to systematically analyse the data.

	System engineers
	provide the research platform based on the JupyterHub [https://jupyter-tutorial.readthedocs.io/en/latest/hub/index.html]
on which the other roles can perform their work.

In this tutorial we address system engineers who want to build and run a
platform based on Jupyter notebooks. We then explain how this platform can be
used effectively by data scientists, data engineers and analysts.

Structure of the Python for Data Science tutorial

From Chapter 2, the tutorial follows the prototype of a research project:

	Workspace with the installation and configuration of
IPython, Jupyter notebooks [https://jupyter-tutorial.readthedocs.io/en/latest/index.html] with nbextensions [https://jupyter-tutorial.readthedocs.io/en/latest/nbextensions/index.html]
and ipywidgets [https://jupyter-tutorial.readthedocs.io/en/latest/ipywidgets/index.html].

	Read, persist and provide data either through a REST API or directly from an HTML page.

	Data cleansing and validation is a recurring task that involves removing or
changing redundant, inconsistent or incorrectly formatted data.

	Visualise data has been moved to a separate tutorial with the many
different possibilities.

	Performance introduces ways to make your code run faster.

	Create a product shows what is necessary to achieve reproducible
results: not only reproducible environments
are needed, but also versioning of the source code and data. The source
code should be packed into programme libraries
with documentation, licence(s), tests and
logging. Finally, the chapter includes
advice on improving code quality and
secure operation.

	Create web applications can either generate dashboards from Jupyter notebooks or
require more comprehensive application logic, such as demonstrated in
Bokeh-Plots in Flask einbinden [https://pyviz-tutorial.readthedocs.io/de/latest/bokeh/embedding-export/flask.html], or provide data via a RESTful
API [https://en.wikipedia.org/wiki/Representational_state_transfer].

:

Status

[image: Contributors]
 [https://github.com/veit/python4datascience/graphs/contributors][image: License]
 [https://github.com/veit/python4datascience/blob/main/LICENSE][image: pre-commit.ci status]
 [https://results.pre-commit.ci/latest/github/veit/python4datascience/main][image: Docs]
 [https://python4datascience.readthedocs.io/en/latest/][image: _images/zenodo.10907725.svg]
 [https://doi.org/10.5281/zenodo.10907725][image: Mastodon]
 [https://mastodon.social/@Python4DataScience]:

Follow us

	GitHub [https://github.com/veit/python4datascience]

	Mastodon [https://mastodon.social/@Python4DataScience]

Pull-Requests

If you have suggestions for improvements and additions, I recommend that you
create a Fork [https://github.com/veit/python4datascience/fork] of my GitHub
Repository [https://github.com/veit/python4datascience/] and make your changes
there. . You are also welcome to make a pull request. If the changes
contained therein are small and atomic, I’ll be happy to look at your
suggestions.

The following guidelines help us to maintain the German translation of the tutorial:

	Write commit messages in Englisch

	Start commit messages with a Gitmoji [https://gitmoji.dev/]

	Stick to English names of files and folders.

Workspace

Setting up the workspace includes installing and configuring
IPython and Jupyter [https://jupyter-tutorial.readthedocs.io/en/latest/index.html] with
nbextensions [https://jupyter-tutorial.readthedocs.io/en/latest/nbextensions/index.html] and
ipywidgets [https://jupyter-tutorial.readthedocs.io/en/latest/ipywidgets/index.html], and NumPy.

IPython

IPython [https://ipython.org/], or Interactive Python, was initially an
advanced Python interpreter that has now grown into an extensive project
designed to provide tools for the entire life cycle of research computing.
Today, IPython is not only an interactive interface to Python, but also offers a
number of useful syntactic additions for the language. In addition, IPython is
closely related to the Jupyter project [https://jupyter.org/].

See also

	Miki Tebeka - IPython: The Productivity Booster [https://www.youtube.com/watch?v=Zmo2ZN1SJ_Q]

Start the IPython shell

You can easily start IPython in a console:

$ pipenv run ipython
Python 3.7.0 (default, Aug 22 2018, 15:22:29)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.6.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Alternatively, you can use IPython in a Jupyter notebook. To do this, start the
notebook server first:

$ pipenv run jupyter notebook
[I 17:35:02.419 NotebookApp] Serving notebooks from local directory: /Users/veit/cusy/trn/Python4DataScience
[I 17:35:02.419 NotebookApp] The Jupyter Notebook is running at:
[I 17:35:02.427 NotebookApp] http://localhost:8888/?token=72209334c2e325a68115902a63bd064db436c0c84aeced7f
[I 17:35:02.428 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 17:35:02.497 NotebookApp]

The standard browser should then be opened with the specified URL. Often this is
http://localhost:8888.

Now you can start a Python process in the browser by creating a new notebook.

IPython examples

Running Python code

Show Python version

[1]:

import sys

sys.version_info

[1]:

sys.version_info(major=3, minor=11, micro=4, releaselevel='final', serial=0)

Show versions of Python packages

Most Python packages provide a __version__ method for this:

[2]:

import pandas as pd

pd.__version__

[2]:

'2.0.3'

Alternatively, you can use version from importlib_metadata:

[3]:

from importlib_metadata import version

print(version("pandas"))

2.0.3

Information about the host operating system and the versions of installed Python packages

[4]:

pd.show_versions()

/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
 warnings.warn("Setuptools is replacing distutils.")

INSTALLED VERSIONS

commit : 0f437949513225922d851e9581723d82120684a6
python : 3.11.4.final.0
python-bits : 64
OS : Darwin
OS-release : 22.5.0
Version : Darwin Kernel Version 22.5.0: Thu Jun 8 22:22:23 PDT 2023; root:xnu-8796.121.3~7/RELEASE_ARM64_T6020
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : de_DE.UTF-8
LOCALE : de_DE.UTF-8

pandas : 2.0.3
numpy : 1.23.5
pytz : 2023.3
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.1.2
Cython : None
pytest : 7.4.0
hypothesis : 6.81.1
sphinx : 7.0.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.14.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli : None
fastparquet : 2023.7.0
fsspec : 2023.6.0
gcsfs : 2023.6.0
matplotlib : 3.7.2
numba : 0.57.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 12.0.1
pyreadstat : None
pyxlsb : None
s3fs : 2023.6.0
scipy : 1.11.1
snappy : None
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : 2023.6.0
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Only use Python versions ≥ 3.8

[5]:

import sys

assert sys.version_info[:2] >= (3, 8)

Shell commands

[6]:

!python3 -V

Python 3.11.4

[7]:

!python3 -m pip --version

pip 23.1.2 from /Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pip (python 3.11)

Tab completion

… for objects with methods and attributes:

[image: Tab completion for objects]

… and also for modules:

[image: Tab completion for modules]

Note:

As you may have noticed in surprise, the __version__ method used above is not offered in the selection. IPython initially hides these private methods and attributes that begin with underscores. However, they can also be completed with a tabulator if you first enter an underscore. Alternatively, you can change this setting in the IPython configuration.

… for almost everything:

[image: Tab completion for almost everything]

Displaying information about an object

With a question mark (?) you can display information about an object if, for example, there is a method multiply with the following docstring:

[8]:

import numpy as np

[9]:

np.mean?

Signature:
np.mean(
 a,
 axis=None,
 dtype=None,
 out=None,
 keepdims=<no value>,
 *,
 where=<no value>,
)
Docstring:
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
`float64` intermediate and return values are used for integer inputs.

Parameters

a : array_like
 Array containing numbers whose mean is desired. If `a` is not an
 array, a conversion is attempted.
axis : None or int or tuple of ints, optional
 Axis or axes along which the means are computed. The default is to
 compute the mean of the flattened array.

 .. versionadded:: 1.7.0

 If this is a tuple of ints, a mean is performed over multiple axes,
 instead of a single axis or all the axes as before.
dtype : data-type, optional
 Type to use in computing the mean. For integer inputs, the default
 is `float64`; for floating point inputs, it is the same as the
 input dtype.
out : ndarray, optional
 Alternate output array in which to place the result. The default
 is ``None``; if provided, it must have the same shape as the
 expected output, but the type will be cast if necessary.
 See :ref:`ufuncs-output-type` for more details.

keepdims : bool, optional
 If this is set to True, the axes which are reduced are left
 in the result as dimensions with size one. With this option,
 the result will broadcast correctly against the input array.

 If the default value is passed, then `keepdims` will not be
 passed through to the `mean` method of sub-classes of
 `ndarray`, however any non-default value will be. If the
 sub-class' method does not implement `keepdims` any
 exceptions will be raised.

where : array_like of bool, optional
 Elements to include in the mean. See `~numpy.ufunc.reduce` for details.

 .. versionadded:: 1.20.0

Returns

m : ndarray, see dtype parameter above
 If `out=None`, returns a new array containing the mean values,
 otherwise a reference to the output array is returned.

See Also

average : Weighted average
std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.

Note that for floating-point input, the mean is computed using the
same precision the input has. Depending on the input data, this can
cause the results to be inaccurate, especially for `float32` (see
example below). Specifying a higher-precision accumulator using the
`dtype` keyword can alleviate this issue.

By default, `float16` results are computed using `float32` intermediates
for extra precision.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, `mean` can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806 # may vary

Specifying a where argument:
>>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
>>> np.mean(a)
12.0
>>> np.mean(a, where=[[True], [False], [False]])
9.0
File: ~/spack/var/spack/environments/python-38/.spack-env/view/lib/python3.8/site-packages/numpy/core/fromnumeric.py
Type: function

By using ?? the source code of the function is also displayed, if this is possible:

[10]:

np.mean??

Signature:
np.mean(
 a,
 axis=None,
 dtype=None,
 out=None,
 keepdims=<no value>,
 *,
 where=<no value>,
)
Source:
@array_function_dispatch(_mean_dispatcher)
def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *,
 where=np._NoValue):
 """
 Compute the arithmetic mean along the specified axis.

 Returns the average of the array elements. The average is taken over
 the flattened array by default, otherwise over the specified axis.
 `float64` intermediate and return values are used for integer inputs.

 Parameters

 a : array_like
 Array containing numbers whose mean is desired. If `a` is not an
 array, a conversion is attempted.
 axis : None or int or tuple of ints, optional
 Axis or axes along which the means are computed. The default is to
 compute the mean of the flattened array.

 .. versionadded:: 1.7.0

 If this is a tuple of ints, a mean is performed over multiple axes,
 instead of a single axis or all the axes as before.
 dtype : data-type, optional
 Type to use in computing the mean. For integer inputs, the default
 is `float64`; for floating point inputs, it is the same as the
 input dtype.
 out : ndarray, optional
 Alternate output array in which to place the result. The default
 is ``None``; if provided, it must have the same shape as the
 expected output, but the type will be cast if necessary.
 See :ref:`ufuncs-output-type` for more details.

 keepdims : bool, optional
 If this is set to True, the axes which are reduced are left
 in the result as dimensions with size one. With this option,
 the result will broadcast correctly against the input array.

 If the default value is passed, then `keepdims` will not be
 passed through to the `mean` method of sub-classes of
 `ndarray`, however any non-default value will be. If the
 sub-class' method does not implement `keepdims` any
 exceptions will be raised.

 where : array_like of bool, optional
 Elements to include in the mean. See `~numpy.ufunc.reduce` for details.

 .. versionadded:: 1.20.0

 Returns

 m : ndarray, see dtype parameter above
 If `out=None`, returns a new array containing the mean values,
 otherwise a reference to the output array is returned.

 See Also

 average : Weighted average
 std, var, nanmean, nanstd, nanvar

 Notes

 The arithmetic mean is the sum of the elements along the axis divided
 by the number of elements.

 Note that for floating-point input, the mean is computed using the
 same precision the input has. Depending on the input data, this can
 cause the results to be inaccurate, especially for `float32` (see
 example below). Specifying a higher-precision accumulator using the
 `dtype` keyword can alleviate this issue.

 By default, `float16` results are computed using `float32` intermediates
 for extra precision.

 Examples

 >>> a = np.array([[1, 2], [3, 4]])
 >>> np.mean(a)
 2.5
 >>> np.mean(a, axis=0)
 array([2., 3.])
 >>> np.mean(a, axis=1)
 array([1.5, 3.5])

 In single precision, `mean` can be inaccurate:

 >>> a = np.zeros((2, 512*512), dtype=np.float32)
 >>> a[0, :] = 1.0
 >>> a[1, :] = 0.1
 >>> np.mean(a)
 0.54999924

 Computing the mean in float64 is more accurate:

 >>> np.mean(a, dtype=np.float64)
 0.55000000074505806 # may vary

 Specifying a where argument:
 >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
 >>> np.mean(a)
 12.0
 >>> np.mean(a, where=[[True], [False], [False]])
 9.0

 """
 kwargs = {}
 if keepdims is not np._NoValue:
 kwargs['keepdims'] = keepdims
 if where is not np._NoValue:
 kwargs['where'] = where
 if type(a) is not mu.ndarray:
 try:
 mean = a.mean
 except AttributeError:
 pass
 else:
 return mean(axis=axis, dtype=dtype, out=out, **kwargs)

 return _methods._mean(a, axis=axis, dtype=dtype,
 out=out, **kwargs)
File: ~/spack/var/spack/environments/python-38/.spack-env/view/lib/python3.8/site-packages/numpy/core/fromnumeric.py
Type: function

? can also be used to search in the IPython namespace. In doing so, a series of characters can be represented with the wildcard (*). For example, to get a list of all functions in the top-level NumPy namespace that contain mean:

[11]:

np.*mean*?

np.mean
np.nanmean

IPython magic

IPython not only enables Python to be used interactively, but also extends the Python syntax with so-called magic commands, which are provided with the prefix %. They are designed to quickly and easily solve common data analysis problems. A distinction is made between two different types of magic commands:

	line magics, denoted by a single % prefix, that run on a single input line

	cell magics which are preceded by a double symbol %% and which are executed within a notebook cell.

Execute external code: %run

If you start developing larger code, you will likely be working in both IPython for interactive exploration and a text editor to save code that you want to reuse. With the %run magic you can execute this code directly in your IPython session.

Imagine you created a myscript.py file with the following content:

def square(x):
 return x**2

for N in range(1, 4):
 print(N, "squared is", square(N))

[1]:

%run myscript.py

1 squared is 1
2 squared is 4
3 squared is 9

Note that after running this script, all of the functions defined in it will be available for use in your IPython session:

[2]:

square(4)

[2]:

16

There are several ways you can improve the way your code runs. As usual, you can display the documentation in IPython with %run?.

Run timing code: %timeit

Another example of a Magic function is %timeit, which automatically determines the execution time of the following one-line Python statement. So we can e.g. output the performance of a list comprehension with:

[3]:

%timeit L = [n ** 2 for n in range(1000)]

27.6 µs ± 290 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

The advantage of %timeit is that short commands automatically run multiple runs to get more robust results. For multi-line instructions, adding a second % character creates cell magic that can process multiple input lines. For example, here is the equivalent construction using a for loop:

[4]:

%%timeit
L = []
for n in range(1000):
 L.append(n ** 2)

29.7 µs ± 207 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

We can immediately see that the list comprehension is about 10% faster than its equivalent with a for loop. We then describe performance measurements and optimisations in more detail in Profiling.

Execute code from other interpreters

IPython has a %%script script magic with which you can execute a cell in a subprocess of an interpreter on your system, e.g. bash, ruby, perl, zsh, R etc. This can also be its own script that expects input in stdin. To do this, simply pass a path or a shell command to the program that is specified in the %%script line. The rest of the cell is executed by this script, capturing stdout or err from the subprocess and displaying it.

[5]:

%%script python2
import sys

print("Python: %s" % sys.version)

Python 2.7.15 (default, Oct 22 2018, 19:33:46)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)]

[6]:

%%script python3
import sys

print("Python: %s" % sys.version)

Python: 3.11.4 (main, Jun 15 2023, 07:55:38) [Clang 14.0.3 (clang-1403.0.22.14.1)]

[7]:

%%ruby
puts "Ruby #{RUBY_VERSION}"

Ruby 2.6.10

[8]:

%%bash
echo "$BASH"

/bin/bash

You can capture stdout and err from these sub-processes in Python variables:

[9]:

%%bash --out output --err error
echo "stdout"
echo "stderr" >&2

[10]:

print(error)
print(output)

stderr

stdout

Configure standard script magic

The list of aliases for the script magic is configurable. By default, some common interpreters can be used if necessary. However, you can also specify your own interpreter in ipython_config.py:

c.ScriptMagics.scripts = ["R", "pypy", "myprogram"]
c.ScriptMagics.script_paths = {"myprogram": "/path/to/myprogram"}

Help functions: ?, %magic and %lsmagic

Like normal Python functions, the IPython magic functions have docstrings that can be easily accessed. E.g. to read the documentation of the %timeit magic, just type:

[11]:

%timeit?

Documentation for other functions can be accessed in a similar manner. To access a general description of the %magic functions available, including some examples, you can type:

[12]:

%magic

For a quick list of all available magic functions, type:

[13]:

%lsmagic

[13]:

Available line magics:
%alias %alias_magic %autoawait %autocall %automagic %autosave %bookmark %cat %cd %clear %colors %conda %config %connect_info %cp %debug %dhist %dirs %doctest_mode %ed %edit %env %gui %hist %history %killbgscripts %ldir %less %lf %lk %ll %load %load_ext %loadpy %logoff %logon %logstart %logstate %logstop %ls %lsmagic %lx %macro %magic %man %matplotlib %mkdir %more %mv %notebook %page %pastebin %pdb %pdef %pdoc %pfile %pinfo %pinfo2 %pip %popd %pprint %precision %prun %psearch %psource %pushd %pwd %pycat %pylab %qtconsole %quickref %recall %rehashx %reload_ext %rep %rerun %reset %reset_selective %rm %rmdir %run %save %sc %set_env %store %sx %system %tb %time %timeit %unalias %unload_ext %who %who_ls %whos %xdel %xmode

Available cell magics:
%%! %%HTML %%SVG %%bash %%capture %%debug %%file %%html %%javascript %%js %%latex %%markdown %%perl %%prun %%pypy %%python %%python2 %%python3 %%ruby %%script %%sh %%svg %%sx %%system %%time %%timeit %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.

You can also simply define your own magic functions. For more information, see Defining custom magics [https://ipython.readthedocs.io/en/stable/config/custommagics.html].

Shell commands in IPython

The IPython Notebook allows simple UNIX/Linux commands to be executed in a single input cell. There are no limits but when using, please keep in mind that in contrast to a regular UNIX/Linux shell, start each shell command with a !, for example !ls for the command ls (see below for further explanations about the command). Furthermore, each shell command is executed in its own subshell. For this reason, the results of previous shell commands are not available to you.

To begin with, the command ls lists the files in the current working directory. The output is shown below the input cell, and lists the single file shell.ipynb:

[1]:

!ls

debugging.ipynb myscript.py
display.ipynb shell.ipynb
examples.ipynb start.rst
extensions.rst tab-completion-for-anything.png
importing.ipynb tab-completion-for-modules.png
index.rst tab-completion-for-objects.png
magics.ipynb unix-shell
mypackage

The command !pwd displays the path to working directory:

[2]:

!pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython

The command !echo outputs text given as parameter to the echo command. The example below demonstrates how to print Hello world:

[3]:

!echo "Hello world!"

Hello world!

Passing values to and from the shell

There is a clever way through which you can access the output of a UNIX/Linux command as a variable in Python. Assign the output of a UNIX/Linux command to a variable as follows:

[4]:

contents = !ls

Here the Python variable contents has been assigned the output of the command ls. As a result, contents is a list, where each list element corresponds to a line in the output. With the print command you output the list contents:

[5]:

print(contents)

['debugging.ipynb', 'display.ipynb', 'examples.ipynb', 'extensions.rst', 'importing.ipynb', 'index.rst', 'magics.ipynb', '\x1b[34mmypackage\x1b[m\x1b[m', 'myscript.py', 'shell.ipynb', 'start.rst', '\x1b[31mtab-completion-for-anything.png\x1b[m\x1b[m', '\x1b[31mtab-completion-for-modules.png\x1b[m\x1b[m', '\x1b[31mtab-completion-for-objects.png\x1b[m\x1b[m', '\x1b[34munix-shell\x1b[m\x1b[m']

You will see the same result below when executing the pwd command. The current directory is stored in the variable directory:

[6]:

directory = !pwd

[7]:

print(directory)

['/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython']

Unix shell

Any command on the command line will also work in Jupyter Notebooks if prefixed
with !. The results can then interact with the Jupyter namespace, see
Passing values to and from the shell.

Navigate through files and directories

First let us find out where we are by running a command called pwd:

[1]:

!pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/unix-shell

Here, the response is the iPython chapter of the Jupyter tutorial in my home directory /Users/veit.

On Windows the home directory will look like C:\Documents and Settings\veit or C:\Users\veit and on Linux like /home/veit.

To see the contents of our directory, we can use ls:

[2]:

!ls

create-delete.ipynb grep-find.ipynb pipes-filters.ipynb
file-system.ipynb index.rst shell-variables.ipynb

	a trailing / indicates a directory

	@ indicates a link

	* indicates an executable

Depending on your default options, the shell might also use colors to indicate whether an entry is a file or a directory.

ls options and arguments

[3]:

!ls -F ../

debugging.ipynb myscript.py
display.ipynb shell.ipynb
examples.ipynb start.rst
extensions.rst tab-completion-for-anything.png*
importing.ipynb tab-completion-for-modules.png*
index.rst tab-completion-for-objects.png*
magics.ipynb unix-shell/
mypackage/

ls is the command, with the option -F and the argument ../.

	Options either start with a single dash (-) or two dashes (--), and they change the behavior of a command.

	Arguments tell the command what to operate on.

	Options and arguments are sometimes also referred as parameters.

	Each part is separated by spaces.

	Also, capitalisation is important, for example

	ls -s will display the size of files and directories alongside the names,

	while ls -S will sort the files and directories by size.

[4]:

!ls -s

total 184
24 create-delete.ipynb 24 grep-find.ipynb 16 pipes-filters.ipynb
96 file-system.ipynb 8 index.rst 16 shell-variables.ipynb

[5]:

!ls -S

file-system.ipynb create-delete.ipynb shell-variables.ipynb
grep-find.ipynb pipes-filters.ipynb index.rst

Show all options and arguments

ls comes with a lot of other useful options. Using man you can print out the built-in manual page for the desired UNIX/Linux-command:

[6]:

!man ls

LS(1) General Commands Manual LS(1)

NAME
 ls – list directory contents

SYNOPSIS
 ls [-@ABCFGHILOPRSTUWabcdefghiklmnopqrstuvwxy1%,] [--color=____]
 [-D ______] [____ ___]

DESCRIPTION
 For each operand that names a ____ of a type other than directory, ls
 displays its name as well as any requested, associated information. For
 each operand that names a ____ of type directory, ls displays the names
 of files contained within that directory, as well as any requested,
 associated information.

 If no operands are given, the contents of the current directory are
 displayed. If more than one operand is given, non-directory operands are
 displayed first; directory and non-directory operands are sorted
 separately and in lexicographical order.

 The following options are available:

 -@ Display extended attribute keys and sizes in long (-l) output.

…

macOS 13.4 August 31, 2020 macOS 13.4

Illegal options

If you try to use an option that isn’t supported, the commands will usually print an error message, for example for:

[7]:

!ls -z

ls: invalid option -- z
usage: ls [-@ABCFGHILOPRSTUWabcdefghiklmnopqrstuvwxy1%,] [--color=when] [-D format] [file ...]

Hidden Files

With the -a option you can display all files:

[8]:

!ls -a

. create-delete.ipynb index.rst
.. file-system.ipynb pipes-filters.ipynb
.ipynb_checkpoints grep-find.ipynb shell-variables.ipynb

In addition to the hidden directories .. and ., you may also see a directory called .ipynb_checkpoints. This file usually contains snapshots of the Jupyter notebooks.

Show directory treeThe command tree lists contents of directories in a tree-like format.

[9]:

!tree

.
├── create-delete.ipynb
├── file-system.ipynb
├── grep-find.ipynb
├── index.rst
├── pipes-filters.ipynb
└── shell-variables.ipynb

1 directory, 6 files

Change directory

At first it may seem irritating to some that they cannot use !cd to change to another directory.

[10]:

!pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/unix-shell

[11]:

!cd ..

[12]:

!pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/unix-shell

The reason for this is that Jupyter uses a temporary subshell. If you want to change to another directory permanently, you have to use the magic command %cd.

[13]:

%cd ..

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython

[14]:

!pwd

/Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython

With the %automagic function, these can also be used without the preceding % character:

[16]:

%automagic

Automagic is ON, % prefix IS NOT needed for line magics.

[17]:

cd ..

/Users/veit/cusy/trn/Python4DataScience/docs/workspace

Absolute and relative Paths

[18]:

cd .

/Users/veit/cusy/trn/Python4DataScience/docs/workspace

[19]:

cd ../..

/Users/veit/cusy/trn/Python4DataScience

[20]:

cd ..

/Users/veit/cusy/trn

[21]:

cd /

/

[22]:

cd

/Users/veit

[23]:

cd ~

/Users/veit

[24]:

cd /Users/veit

/Users/veit

Create, update and delete files and directories

Creates a new directory test and then checks this with ls:

[1]:

!mkdir tests

[2]:

!ls

create-delete.ipynb index.rst tests
file-system.ipynb pipes-filters.ipynb
grep-find.ipynb shell-variables.ipynb

Then we create the file test_file.txt in this directory.

[3]:

!touch tests/test_file.txt

[4]:

!ls tests

test_file.txt

Now we change the suffix of the file:

[5]:

!mv tests/test_file.txt tests/test_file.py

[6]:

!ls tests

test_file.py

Now we make a copy of this file:

[7]:

!cp tests/test_file.py tests/test_file2.py

[8]:

!ls tests

test_file.py test_file2.py

A directory with all the files it contains is also possible recursively with the -r option:

[9]:

!cp -r tests tests.bak

[10]:

!ls tests.bak

test_file.py test_file2.py

Finally, we delete the directories tests and tests.bak again:

[11]:

!rm -r tests tests.bak

[12]:

!ls

create-delete.ipynb grep-find.ipynb pipes-filters.ipynb
file-system.ipynb index.rst shell-variables.ipynb

Transfering files

wget

[13]:

!wget https://dvc.org/deb/dvc.list

--2023-07-19 17:00:21-- https://dvc.org/deb/dvc.list
Auflösen des Hostnamens dvc.org (dvc.org)… 2606:4700:3036::6815:51cd, 2606:4700:3033::ac43:a44c, 172.67.164.76, ...
Verbindungsaufbau zu dvc.org (dvc.org)|2606:4700:3036::6815:51cd|:443 … verbunden.
HTTP-Anforderung gesendet, auf Antwort wird gewartet … 303 See Other
Platz: https://s3-us-east-2.amazonaws.com/dvc-s3-repo/deb/dvc.list [folgend]
--2023-07-19 17:00:21-- https://s3-us-east-2.amazonaws.com/dvc-s3-repo/deb/dvc.list
Auflösen des Hostnamens s3-us-east-2.amazonaws.com (s3-us-east-2.amazonaws.com)… 52.219.100.82
Verbindungsaufbau zu s3-us-east-2.amazonaws.com (s3-us-east-2.amazonaws.com)|52.219.100.82|:443 … verbunden.
HTTP-Anforderung gesendet, auf Antwort wird gewartet … 200 OK
Länge: 51 [binary/octet-stream]
Wird in »dvc.list« gespeichert.

dvc.list 100%[===================>] 51 --.-KB/s in 0s

2023-07-19 17:00:22 (1,13 MB/s) - »dvc.list« gespeichert [51/51]

	-r recursively crawls other files and directories

	-np avoids crawling to parent directories

	-D targets only the following domain name

	-nH avoids creating a subdirectory for the websites content

	-m mirrors with time stamping, time stamping, infinite recursion depth, and preservation of FTP directory settings

	-q supresses the output to the screen

cURL

Alternatively, you can use cURL, which supports a much larger range of protocols.

[14]:

!curl -o dvc.list https://dvc.org/deb/dvc.list

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 85 100 85 0 0 251 0 --:--:-- --:--:-- --:--:-- 254

Pipes and filters

ls shows all files and directories at this point.

[1]:

!ls

create-delete.ipynb grep-find.ipynb shell-variables.ipynb
dvc.list index.rst
file-system.ipynb pipes-filters.ipynb

With *.rst we restrict the results to all files with the suffix .rst:

[2]:

!ls *.rst

index.rst

We can also output only the number of lines, words and characters in these documents:

[3]:

!wc *.rst

 18 48 450 index.rst

Now we write the number of characters in the file length.txt and then output the text with cat:

[4]:

!wc -m *.rst > length.txt

[5]:

!cat length.txt

 450 index.rst

We can also have the files sorted by the number of characters:

[6]:

!sort -n length.txt

 450 index.rst

[7]:

!sort -n length.txt > sorted-length.txt

We can also overwrite the existing file:

[8]:

!sort -n length.txt > length.txt

If we only want to know the total number of characters, i.e. only output the last line, we can do this with tail:

[9]:

!tail -n 1 length.txt

> is used to overwrite a file while >> is used to append to a file.

[10]:

!echo amount of characters >> length.txt

[11]:

!cat length.txt

amount of characters

Pipe |

You can connect commands with a pipe (|). In the following one-liner, we want to display the number of characters for the shortest file:

[12]:

!wc -l *.rst | sort -n | head

 18 index.rst

If we want to display the first lines of the main text (without the first three lines for the title):

[13]:

!cat index.rst | head -n 5 | tail -n 2

Any command on the command line will also work in Jupyter Notebooks if prefixed
with ``!``. The results can then interact with the Jupyter namespace, see

grep and find

grep

grep finds and prints lines in files that match a regular expression [https://python-basics-tutorial.readthedocs.io/en/latest/appendix/regex.html]. In the following example, we search for the string Python:

[1]:

!grep Python ../index.rst

IPython
`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
advanced Python interpreter that has now grown into an extensive project
Today, IPython is not only an interactive interface to Python, but also offers a
number of useful syntactic additions for the language. In addition, IPython is
 * `Miki Tebeka - IPython: The Productivity Booster

The option -w limits the matches to the word boundaries so that IPython is ignored:

[2]:

!grep -w Python ../index.rst

`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
advanced Python interpreter that has now grown into an extensive project
Today, IPython is not only an interactive interface to Python, but also offers a

-n shows the line numbers that match:

[3]:

!grep -n -w Python ../index.rst

4:`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
5:advanced Python interpreter that has now grown into an extensive project
7:Today, IPython is not only an interactive interface to Python, but also offers a

-v inverts our search

[4]:

!grep -n -v "^ " ../index.rst

1:IPython
2:=======
3:
4:`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an
5:advanced Python interpreter that has now grown into an extensive project
6:designed to provide tools for the entire life cycle of research computing.
7:Today, IPython is not only an interactive interface to Python, but also offers a
8:number of useful syntactic additions for the language. In addition, IPython is
9:closely related to the `Jupyter project <https://jupyter.org/>`_.
10:
11:.. seealso::
14:
15:.. toctree::
19:

grep has lots of other options. To find out what they are, you can type:

[5]:

!grep --help

usage: grep [-abcdDEFGHhIiJLlMmnOopqRSsUVvwXxZz] [-A num] [-B num] [-C[num]]
 [-e pattern] [-f file] [--binary-files=value] [--color=when]
 [--context[=num]] [--directories=action] [--label] [--line-buffered]
 [--null] [pattern] [file ...]

In the following example we use the -E option and put the pattern in quotes to prevent the shell from trying to interpret it. The ^ in the pattern anchors the match to the start of the line and the . matches a single character.

[6]:

!grep -n -E "^.Python" ../index.rst

1:IPython

find

find . searches in this directory whereby the search is restricted to directories with -type d.

[7]:

!find .. -type d

..
../mypackage
../unix-shell
../unix-shell/.ipynb_checkpoints
../.ipynb_checkpoints

With -type f the search ist restricted to files.

[8]:

!find . -type f

./index.rst
./sorted-length.txt
./create-delete.ipynb
./length.txt
./dvc.list
./file-system.ipynb
./pipes-filters.ipynb
./shell-variables.ipynb
./.ipynb_checkpoints/create-delete-checkpoint.ipynb
./.ipynb_checkpoints/grep-find-checkpoint.ipynb
./.ipynb_checkpoints/pipes-filters-checkpoint.ipynb
./.ipynb_checkpoints/file-system-checkpoint.ipynb
./grep-find.ipynb

With -mtime the search is limited to the last X days, in our example to the last day:

[9]:

!find . -mtime -1

.
./sorted-length.txt
./create-delete.ipynb
./length.txt
./dvc.list
./file-system.ipynb
./pipes-filters.ipynb
./.ipynb_checkpoints
./.ipynb_checkpoints/create-delete-checkpoint.ipynb
./.ipynb_checkpoints/grep-find-checkpoint.ipynb
./.ipynb_checkpoints/pipes-filters-checkpoint.ipynb
./.ipynb_checkpoints/file-system-checkpoint.ipynb
./grep-find.ipynb

With -name you can filter the search by name.

[10]:

!find .. -name "*.rst"

../index.rst
../unix-shell/index.rst
../extensions.rst
../start.rst

Now we count the characters in the files with the suffix .rst:

[11]:

!wc -c $(find .. -name "*.rst")

 833 ../index.rst
 450 ../unix-shell/index.rst
 2097 ../extensions.rst
 1145 ../start.rst
 4525 total

It is also possible to search for a regular expression in these files:

[12]:

!grep "ipython.org" $(find .. -name "*.rst")

../index.rst:`IPython <https://ipython.org/>`_, or *Interactive Python*, was initially an

Finally, we filter out all results whose path contains ipynb_checkpoints:

[13]:

!find . -name "*.ipynb" | grep -v ipynb_checkpoints

./create-delete.ipynb
./file-system.ipynb
./pipes-filters.ipynb
./shell-variables.ipynb
./grep-find.ipynb

Shell variables

Display of all shell variables

[1]:

!set

…
HOME=/Users/veit
…
PATH=/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/bin:/opt/homebrew/Cellar/pipenv/2023.6.18/libexec/tools:/Users/veit/spack/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/TeX/texbin:/usr/local/MacGPG2/bin:/Library/Apple/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/appleinternal/bin
…

Showing the value of a variable

[2]:

!echo $HOME

/Users/veit

The path variable

It defines the shell’s search path, i.e., the list of directories that the shell looks in for runnable programs.

[3]:

!echo $PATH

/Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/bin:/opt/homebrew/Cellar/pipenv/2023.6.18/libexec/tools:/Users/veit/spack/bin:/opt/homebrew/bin:/opt/homebrew/sbin:/usr/local/bin:/System/Cryptexes/App/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/TeX/texbin:/usr/local/MacGPG2/bin:/Library/Apple/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/appleinternal/bin

Creating and changing variables

Creating or overwriting variables

[4]:

!export SPACK_ROOT=~/spack

Append additional specifications

[5]:

!export PATH=/usr/local/opt/python@3.7/bin:$PATH

Show objects with display

IPython can display objects such as HTML, JSON, PNG, JPEG, SVG and Latex

Images

To display images (JPEG, PNG) in IPython and notebooks, you can use the Image class:

[1]:

from IPython.display import Image
Image('https://www.python.org/images/python-logo.gif')

[1]:

<IPython.core.display.Image object>

[2]:

from IPython.display import SVG
SVG('https://upload.wikimedia.org/wikipedia/commons/c/c3/Python-logo-notext.svg')

[2]:

[image: ../../_images/workspace_ipython_display_3_0.svg]

Non-embedded images

	By default, image data is embedded:

Image ('img_url')

	However, if the url is given as kwarg, this is interpreted as a soft link:

Image (url='img_url')

	embed can also be specified explicitly:

Image (url='img_url', embed = True)

HTML

Python objects can declare HTML representations to be displayed in a notebook:

[3]:

from IPython.display import HTML

[4]:

%%html

 foo
 bar

 	foo

 	bar

Javascript

With notebooks, objects can also declare a JavaScript representation. This enables for example data visualisations with Javascript libraries like d3.js [https://d3js.org/].

[5]:

from IPython.display import Javascript

welcome = Javascript(
 'alert("Dies ist ein Beispiel für eine durch IPython angezeigte Javascript-Warnung.")'
)
display(welcome)

For more extensive Javascript you can also use the %%javascript syntax.

LaTeX

IPython.display also has built-in support for displaying mathematical expressions set in LaTeX and rendered in the browser with MathJax [https://www.mathjax.org/]:

[6]:

from IPython.display import Math

Math(r"F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx")

[6]:

$\displaystyle F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx$

With the Latex class you have to specify the limits yourself. In this way, however, you can also use other LaTeX modes, such as eqnarray:

[7]:

from IPython.display import Latex

Latex(
 r"""\begin{eqnarray}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\end{eqnarray}"""
)

[7]:

\begin{eqnarray}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\end{eqnarray}

Audio

IPython also enables interactive work with sounds. With the display.Audio class you can create an audio control that is embedded in the notebook. The interface is analogous to that of the Image class. All audio formats supported by the browser can be used.

[8]:

from IPython.display import Audio

In the following we will output the sine function of a NumPy array as an audio signal. The Audio class normalises and codes the data and embeds the resulting audio in the notebook.

[9]:

import numpy as np

f = 500.0
rate = 8000
L = 3
times = np.linspace(0, L, rate * L)
signal = np.sin(f * times)

Audio(data=signal, rate=rate)

[9]:

 Your browser does not support the audio element.

Links to local files

IPython has built-in classes for generating links to local files. To do this, create a link to a single file with the FileLink object:

[10]:

from IPython.display import FileLink, FileLinks

FileLink("magics.ipynb")

[10]:

magics.ipynb

 foo.ipynb

foo.ipynb

[1]:

def bar():
 return "bar"

[2]:

def dirlist():
 listing = !ls
 return listing

[3]:

def whatsmyname():
 return __name__

 Import notebooks

Import notebooks

To be able to develop more modularly, the import of notebooks is necessary. However, since notebooks are not Python files, they are not easy to import. Fortunately, Python provides some hooks for the import so that IPython notebooks can eventually be imported.

[1]:

import os
import sys
import types

[2]:

import nbformat

from IPython import get_ipython
from IPython.core.interactiveshell import InteractiveShell

Import hooks usually have two objects:

	Module Loader that takes a module name (e.g. IPython.display) and returns a module

	Module Finder, which finds out if a module is present and tells Python which loader to use

But first, let’s write a method that a notebook will find using the fully qualified name and the optional path. E.g. mypackage.foo becomes mypackage/foo.ipynb and replaces Foo_Bar with Foo Bar if Foo_Bar doesn’t exist.

[3]:

def find_notebook(fullname, path=None):
 name = fullname.rsplit(".", 1)[-1]
 if not path:
 path = [""]
 for d in path:
 nb_path = os.path.join(d, name + ".ipynb")
 if os.path.isfile(nb_path):
 return nb_path
 # let import Foo_Bar find "Foo Bar.ipynb"
 nb_path = nb_path.replace("_", " ")
 if os.path.isfile(nb_path):
 return nb_path

Notebook Loader

The Notebook Loader does the following three steps:

	Load the notebook document into memory

	Create an empty module

	Execute every cell in the module namespace

Because IPython cells can have an extended syntax, transform_cell converts each cell to pure Python code before executing it.

[4]:

class NotebookLoader(object):
 """Module Loader for IPython Notebooks"""

 def __init__(self, path=None):
 self.shell = InteractiveShell.instance()
 self.path = path

 def load_module(self, fullname):
 """import a notebook as a module"""
 path = find_notebook(fullname, self.path)

 print("importing notebook from %s" % path)

 # load the notebook object
 nb = nbformat.read(path, as_version=4)

 # create the module and add it to sys.modules
 # if name in sys.modules:
 # return sys.modules[name]
 mod = types.ModuleType(fullname)
 mod.__file__ = path
 mod.__loader__ = self
 mod.__dict__["get_ipython"] = get_ipython
 sys.modules[fullname] = mod

 # extra work to ensure that magics that would affect the user_ns
 # magics that would affect the user_ns actually affect the
 # notebook module’s ns
 save_user_ns = self.shell.user_ns
 self.shell.user_ns = mod.__dict__

 try:
 for cell in nb.cells:
 if cell.cell_type == "code":
 # transform the input to executable Python
 code = self.shell.input_transformer_manager.transform_cell(
 cell.source
)
 # run the code in the module
 exec(code, mod.__dict__)
 finally:
 self.shell.user_ns = save_user_ns
 return mod

Notebook Finder

The Finder is a simple object that indicates whether a notebook can be imported based on its file name and that returns the appropriate loader.

[5]:

class NotebookFinder(object):
 """Module Finder finds the transformed IPython Notebook"""

 def __init__(self):
 self.loaders = {}

 def find_module(self, fullname, path=None):
 nb_path = find_notebook(fullname, path)
 if not nb_path:
 return

 key = path
 if path:
 # lists aren’t hashable
 key = os.path.sep.join(path)

 if key not in self.loaders:
 self.loaders[key] = NotebookLoader(path)
 return self.loaders[key]

Register hook

Now we register NotebookFinder with sys.meta_path:

[6]:

sys.meta_path.append(NotebookFinder())

Check

Now our notebook mypackage/foo.ipynb should be importable with:

[7]:

from mypackage import foo

importing notebook from /Users/veit/cusy/trn/Python4DataScience/docs/workspace/ipython/mypackage/foo.ipynb

Is the Python method bar being executed?

[8]:

foo.bar()

[8]:

'bar'

… and the IPython syntax?

[9]:

foo.dirlist()

[9]:

['debugging.ipynb',
 'display.ipynb',
 'examples.ipynb',
 'extensions.rst',
 'importing.ipynb',
 'index.rst',
 'magics.ipynb',
 '\x1b[34mmypackage\x1b[m\x1b[m',
 'myscript.py',
 'shell.ipynb',
 'start.rst',
 '\x1b[31mtab-completion-for-anything.png\x1b[m\x1b[m',
 '\x1b[31mtab-completion-for-modules.png\x1b[m\x1b[m',
 '\x1b[31mtab-completion-for-objects.png\x1b[m\x1b[m',
 '\x1b[34munix-shell\x1b[m\x1b[m']

Reusable import hook

The import hook can also easily be executed in other notebooks with

[10]:

%run display.ipynb

 	foo

 	bar

markdown cell

`foo.ipynb`

code cell

def bar():
 return "bar"

code cell

def dirlist():
 listing = !ls
 return listing

code cell

def whatsmyname():
 return __name__

 IPython extensions

IPython extensions

IPython extensions are Python modules that change the behavior of the shell.
They are identified by an importable module name and are usually located in
.ipython/extensions/.

Some important extensions are already included in IPython:
autoreload [https://ipython.readthedocs.io/en/latest/config/extensions/autoreload.html#extensions-autoreload] and storemagic [https://ipython.readthedocs.io/en/latest/config/extensions/storemagic.html#extensions-storemagic]. You can find
other extensions in the Extensions Index [https://github.com/ipython/ipython/wiki/Extensions-Index] or on PyPI with
the IPython tag [https://pypi.org/search/?c=Framework+%3A%3A+IPython].

See also

	IPython extensions docs [https://ipython.readthedocs.io/en/stable/config/extensions/index.html]

Use extensions

The %load_ext magic can be used to load extensions while IPython is running.

%load_ext myextension

Alternatively, an extension can also be loaded each time IPython is started by
listing it in the IPython configuration file:

c.InteractiveShellApp.extensions = [
 'myextension'
]

If you haven’t created an IPython configuration file yet, you can do this with:

$ ipython profile create [profilename]

If no profile name is given, default is used. The file is usually created in
~/.ipython/profile_default/ and named depending on the purpose:
ipython_config.py is used for all IPython commands, while
ipython_notebook_config.py is only used for commands in IPython notebooks.

Writing IPython extensions

An IPython extension is an importable Python module that has special functions
for loading and unloading:

def load_ipython_extension(ipython):
 # The `ipython` argument is the currently active `InteractiveShell`
 # instance, which can be used in any way. This allows you to register
 # new magics or aliases, for example.

def unload_ipython_extension(ipython):
 # If you want your extension to be unloadable, put that logic here.

See also

	Defining custom magics [https://ipython.readthedocs.io/en/latest/config/custommagics.html#defining-magics]

 Debugging

Debugging

IPython contains various tools to analyse faulty code, essentially the exception reporting and the debugger.

Check exceptions with %xmode

If the execution of a Python script fails, an exception is usually thrown and relevant information about the cause of the error is written to a traceback. With the %xmode magic function you can control the amount of information that is displayed in IPython. Let’s look at the following code for this:

[1]:

def func1(a, b):
 return a / b

def func2(x):
 a = x
 b = x - 1
 return func1(a, b)

[2]:

func2(1)

ZeroDivisionError Traceback (most recent call last)
Cell In[2], line 1
----> 1 func2(1)

Cell In[1], line 8, in func2(x)
 6 a = x
 7 b = x - 1
----> 8 return func1(a, b)

Cell In[1], line 2, in func1(a, b)
 1 def func1(a, b):
----> 2 return a / b

ZeroDivisionError: division by zero

Calling func2 leads to an error and the traceback shows exactly what happened: each line shows the context of each step that ultimately led to the error. With the %xmode magic function (short for exception mode) we can control which information should be displayed to us.

%xmode takes a single argument, the mode, and there are three options: * Plain * Context * Verbose

The default setting is Context and outputs something like the one above. Plain is more compact and provides less information:

[3]:

%xmode Plain
func2(1)

Exception reporting mode: Plain

Traceback (most recent call last):

 Cell In[3], line 2
 func2(1)

 Cell In[1], line 8 in func2
 return func1(a, b)

 Cell In[1], line 2 in func1
 return a / b

ZeroDivisionError: division by zero

The Verbose mode shows some additional information, including the arguments for any functions being called:

[4]:

%xmode Verbose
func2(1)

Exception reporting mode: Verbose

ZeroDivisionError Traceback (most recent call last)
Cell In[4], line 2
 1 get_ipython().run_line_magic('xmode', 'Verbose')
----> 2 func2(1)

Cell In[1], line 8, in func2(x=1)
 6 a = x
 7 b = x - 1
----> 8 return func1(a, b)
 a = 1
 b = 0

Cell In[1], line 2, in func1(a=1, b=0)
 1 def func1(a, b):
----> 2 return a / b
 a = 1
 b = 0

ZeroDivisionError: division by zero

This additional information can help narrow down the reason for the exception. Conversely, however, the Verbose mode can lead to extremely long tracebacks in the case of complex code, in which the essential points can hardly be recognized.

Debugging with %debug

Debugging can help if an error cannot be found by reading a traceback. The Python standard for interactive debugging is the Python debugger pdb. You can use it to navigate your way through the code line by line to see what is possibly causing an error. The extended version for IPython is ipdb.

In IPython, the %debug-magic command is perhaps the most convenient way to debug. If you call it after an exception has been thrown, an interactive debug prompt will automatically open during the exception. Using the ipdb prompt, you can examine the current status of the stack, examine the available variables and even run Python commands.

Let’s look at the last exception, then do some basic tasks:

[5]:

%debug

> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21353/3792871231.py(2)func1()
 1 def func1(a, b):
----> 2 return a / b
 3
 4
 5 def func2(x):

ipdb> print(a)
1
ipdb> print(b)
0
ipdb> quit

However, the interactive debugger does a lot more – we can also go up and down the stack and examine the values of variables:

[6]:

%debug

> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/3792871231.py(2)func1()
 1 def func1(a, b):
----> 2 return a / b
 3
 4
 5 def func2(x):

ipdb> u
> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/3792871231.py(8)func2()
 4
 5 def func2(x):
 6 a = x
 7 b = x - 1
----> 8 return func1(a, b)

ipdb> u
> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/1541833627.py(2)<module>()
 1 get_ipython().run_line_magic('xmode', 'Verbose')
----> 2 func2(1)

ipdb> d
> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21414/3792871231.py(8)func2()
 4
 5 def func2(x):
 6 a = x
 7 b = x - 1
----> 8 return func1(a, b)

ipdb> print(x)
1
ipdb> list
 3
 4
 5 def func2(x):
 6 a = x
 7 b = x - 1
----> 8 return func1(a, b)

ipdb> q

This greatly simplifies the search for the function calls that led to the error.

If you want the debugger to start automatically when an exception is thrown, you can use the %pdb-magic function to enable this behavior:

[7]:

%xmode Plain
%pdb on
func2(1)

Exception reporting mode: Plain
Automatic pdb calling has been turned ON

Traceback (most recent call last):

 Cell In[7], line 3
 func2(1)

 Cell In[1], line 8 in func2
 return func1(a, b)

 Cell In[1], line 2 in func1
 return a / b

ZeroDivisionError: division by zero

> /var/folders/hk/s8m0bblj0g10hw885gld52mc0000gn/T/ipykernel_21437/3792871231.py(2)func1()
 1 def func1(a, b):
----> 2 return a / b
 3
 4
 5 def func2(x):

ipdb> p(b)
0
ipdb> q

If you have a script that you want to run in interactive mode from the start, you can do so with the command %run -d.

Essential commands of the ipdb

	Command

	Description

	list

	Show the current location in the file

	h(elp)

	Display a list of commands or find help on a specific command

	q(uit)

	Terminates the debugger and the program

	c(ontinue)

	Exit the debugger, continue in the program

	n(ext)

	Go to the next step in the program

	<enter>

	Repeat the previous command

	p(rint)

	Print variables

	s(tep)

	Step into a subroutine

	r(eturn)

	Return from a subroutine

Further information on the IPython debugger can be found at ipdb [https://github.com/gotcha/ipdb].

 Jupyter

Jupyter

We have moved the Jupyter chapter to its own tutorial:
Jupyter Tutorial [https://jupyter-tutorial.readthedocs.io/en/latest/index.html].

 NumPy

NumPy

NumPy [https://numpy.org/] is the abbreviation for numeric Python. Many Python
packages that provide scientific functions use NumPy’s array objects as one of the
standard interfaces for data exchange. In the following, I will give a brief overview of
the main functionality of NumPy:

	ndarray, an efficient multidimensional array that provides fast
array-based operations, such as shuffling and cleaning data, subgrouping and filtering,
transformation and all other kinds of computations. There are also flexible functions
for broadcasting, i.e. evaluations of arrays of different sizes.

	Mathematical functions for fast operations on whole arrays of data, such as sorting,
uniqueness and set operations. Instead of loops with if-elif-else branches,
the expressions are written in conditional logic.

	Tools for reading and writing array data to disk and working with memory mapped [https://en.wikipedia.org/wiki/Memory-mapped_I/O] files.

	Functions for linear algebra, random number generation and Fourier transform.

	A C API for connecting NumPy to libraries written in C, C++ or FORTRAN.

Note

This section introduces you to the basics of using NumPy arrays and should be
sufficient to follow the rest of the tutorial. For many data analytic applications,
it is not necessary to have a deep understanding of NumPy, but mastering
array-oriented programming and thinking is an important step on the way to becoming a
data scientist.

See also

	Home [https://numpy.org/]

	Docs [https://numpy.org/doc/stable/]

	GitHub [https://github.com/numpy/numpy]

	Tutorials [https://numpy.org/numpy-tutorials/]

 Introduction to NumPy

Introduction to NumPy

NumPy operations perform complex calculations on entire arrays without the need for Python for loops, which can be slow for large sequences. NumPy’s speed is explained by its C-based algorithms, which avoid the overhead of Python code. To give you an idea of the performance difference, we measure the difference between a NumPy array and a Python list with a hundred thousand integers:

[1]:

import numpy as np

[2]:

myarray = np.arange(100000)
mylist = list(range(100000))

[3]:

%time for _ in range(10): myarray2 = myarray ** 2

CPU times: user 2.67 ms, sys: 11.3 ms, total: 14 ms
Wall time: 1.49 ms

[4]:

%time for _ in range(10): mylist2 = [x ** 2 for x in mylist]

CPU times: user 73.9 ms, sys: 320 ms, total: 394 ms
Wall time: 35.5 ms

 ndarray – an N-dimensional array object

ndarray – an N-dimensional array object

ndarray allows mathematical operations on whole blocks of data, using a similar syntax to similar operations between scalar [https://en.wikipedia.org/wiki/Scalar_(mathematics)] elements. In NumPy, there are many different types for describing scalars, mostly based on types from the C language and those compatible with Python.

See also:

	Array Scalars [https://numpy.org/devdocs/reference/arrays.scalars.html]

Note:

Whenever this tutorial talks about array or ndarray, in most cases it refers to the ndarray object.

[1]:

import numpy as np

[2]:

py_list = [2020, 2021, 20222]
array_1d = np.array(py_list)

[3]:

array_1d

[3]:

array([2020, 2021, 20222])

Nested sequences, such as a list of lists of equal length, can be converted into a multidimensional array:

[4]:

list_of_lists = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
array_2d = np.array(list_of_lists)

[5]:

array_2d

[5]:

array([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])

Since list_of_lists was a list with three lists, the NumPy array array_2d has two dimensions whose shape is derived from the data. With the attributes ndim [https://numpy.org/devdocs/reference/generated/numpy.ndarray.ndim.html] and shape [https://numpy.org/devdocs/reference/generated/numpy.ndarray.shape.html] we can output the number of dimensions and the outline of array_2d:

[6]:

array_2d.ndim

[6]:

2

[7]:

array_2d.shape

[7]:

(3, 4)

To give you an idea of the syntax, I first create an array of random numbers with five columns and seven slices:

[8]:

data = np.random.randn(7, 3)
data

[8]:

array([[-1.48040214, 0.60483587, -0.2437932],
 [-0.42025594, -1.75075057, 0.19677647],
 [0.98816551, 0.35657111, -0.223424],
 [1.10143461, 0.25189838, -1.11756074],
 [0.57691653, 0.26666378, 0.68076501],
 [1.40382396, -0.21795603, -0.20410514],
 [0.64489473, 0.18392548, -0.01361532]])

ndarray is a generic multidimensional container. Each array has a shape, a tuple, which indicates the size of the individual dimensions. With shape, I can output the number of rows and columns in an array:

In addition to np.array, there are a number of other functions for creating new arrays. zeros [https://numpy.org/doc/stable/reference/generated/numpy.zeros.html] and ones [https://numpy.org/doc/stable/reference/generated/numpy.ones.html], for example, create arrays of zeros and ones, respectively, with a specific length or shape. empty [https://numpy.org/doc/stable/reference/generated/numpy.empty.html] creates an array without initialising its values to a specific value. To
create a higher dimensional array using these methods, pass a tuple for the shape:

[9]:

np.zeros(4)

[9]:

array([0., 0., 0., 0.])

[10]:

np.ones((3,4))

[10]:

array([[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]])

[11]:

np.empty((2,3,4))

[11]:

array([[[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]],

 [[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]]])

Note:

You may not safely assume that the np.empty function returns an array of zeros, as it returns uninitialised memory and may therefore contain garbage values.

arange [https://numpy.org/doc/stable/reference/generated/numpy.arange.html] is an array-valued version of the Built-in Python range [https://docs.python.org/3/library/functions.html#func-range] function:

[12]:

np.arange(4)

[12]:

array([0, 1, 2, 3])

Other NumPy standard functions for creating arrays are:

	Function

	Description

	array

	converts input data (list, tuple, array or other sequence types) into an ndarray by either deriving a dtype or explicitly specifying a dtype; by default, copies the input data into the array

	asarray

	converts the input to an ndarray, but does not copy if the input is already an ndarray

	arange

	like Python built-in range, but returns an ndarray instead of a list

	ones, ones_like

	ones creates an array of 1s in the given form and dtype; ones_like takes another array and creates an ones array in the same form and dtype

	zeros, zeros_like

	like ones and ones_like, but creates arrays with 0s instead

	empty, empty_like

	creates new arrays by allocating new memory, but does not fill them with values like ones and zeros

	full, full_like

	creates an array of the given shape and dtype, setting all values to the given fill value; full_like takes another array and creates a filled array with the same shape and dtype

	eye, identity

	creates a square N × N identity matrix (1s on the diagonal and 0s elsewhere)

 dtype

dtype

ndarray is a container for homogeneous data, i.e. all elements must be of the same type. Each array has a dtype, an object that describes the data type of the array:

[1]:

import numpy as np

data = np.random.randn(7, 3)
dt = data.dtype
dt

[1]:

dtype('float64')

NumPy data types:

	Type

	Type code

	Description

	int8, uint8

	i1, u1

	Signed and unsigned 8-bit (1-byte) integer types

	int16, uint16

	i2, u2

	Signed and unsigned 16-Bit (2 Byte) integer types

	int32, uint32

	i4, u4

	Signed and unsigned 32-Bit (4 Byte) integer types

	int64, uint64

	i8, u8

	Signed and unsigned 64-Bit (8 Byte) integer types

	float16

	f2

	Standard floating point with half precision

	float32

	f4 or f

	Standard floating point with single precision; compatible with C float

	float64

	f8 or d

	Standard floating point with double precision; compatible with C double and Python float object

	complex64, complex128, complex256

	c8, c16, c32

	Complex numbers represented by two 32, 64 or 128 floating point numbers respectively

	bool

	?

	Boolean type that stores the values True and False

	object

	O

	Python object type; a value can be any Python object

	string_

	S

	ASCII string type with fixed length (1 byte per character); to create a string type with length 7, for example, use S7; longer
inputs are truncated without warning

	unicode_

	U

	Unicode type with fixed length where the number of bytes is platform-specific; uses the same specification semantics as
string_, e.g. U7

Determine the number of elements with itemsize:

[2]:

dt.itemsize

[2]:

8

Determine the name of the data type:

[3]:

dt.name

[3]:

'float64'

Check data type:

[4]:

dt.type is np.float64

[4]:

True

Change data type with astype:

[5]:

data_float32 = data.astype(np.float32)
data_float32

[5]:

array([[0.12408408, 0.28413823, 1.6867595],
 [-0.4144261 , -0.5990565 , 0.61371785],
 [0.16093737, 0.12486719, -0.16383053],
 [1.0395902 , -1.4354634 , 0.35893318],
 [0.82148165, -2.134709 , 0.12962751],
 [-1.0212289 , 0.72899795, -1.7471288],
 [-1.8143699 , -1.0880227 , -1.1238078]], dtype=float32)

 Arithmetic

Arithmetic

Arrays allow you to perform stack operations on data without having to use for loops. This is called vectorisation in NumPy. For all arithmetic operations between arrays of the same size, the operation is applied element by element:

[1]:

import numpy as np

data = np.random.randn(7, 3)
data

[1]:

array([[-0.52169857, -0.06638825, -1.70235417],
 [0.3540172 , -1.30560063, -1.0368024],
 [-0.4163764 , -1.24874081, -1.85063163],
 [-0.63982944, -0.47325691, 1.42545299],
 [1.11960638, 1.49821503, -0.11843174],
 [-0.59220784, 0.63391355, 1.21890647],
 [-0.57770878, 1.05719525, 2.54019148]])

[2]:

1 / data

[2]:

array([[-1.91681569, -15.06290747, -0.58742183],
 [2.82472155, -0.765931 , -0.96450394],
 [-2.40167311, -0.8008067 , -0.54035605],
 [-1.56291653, -2.11301722, 0.70153138],
 [0.89317104, 0.66746093, -8.44368223],
 [-1.68859637, 1.57750217, 0.82040749],
 [-1.73097595, 0.94589907, 0.39367111]])

[3]:

data**2

[3]:

array([[2.72169395e-01, 4.40739915e-03, 2.89800972e+00],
 [1.25328175e-01, 1.70459301e+00, 1.07495921e+00],
 [1.73369306e-01, 1.55935360e+00, 3.42483742e+00],
 [4.09381707e-01, 2.23972103e-01, 2.03191622e+00],
 [1.25351846e+00, 2.24464828e+00, 1.40260776e-02],
 [3.50710120e-01, 4.01846387e-01, 1.48573298e+00],
 [3.33747430e-01, 1.11766179e+00, 6.45257275e+00]])

Comparison of two arrays:

[4]:

data2 = np.random.randn(7, 3)
data > data2

[4]:

array([[False, False, False],
 [False, False, False],
 [False, False, False],
 [True, True, True],
 [True, True, False],
 [False, True, True],
 [False, True, True]])

 Indexing and slicing

Indexing and slicing

Indexing is the selection of a subset of your data or individual elements. This is very easy in one-dimensional arrays; they behave similarly to Python lists:

[1]:

import numpy as np

[2]:

rng = np.random.default_rng()
data = rng.normal(size=(10, 3))
data

[2]:

array([[-0.1781624 , -0.8381147 , 1.40248986],
 [-1.48367758, 0.70035394, 0.60506565],
 [2.24316514, 0.38021158, 0.95148769],
 [-0.37414371, 1.03258406, -1.51360252],
 [-1.6251526 , 0.34516475, 0.6205052],
 [0.96867556, 0.13047506, -1.80399701],
 [-0.20605706, -1.04783043, 0.69553167],
 [1.14186171, -1.01894781, -1.44487713],
 [0.29214215, 1.60380789, -1.82980606],
 [-1.87650688, -0.5427789 , 1.6327612]])

[3]:

data[4]

[3]:

array([-1.6251526 , 0.34516475, 0.6205052])

[4]:

data[2:4]

[4]:

array([[2.24316514, 0.38021158, 0.95148769],
 [-0.37414371, 1.03258406, -1.51360252]])

[5]:

data[2:4] = rng.normal(size=(2, 3))

[6]:

data

[6]:

array([[-0.1781624 , -0.8381147 , 1.40248986],
 [-1.48367758, 0.70035394, 0.60506565],
 [-0.07210875, -0.4775101 , -1.09241001],
 [2.45845089, -0.26972796, -2.0442523],
 [-1.6251526 , 0.34516475, 0.6205052],
 [0.96867556, 0.13047506, -1.80399701],
 [-0.20605706, -1.04783043, 0.69553167],
 [1.14186171, -1.01894781, -1.44487713],
 [0.29214215, 1.60380789, -1.82980606],
 [-1.87650688, -0.5427789 , 1.6327612]])

Note:

Array slices differ from Python lists in that they are views of the original array. This means that the data is not copied and that any changes to the view are reflected in the original array.

If you want to make a copy of a part of an ndarray, you can copy the array explicitly – for example with data[2:5].copy().

Slicing in this way always results in array views with the same number of dimensions. However, if you mix integer indices and slices, you get slices with lower dimensions. For example, we can select the second row but only the first two columns as follows:

[7]:

data[1, :2]

[7]:

array([-1.48367758, 0.70035394])

A colon means that the whole axis is taken, so you can also select higher dimensional axes:

[8]:

data[:, :1]

[8]:

array([[-0.1781624],
 [-1.48367758],
 [-0.07210875],
 [2.45845089],
 [-1.6251526],
 [0.96867556],
 [-0.20605706],
 [1.14186171],
 [0.29214215],
 [-1.87650688]])

Boolean indexing

Let’s consider an example where we have some data in an array and an array of names with duplicates. I will use the normal function in numpy.random.default_rng here to generate some random normally distributed data:

[9]:

names = np.array(
 [
 "Liam",
 "Olivia",
 "Noah",
 "Liam",
 "Noah",
 "Olivia",
 "Liam",
 "Emma",
 "Oliver",
 "Ava",
]
)

[10]:

names

[10]:

array(['Liam', 'Olivia', 'Noah', 'Liam', 'Noah', 'Olivia', 'Liam', 'Emma',
 'Oliver', 'Ava'], dtype='<U6')

[11]:

data

[11]:

array([[-0.1781624 , -0.8381147 , 1.40248986],
 [-1.48367758, 0.70035394, 0.60506565],
 [-0.07210875, -0.4775101 , -1.09241001],
 [2.45845089, -0.26972796, -2.0442523],
 [-1.6251526 , 0.34516475, 0.6205052],
 [0.96867556, 0.13047506, -1.80399701],
 [-0.20605706, -1.04783043, 0.69553167],
 [1.14186171, -1.01894781, -1.44487713],
 [0.29214215, 1.60380789, -1.82980606],
 [-1.87650688, -0.5427789 , 1.6327612]])

Suppose each name corresponds to a row in the data array and we want to select all rows with the corresponding name Liam. Like arithmetic operations, comparisons like == are vectorised with arrays. So comparing names with the string Liam results in a Boolean array:

[12]:

names == "Liam"

[12]:

array([True, False, False, True, False, False, True, False, False,
 False])

This Boolean array can be passed when indexing the array:

[13]:

data[names == "Liam"]

[13]:

array([[-0.1781624 , -0.8381147 , 1.40248986],
 [2.45845089, -0.26972796, -2.0442523],
 [-0.20605706, -1.04783043, 0.69553167]])

Here, the Boolean array must have the same length as the array axis it indexes.

Note:

Selecting data from an array by Boolean indexing and assigning the result to a new variable always creates a copy of the data, even if the returned array is unchanged.

In the following example, I select the rows where names == 'Liam' and also index the columns:

[14]:

data[names == "Liam", 2:]

[14]:

array([[1.40248986],
 [-2.0442523],
 [0.69553167]])

To select everything except Liam, you can either use != or negate the condition with ~:

[15]:

names != "Liam"

[15]:

array([False, True, True, False, True, True, False, True, True,
 True])

[16]:

cond = names == "Liam"
data[~cond]

[16]:

array([[-1.48367758, 0.70035394, 0.60506565],
 [-0.07210875, -0.4775101 , -1.09241001],
 [-1.6251526 , 0.34516475, 0.6205052],
 [0.96867556, 0.13047506, -1.80399701],
 [1.14186171, -1.01894781, -1.44487713],
 [0.29214215, 1.60380789, -1.82980606],
 [-1.87650688, -0.5427789 , 1.6327612]])

If you select two of the three names to combine several Boolean conditions, you can use the Boolean arithmetic operators & (and) and | (or).

Warning:

The Python keywords and and or do not work with Boolean arrays.

[17]:

mask = (names == "Liam") | (names == "Olivia")

[18]:

mask

[18]:

array([True, True, False, True, False, True, True, False, False,
 False])

[19]:

data[mask]

[19]:

array([[-0.1781624 , -0.8381147 , 1.40248986],
 [-1.48367758, 0.70035394, 0.60506565],
 [2.45845089, -0.26972796, -2.0442523],
 [0.96867556, 0.13047506, -1.80399701],
 [-0.20605706, -1.04783043, 0.69553167]])

Integer Array Indexing

Integer array indexing allows you to select any elements in the array based on your N-dimensional index. Each integer array represents a number of indices in that dimension.

See also:

	Integer array indexing [https://numpy.org/doc/stable/user/basics.indexing.html#integer-array-indexing]

 Transpose arrays and swap axes

Transpose arrays and swap axes

Transpose is a special form of reshaping that also provides a view of the underlying data without copying anything. Arrays have the Transpose [https://numpy.org/doc/stable/reference/generated/numpy.transpose.html] method and also the special T [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html] attribute:

[1]:

import numpy as np

[2]:

data = np.arange(16)

[3]:

data

[3]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

[4]:

reshaped_data = data.reshape((4, 4))

[5]:

reshaped_data

[5]:

array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

[6]:

reshaped_data.T

[6]:

array([[0, 4, 8, 12],
 [1, 5, 9, 13],
 [2, 6, 10, 14],
 [3, 7, 11, 15]])

numpy.dot [https://numpy.org/doc/stable/reference/generated/numpy.dot.html] returns the scalar product of two arrays, for example:

[7]:

np.dot(reshaped_data.T, reshaped_data)

[7]:

array([[224, 248, 272, 296],
 [248, 276, 304, 332],
 [272, 304, 336, 368],
 [296, 332, 368, 404]])

The @ infix operator is another way to perform matrix multiplication. It implements the semantics of the @ operator introduced in Python 3.5 with PEP 465 [https://www.python.org/dev/peps/pep-0465/] and is an abbreviation of np.matmul [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html].

[8]:

data.T @ data

[8]:

1240

For higher dimensional arrays, transpose [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html] accepts a tuple of axis numbers to swap the axes:

[9]:

array_3d = np.arange(16).reshape((2, 2, 4))

[10]:

array_3d

[10]:

array([[[0, 1, 2, 3],
 [4, 5, 6, 7]],

 [[8, 9, 10, 11],
 [12, 13, 14, 15]]])

[11]:

array_3d.transpose((1, 0, 2))

[11]:

array([[[0, 1, 2, 3],
 [8, 9, 10, 11]],

 [[4, 5, 6, 7],
 [12, 13, 14, 15]]])

Here the axes have been reordered with the second axis in first place, the first axis in second place and the last axis unchanged.

ndarray also has a swapaxes [https://numpy.org/doc/stable/reference/generated/numpy.swapaxes.html] method that takes a pair of axis numbers and swaps the specified axes to rearrange the data:

[12]:

array_3d.swapaxes(1, 2)

[12]:

array([[[0, 4],
 [1, 5],
 [2, 6],
 [3, 7]],

 [[8, 12],
 [9, 13],
 [10, 14],
 [11, 15]]])

 Universal functions (ufunc)

Universal functions (ufunc)

A universal function, or ufunc, is a function that performs element-wise operations on data in ndarrays. They can be thought of as fast vectorised wrappers for simple functions that take one or more scalar values and produce one or more scalar results.

Many ufuncs are simple element-wise transformations, such as sqrt [https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html] or exp [https://numpy.org/doc/stable/reference/generated/numpy.exp.html]:

[1]:

import numpy as np

data = np.arange(10)

[2]:

data

[2]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

[3]:

np.sqrt(data)

[3]:

array([0. , 1. , 1.41421356, 1.73205081, 2. ,
 2.23606798, 2.44948974, 2.64575131, 2.82842712, 3.])

[4]:

np.exp(data)

[4]:

array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
 5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,
 2.98095799e+03, 8.10308393e+03])

These are called single-digit ufuncs. Others, such as add [https://numpy.org/doc/stable/reference/generated/numpy.add.html] or maximum [https://numpy.org/doc/stable/reference/generated/numpy.maximum.html], take two arrays (i.e. binary ufuncs) and return a single array as the result:

[5]:

x = np.random.randn(8)

[6]:

y = np.random.randn(8)

[7]:

x

[7]:

array([-1.23545026, -2.97614783, 1.81553171, 1.01874633, 0.08063104,
 -0.4605132 , 2.26014706, 1.88403856])

[8]:

y

[8]:

array([0.70506547, -0.64166724, 2.10440297, 0.09330584, -1.47706135,
 -0.99220346, 0.54688573, 0.06453598])

[9]:

np.maximum(x, y)

[9]:

array([0.70506547, -0.64166724, 2.10440297, 1.01874633, 0.08063104,
 -0.4605132 , 2.26014706, 1.88403856])

Here numpy.maximum calculated the element-wise maximum of the elements in x and y.

Some ufunc, such as modf [https://numpy.org/doc/stable/reference/generated/numpy.modf.html], a vectorised version of the built-in Python divmod [https://docs.python.org/3/library/functions.html#divmod], return multiple arrays: the fractional and integral parts of a floating-point array:

[10]:

data = x * 5

[11]:

data

[11]:

array([-6.1772513 , -14.88073913, 9.07765855, 5.09373163,
 0.40315522, -2.30256598, 11.3007353 , 9.42019279])

[12]:

remainder, whole_part = np.modf(x)

[13]:

remainder

[13]:

array([-0.23545026, -0.97614783, 0.81553171, 0.01874633, 0.08063104,
 -0.4605132 , 0.26014706, 0.88403856])

[14]:

whole_part

[14]:

array([-1., -2., 1., 1., 0., -0., 2., 1.])

Ufuncs accept an optional out argument that allows you to transfer your results to an existing array instead of creating a new one:

[15]:

out = np.zeros_like(data)

[16]:

np.add(data, 1)

[16]:

array([-5.1772513 , -13.88073913, 10.07765855, 6.09373163,
 1.40315522, -1.30256598, 12.3007353 , 10.42019279])

[17]:

np.add(data, 1, out=out)

[17]:

array([-5.1772513 , -13.88073913, 10.07765855, 6.09373163,
 1.40315522, -1.30256598, 12.3007353 , 10.42019279])

[18]:

out

[18]:

array([-5.1772513 , -13.88073913, 10.07765855, 6.09373163,
 1.40315522, -1.30256598, 12.3007353 , 10.42019279])

Some single-digit ufuncs:

	Function

	Description

	abs, fabs

	calculates the absolute value element by element for integer, floating point or complex values

	sqrt

	calculates the square root of each element (corresponds to data ** 0,5)

	square

	calculates the square of each element (corresponds to data ** 2)

	exp

	calculates the exponent ex of each element

	log, log10, log2, log1p

	Natural logarithm (base e), log base 10, log base 2 and log(1 + x) respectively

	sign

	calculates the sign of each element: 1 (positive), 0 (zero), or -1 (negative)

	ceil

	calculates the upper limit of each element (i.e. the smallest integer greater than or equal to this number)

	floor

	calculates the lower limit of each element (i.e. the largest integer less than or equal to each element)

	rint

	rounds elements to the nearest integer, preserving the dtype

	modf

	returns the fractional and integer parts of the array as separate arrays

	isnan

	returns a boolean array indicating whether each value is NaN (Not a Number)

	isfinite, isinf

	returns a boolean array indicating whether each element is finite (not-inf, not-NaN) or infinite, respectively

	cos, cosh, sin, sinh, tan, tanh

	regular and hyperbolic trigonometric functions

	arccos, arccosh, arcsin, arcsinh, arctan, arctanh

	Inverse trigonometric functions

	logical_not

	calculates the truth value of not x element by element (corresponds to ~data)

Some binary universal functions:

	Function

	Description

	add

	add corresponding elements in arrays

	subtract

	subtracts elements in the second array from the first array

	multiply

	multiply array elements

	divide, floor_divide

	divide or truncate the remainder

	power

	increases elements in the first array to the powers specified in the second array

	maximum, fmax

	element-wise maximum; fmax ignores NaN

	minimum, fmin

	element-wise minimum; fmin ignores NaN

	mod

	element-wise modulus (remainder of the division)

	copysign

	copies the sign of the values in the second argument to the values in the first argument

	greater, greater_equal, less, less_equal, equal, not_equal

	perform element-wise comparisons that result in a Boolean array (corresponds to the infix operators >, >=, <, <=, ==, !=)

	logical_and

	calculates the element-wise truth value of the logical operation AND (&)

	logical_or

	calculates the element-wise truth value of the logical operation OR (|)

	logical_xor

	calculates the element-wise truth value of the logical operation XOR (^)

Note:

A complete overview of binary universal functions can be found in Universal functions (ufunc) [https://numpy.org/doc/stable/reference/ufuncs.html].

 Array-oriented programming – vectorisation

Array-oriented programming – vectorisation

Using NumPy arrays allows you to express many types of data processing tasks as concise array expressions that would otherwise require writing for-loops. This practice of replacing loops with array expressions is also called vectorisation. In general, vectorised array operations are significantly faster than their pure Python equivalents.

[1]:

import numpy as np

First we create a NumPy array with one hundred thousand integers:

[2]:

myarray = np.arange(100000)

Then we square all the elements in this array with numpy.square [https://numpy.org/doc/stable/reference/generated/numpy.square.html]:

[3]:

%time np.square(myarray)

CPU times: user 559 µs, sys: 2.55 ms, total: 3.11 ms
Wall time: 269 µs

[3]:

array([0, 1, 4, ..., 9999400009, 9999600004,
 9999800001])

For comparison, we now measure the time of Python’s quadratic function:

[4]:

%time for _ in range(10): myarray2 = myarray ** 2

CPU times: user 807 µs, sys: 4.07 ms, total: 4.87 ms
Wall time: 440 µs

And finally, we compare the time with the calculation of the quadratic function of all values of a Python list:

[5]:

mylist = list(range(100000))
%time for _ in range(10): mylist2 = [x ** 2 for x in mylist]

CPU times: user 115 ms, sys: 390 ms, total: 505 ms
Wall time: 46.7 ms

 Conditional logic as array operations – where

Conditional logic as array operations – where

The numpy.where [https://numpy.org/doc/stable/reference/generated/numpy.where.html] function is a vectorised version of if and else.

In the following example, we first create a Boolean array and two arrays with values:

[1]:

import numpy as np

[2]:

cond = ([False, True, False, True, False, False, False])
data1 = np.random.randn(1, 7)
data2 = np.random.randn(1, 7)

Now we want to take the values from data1 if the corresponding value in cond is True and otherwise take the value from data2. With Python’s if-else, this could look like this:

[3]:

result = [(x if c else y) for x, y, c in zip(data1, data2, cond)]

result

[3]:

[array([0.0753595 , 0.70598847, 1.36375888, 0.52613878, 1.58394917,
 -0.67041886, -1.30890145])]

However, this has the following two problems:

	with large arrays the function will not be very fast

	this will not work with multidimensional arrays

With np.where you can work around these problems in a single function call:

[4]:

result = np.where(cond, data1, data2)

result

[4]:

array([[0.0753595 , -0.97727968, 1.36375888, 1.5042741 , 1.58394917,
 -0.67041886, -1.30890145]])

The second and third arguments of np.where do not have to be arrays; one or both can also be scalars. A typical use of where in data analysis is to create a new array of values based on another array. Suppose you have a matrix of randomly generated data and you want to make all the negative values positive values:

[5]:

data = np.random.randn(4, 4)

data

[5]:

array([[-2.13569944, 0.21406577, -0.44948598, 0.07841356],
 [0.94045485, -0.47748714, -0.70057099, -1.92553004],
 [-1.65814642, 0.44475682, -1.16289192, 0.96023582],
 [0.45396769, 0.64944133, -0.08936879, -1.20179191]])

[6]:

data < 0

[6]:

array([[True, False, True, False],
 [False, True, True, True],
 [True, False, True, False],
 [False, False, True, True]])

[7]:

np.where(data < 0, data * -1, data)

[7]:

array([[2.13569944, 0.21406577, 0.44948598, 0.07841356],
 [0.94045485, 0.47748714, 0.70057099, 1.92553004],
 [1.65814642, 0.44475682, 1.16289192, 0.96023582],
 [0.45396769, 0.64944133, 0.08936879, 1.20179191]])

 Mathematical and statistical methods

Mathematical and statistical methods

A number of mathematical functions that calculate statistics over an entire array or over the data along an axis are accessible as methods of the array class. So you can use aggregations such as sum, mean and standard deviation by either calling the array instance method or using the top-level NumPy function.

Below I generate some random data and calculate some aggregated statistics:

[1]:

import numpy as np

data = np.random.randn(7, 3)

data

[1]:

array([[0.52892401, -0.82705139, -0.13426779],
 [-0.43476595, 0.15431376, -0.15927356],
 [0.5437757 , -0.27273503, -0.74511308],
 [0.41921053, 0.78804831, -1.39898524],
 [-0.08745354, 0.24346498, 0.5995653],
 [2.18987033, 0.07709088, 0.81486999],
 [0.42570339, 1.23702332, 1.12807273]])

[2]:

data.mean()

[2]:

0.24239465071821545

[3]:

np.mean(data)

[3]:

0.24239465071821545

[4]:

data.sum()

[4]:

5.090287665082524

Functions like mean and sum require an optional axis argument that calculates the statistic over the specified axis, resulting in an array with one less dimension:

[5]:

data.mean(axis=0)

[5]:

array([0.51218064, 0.20002212, 0.01498119])

[6]:

data.sum(axis=0)

[6]:

array([3.58526448, 1.40015484, 0.10486835])

With data.mean(0), which is the same as data.mean(axis=0), the mean is calculated over the rows, while data.sum(0) calculates the sum over the rows.

Other methods like cumsum and cumprod, however, do not aggregate but create a new array with the intermediate results.

In multidimensional arrays, accumulation functions such as cumsum and cumprod return an array of the same size but with the partial aggregates calculated along the specified axis:

[7]:

data.cumsum()

[7]:

array([0.52892401, -0.29812737, -0.43239516, -0.86716111, -0.71284735,
 -0.87212091, -0.32834522, -0.60108025, -1.34619332, -0.92698279,
 -0.13893449, -1.53791972, -1.62537326, -1.38190829, -0.78234299,
 1.40752735, 1.48461823, 2.29948822, 2.72519162, 3.96221494,
 5.09028767])

[8]:

data.cumprod()

[8]:

array([5.28924012e-01, -4.37447338e-01, 5.87350864e-02, -2.55360156e-02,
 -3.94055863e-03, 6.27626816e-04, 3.41288209e-04, -9.30812494e-05,
 6.93560562e-05, 2.90747892e-05, 2.29123384e-05, -3.20540232e-05,
 2.80323775e-06, 6.82490215e-07, 4.09197451e-07, 8.96089358e-07,
 6.90803200e-08, 5.62914796e-08, 2.39634740e-08, 2.96433762e-08,
 3.34398842e-08])

Basic statistical methods for arrays are:

	Method

	Description

	sum

	Sum of all elements in the array or along an axis.

	mean

	Arithmetic mean; for arrays with length zero, NaN is returned.

	std, var

	Standard deviation and variance respectively

	min, max

	Minimum and maximum

	argmin, argmax

	Indices of the minimum and maximum elements respectively

	cumsum

	Cumulative sum of the elements, starting with 0

	cumprod

	Cumulative product of the elements, starting with 1

 Methods for Boolean arrays

Methods for Boolean arrays

Boolean values have been converted to 1 (True) and 0 (False) in the previous methods. Therefore, sum is often used to count the True values in a Boolean array:

[1]:

import numpy as np

[2]:

data = np.random.randn(7, 3)

Number of positive values:

[3]:

(data > 0).sum()

[3]:

12

Number of negative values:

[4]:

(data < 0).sum()

[4]:

9

There are two additional methods, any and all, which are particularly useful for Boolean arrays:

	any checks whether one or more values in an array are true

	all checks whether each value is true

[5]:

data2 = np.random.randn(7, 3)

bools = data > data2

bools

[5]:

array([[True, True, True],
 [True, True, False],
 [True, False, False],
 [True, False, True],
 [True, True, False],
 [False, False, True],
 [False, False, False]])

[6]:

bools.any()

[6]:

True

[7]:

bools.all()

[7]:

False

 Sort

Sort

As in Python’s list, NumPy arrays can be sorted in-place using the numpy.sort [https://numpy.org/doc/stable/reference/generated/numpy.sort.html] method. You can sort any one-dimensional section of values in a multidimensional array in place along an axis by passing the axis number to sort:

[1]:

import numpy as np

data = np.random.randn(7, 3)

data

[1]:

array([[-0.50687148, -0.92123541, -1.33470444],
 [-0.47316782, -0.05354427, 0.3144167],
 [-0.51270165, -1.30401598, -0.9362869],
 [-0.19429791, 1.12032183, 0.19184738],
 [0.07609175, 1.75052865, -1.27389361],
 [1.03374626, -0.29737004, 0.0944219],
 [0.82837672, -0.29511481, -0.25849806]])

[2]:

data.sort(0)

data

[2]:

array([[-0.51270165, -1.30401598, -1.33470444],
 [-0.50687148, -0.92123541, -1.27389361],
 [-0.47316782, -0.29737004, -0.9362869],
 [-0.19429791, -0.29511481, -0.25849806],
 [0.07609175, -0.05354427, 0.0944219],
 [0.82837672, 1.12032183, 0.19184738],
 [1.03374626, 1.75052865, 0.3144167]])

np.sort, on the other hand, returns a sorted copy of an array instead of changing the array in place:

[3]:

np.sort(data, axis=1)

[3]:

array([[-1.33470444, -1.30401598, -0.51270165],
 [-1.27389361, -0.92123541, -0.50687148],
 [-0.9362869 , -0.47316782, -0.29737004],
 [-0.29511481, -0.25849806, -0.19429791],
 [-0.05354427, 0.07609175, 0.0944219],
 [0.19184738, 0.82837672, 1.12032183],
 [0.3144167 , 1.03374626, 1.75052865]])

[4]:

data

[4]:

array([[-0.51270165, -1.30401598, -1.33470444],
 [-0.50687148, -0.92123541, -1.27389361],
 [-0.47316782, -0.29737004, -0.9362869],
 [-0.19429791, -0.29511481, -0.25849806],
 [0.07609175, -0.05354427, 0.0944219],
 [0.82837672, 1.12032183, 0.19184738],
 [1.03374626, 1.75052865, 0.3144167]])

 unique and other set logic

unique and other set logic

NumPy has some basic set operations for one-dimensional ndarray. A commonly used one is numpy.unique [https://numpy.org/doc/stable/reference/generated/numpy.unique.html], which returns the sorted unique values in an array:

[1]:

import numpy as np

names = np.array(
 [
 "Liam",
 "Olivia",
 "Noah",
 "Liam",
 "Noah",
 "Olivia",
 "Liam",
 "Emma",
 "Oliver",
 "Ava",
]
)

[2]:

np.unique(names)

[2]:

array(['Ava', 'Emma', 'Liam', 'Noah', 'Oliver', 'Olivia'], dtype='<U6')

With numpy.in1d [https://numpy.org/doc/stable/reference/generated/numpy.in1d.html] you can check the membership of the values in a one-dimensional array to another array and a boolean array is returned:

[3]:

np.in1d(names, ["Emma", "Ava", "Charlotte"])

[3]:

array([False, False, False, False, False, False, False, True, False,
 True])

Array set operations:

	Method

	Description

	unique(x)

	calculates the sorted, unique elements in x

	intersect1d(x, y)

	calculates the sorted common elements x and y

	union1d(x, y)

	calculates the sorted union of elements

	in1d(x, y)

	computes a boolean array indicating whether each element of x is contained in y

	setdiff1d(x, y)

	sets the difference of the elements in x that are not contained in y

	setxor1d(x, y)

	sets symmetric differences; elements contained in one of the arrays but not in both

 File input and output with arrays

File input and output with arrays

NumPy is able to store data in some text or binary formats on disk and load it from there. However, in this section I only discuss NumPy’s own binary format, as mostly pandas or other tools are used to load text or table data (see Read, persist and provide data.

np.save and np.load are the two most important functions for efficiently saving and loading array data to disk. Arrays are saved by default in an uncompressed raw binary format with the file extension .npy:

[1]:

import numpy as np

data = np.random.randn(7, 3)

np.save("my_data", data)

If the file path does not already end in .npy, the extension is appended. The array on the hard disk can then be loaded with np.load:

[2]:

np.load("my_data.npy")

[2]:

array([[1.71143962, 1.06249012, 0.40089528],
 [-1.93836029, 0.60398033, -0.6708609],
 [0.24042536, -0.86181626, 0.33594052],
 [-1.41716277, 2.11203343, -0.09469748],
 [-0.36027506, 0.53376748, 1.302226],
 [0.24560584, 1.29705793, 0.49696571],
 [0.04375581, 0.88412494, -2.22439157]])

You can save multiple arrays in an uncompressed archive by using np.savez and passing the arrays as keyword arguments:

[3]:

np.savez("data_archive.npz", a=data, b=np.square(data))

[4]:

archive = np.load("data_archive.npz")

archive["b"]

[4]:

array([[2.92902558e+00, 1.12888526e+00, 1.60717029e-01],
 [3.75724062e+00, 3.64792237e-01, 4.50054349e-01],
 [5.78043555e-02, 7.42727271e-01, 1.12856032e-01],
 [2.00835032e+00, 4.46068522e+00, 8.96761189e-03],
 [1.29798116e-01, 2.84907727e-01, 1.69579255e+00],
 [6.03222306e-02, 1.68235927e+00, 2.46974919e-01],
 [1.91457098e-03, 7.81676918e-01, 4.94791787e+00]])

 pandas

pandas

pandas [https://pandas.pydata.org/] is a Python library for data analysis
that has become very popular in recent years. On the website, pandas is
described thus:

„pandas is a fast, powerful, flexible and easy to use open source data
analysis and manipulation tool, built on top of the Python programming
language.“

More specifically, pandas is an in-memory analysis tool that offers SQL-like
constructs, as well as statistical and analytical tools. In doing so, pandas
builds on Cython and NumPy, making it less memory intensive and faster than pure
Python code. Mostly pandas is used to

	replace Excel and Power BI [https://powerbi.microsoft.com/en-us/]

	implement an ETL [https://en.wikipedia.org/wiki/Extract,_transform,_load]
process

	process CSV or
JSON data

	prepare machine learning

See also

	Home [https://pandas.pydata.org/]

	User guide [https://pandas.pydata.org/docs/user_guide/index.html]

	API reference [https://pandas.pydata.org/docs/reference/index.html]

	GitHub [https://github.com/pandas-dev/pandas/]

 Introduction to the data structures of pandas

Introduction to the data structures of pandas

To get started with pandas, you should first familiarise yourself with the two most important data structures Series and DataFrame.

Series

A series is a one-dimensional array-like object containing a sequence of values (of similar types to the NumPy types) and an associated array of data labels called an index. The simplest series is formed from just an array of data:

[1]:

import numpy as np
import pandas as pd

[2]:

rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))
s

[2]:

0 0.415497
1 3.102087
2 -0.332863
3 -0.135429
4 0.471112
5 0.173483
6 -0.487151
dtype: float64

The string representation of an interactively displayed series shows the index on the left and the values on the right. Since we have not specified an index for the data, a default index is created consisting of the integers 0 to N - 1 (where N is the length of the data). You can get the array representation and the index object of the series via their pandas.Series.array [https://pandas.pydata.org/docs/reference/api/pandas.Series.array.html] and
pandas.Series.index [https://pandas.pydata.org/docs/reference/api/pandas.Series.index.html] attributes respectively:

[3]:

s.array

[3]:

<PandasArray>
[0.4154969051865909, 3.102087203833539, -0.3328632996406089,
 -0.13542859429409687, 0.4711123318607415, 0.1734826179409076,
 -0.48715121240065956]
Length: 7, dtype: float64

[4]:

s.index

[4]:

RangeIndex(start=0, stop=7, step=1)

Often you will want to create an index that identifies each data point with a label:

[5]:

idx = pd.date_range("2022-01-31", periods=7)

s2 = pd.Series(rng.normal(size=7), index=idx)

[6]:

s2

[6]:

2022-01-31 0.434474
2022-02-01 -1.696645
2022-02-02 -1.180240
2022-02-03 -0.205702
2022-02-04 -0.426140
2022-02-05 -0.123695
2022-02-06 1.071786
Freq: D, dtype: float64

See also:

	Time series / date functionality [https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html]

Compared to NumPy arrays, you can use labels in the index if you want to select individual values or a group of values:

[7]:

s2["2022-02-02"]

[7]:

-1.1802398819304771

[8]:

s2[["2022-02-02", "2022-02-03", "2022-02-04"]]

[8]:

2022-02-02 -1.180240
2022-02-03 -0.205702
2022-02-04 -0.426140
dtype: float64

Here ['2022-02-02', '2022-02-03', '2022-02-04'] is interpreted as a list of indices, even if it contains strings instead of integers.

When using NumPy functions or NumPy-like operations, such as filtering with a Boolean array, scalar multiplication or applying mathematical functions, the link between index and value is preserved:

[9]:

s2[s2 > 0]

[9]:

2022-01-31 0.434474
2022-02-06 1.071786
dtype: float64

[10]:

s2**2

[10]:

2022-01-31 0.188768
2022-02-01 2.878604
2022-02-02 1.392966
2022-02-03 0.042313
2022-02-04 0.181595
2022-02-05 0.015301
2022-02-06 1.148725
Freq: D, dtype: float64

[11]:

np.exp(s2)

[11]:

2022-01-31 1.544151
2022-02-01 0.183297
2022-02-02 0.307205
2022-02-03 0.814076
2022-02-04 0.653025
2022-02-05 0.883649
2022-02-06 2.920591
Freq: D, dtype: float64

You can also think of a series as a fixed-length ordered dict, since it is an assignment of index values to data values. It can be used in many contexts where you could use a dict:

[12]:

"2022-02-02" in s2

[12]:

True

[13]:

"2022-02-09" in s2

[13]:

False

Missing data

I will use NA and null synonymously to indicate missing data. The functions isna and notna in pandas should be used to identify missing data:

[14]:

pd.isna(s2)

[14]:

2022-01-31 False
2022-02-01 False
2022-02-02 False
2022-02-03 False
2022-02-04 False
2022-02-05 False
2022-02-06 False
Freq: D, dtype: bool

[15]:

pd.notna(s2)

[15]:

2022-01-31 True
2022-02-01 True
2022-02-02 True
2022-02-03 True
2022-02-04 True
2022-02-05 True
2022-02-06 True
Freq: D, dtype: bool

Series also has these as instance methods:

[16]:

s2.isna()

[16]:

2022-01-31 False
2022-02-01 False
2022-02-02 False
2022-02-03 False
2022-02-04 False
2022-02-05 False
2022-02-06 False
Freq: D, dtype: bool

Dealing with missing data is discussed in more detail in the section Managing missing data with pandas.

A useful feature of Series for many applications is the automatic alignment by index labels in arithmetic operations:

[17]:

idx = pd.date_range("2022-02-01", periods=7)

s3 = pd.Series(rng.normal(size=7), index=idx)

[18]:

s2, s3

[18]:

(2022-01-31 0.434474
 2022-02-01 -1.696645
 2022-02-02 -1.180240
 2022-02-03 -0.205702
 2022-02-04 -0.426140
 2022-02-05 -0.123695
 2022-02-06 1.071786
 Freq: D, dtype: float64,
 2022-02-01 -0.105019
 2022-02-02 0.156524
 2022-02-03 0.191187
 2022-02-04 0.002915
 2022-02-05 0.274354
 2022-02-06 -0.991969
 2022-02-07 -0.087003
 Freq: D, dtype: float64)

[19]:

s2 + s3

[19]:

2022-01-31 NaN
2022-02-01 -1.801664
2022-02-02 -1.023716
2022-02-03 -0.014515
2022-02-04 -0.423225
2022-02-05 0.150659
2022-02-06 0.079817
2022-02-07 NaN
Freq: D, dtype: float64

If you have experience with SQL, this is similar to a JOIN [https://en.wikipedia.org/wiki/Join_(SQL)] operation.

Both the Series object itself and its index have a name attribute that can be integrated into other areas of the pandas functionality:

[20]:

s3.name = "floats"
s3.index.name = "date"

s3

[20]:

date
2022-02-01 -0.105019
2022-02-02 0.156524
2022-02-03 0.191187
2022-02-04 0.002915
2022-02-05 0.274354
2022-02-06 -0.991969
2022-02-07 -0.087003
Freq: D, Name: floats, dtype: float64

DataFrame

A DataFrame represents a rectangular data table and contains an ordered, named collection of columns, each of which can have a different value type. The DataFrame has both a row index and a column index.

Note:

Although a DataFrame is two-dimensional, you can also use it to represent higher-dimensional data in a table format with hierarchical indexing using join [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html], combine [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.combine.html] and Reshaping [https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html].

[21]:

data = {
 "Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
 "Decimal": [0, 1, 2, 3, 4, 5],
 "Octal": ["001", "002", "003", "004", "004", "005"],
 "Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],
}

df = pd.DataFrame(data)

df

[21]:

 Converting Python data structures into pandas

Converting Python data structures into pandas

Python data structures such as lists and arrays can be converted into pandas Series or DataFrames.

[1]:

import numpy as np
import pandas as pd

Series

Python lists [https://docs.python.org/3/tutorial/introduction.html#lists] can easily be converted into pandas Series:

[2]:

list1 = [-0.751442, 0.816935, -0.272546, -0.268295, -0.296728, 0.176255, -0.322612]

pd.Series(list1)

[2]:

0 -0.751442
1 0.816935
2 -0.272546
3 -0.268295
4 -0.296728
5 0.176255
6 -0.322612
dtype: float64

Multiple lists can also be easily converted into one pandas Series:

[3]:

list2 = [-0.029608, -0.277982, 2.693057, -0.850817, 0.783868, -1.137835, -0.617132]

pd.Series(list1 + list2)

[3]:

0 -0.751442
1 0.816935
2 -0.272546
3 -0.268295
4 -0.296728
5 0.176255
6 -0.322612
7 -0.029608
8 -0.277982
9 2.693057
10 -0.850817
11 0.783868
12 -1.137835
13 -0.617132
dtype: float64

A list can also be passed as an index:

[4]:

date = [
 "2022-01-31",
 "2022-02-01",
 "2022-02-02",
 "2022-02-03",
 "2022-02-04",
 "2022-02-05",
 "2022-02-06",
]

pd.Series(list1, index=date)

[4]:

2022-01-31 -0.751442
2022-02-01 0.816935
2022-02-02 -0.272546
2022-02-03 -0.268295
2022-02-04 -0.296728
2022-02-05 0.176255
2022-02-06 -0.322612
dtype: float64

With Python dictionaries [https://docs.python.org/3/tutorial/datastructures.html#dictionaries] you can pass not only values but also the corresponding keys to a pandas series:

[5]:

dict1 = {
 "2022-01-31": -0.751442,
 "2022-02-01": 0.816935,
 "2022-02-02": -0.272546,
 "2022-02-03": -0.268295,
 "2022-02-04": -0.296728,
 "2022-02-05": 0.176255,
 "2022-02-06": -0.322612,
}

pd.Series(dict1)

[5]:

2022-01-31 -0.751442
2022-02-01 0.816935
2022-02-02 -0.272546
2022-02-03 -0.268295
2022-02-04 -0.296728
2022-02-05 0.176255
2022-02-06 -0.322612
dtype: float64

When you pass a dict, the index in the resulting pandas series takes into account the order of the keys in the dict.

With collections.ChainMap [https://docs.python.org/3/library/collections.html#collections.ChainMap] you can also turn several dicts into one pandas.Series.

First we define a second dict:

[6]:

dict2 = {
 "2022-02-07": -0.029608,
 "2022-02-08": -0.277982,
 "2022-02-09": 2.693057,
 "2022-02-10": -0.850817,
 "2022-02-11": 0.783868,
 "2022-02-12": -1.137835,
 "2022-02-13": -0.617132,
}

[7]:

from collections import ChainMap

pd.Series(ChainMap(dict1, dict2))

[7]:

2022-02-07 -0.029608
2022-02-08 -0.277982
2022-02-09 2.693057
2022-02-10 -0.850817
2022-02-11 0.783868
2022-02-12 -1.137835
2022-02-13 -0.617132
2022-01-31 -0.751442
2022-02-01 0.816935
2022-02-02 -0.272546
2022-02-03 -0.268295
2022-02-04 -0.296728
2022-02-05 0.176255
2022-02-06 -0.322612
dtype: float64

DataFrame

Lists of lists can be loaded into a pandas DataFrame with:

[8]:

df = pd.DataFrame([list1, list2])
df

[8]:

 Indexing

Indexing

Index objects

The index objects of pandas are responsible for the axis labels and other metadata, such as the axis name. Any array or other sequence of labels you use when constructing a series or DataFrame is internally converted into an index:

[1]:

import pandas as pd

obj = pd.Series(range(7), index=pd.date_range("2022-02-02", periods=7))

[2]:

obj.index

[2]:

DatetimeIndex(['2022-02-02', '2022-02-03', '2022-02-04', '2022-02-05',
 '2022-02-06', '2022-02-07', '2022-02-08'],
 dtype='datetime64[ns]', freq='D')

[3]:

obj.index[3:]

[3]:

DatetimeIndex(['2022-02-05', '2022-02-06', '2022-02-07', '2022-02-08'], dtype='datetime64[ns]', freq='D')

Index objects are immutable and therefore cannot be changed by the user:

[4]:

obj.index[1] = "2022-02-03"

TypeError Traceback (most recent call last)
Cell In[4], line 1
----> 1 obj.index[1] = "2022-02-03"

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexes/base.py:5157, in Index.__setitem__(self, key, value)
 5155 @final
 5156 def __setitem__(self, key, value):
-> 5157 raise TypeError("Index does not support mutable operations")

TypeError: Index does not support mutable operations

Immutability makes the sharing of index objects in data structures more secure:

[5]:

import numpy as np

labels = pd.Index(np.arange(3))

labels

[5]:

Index([0, 1, 2], dtype='int64')

[6]:

rng = np.random.default_rng()
obj2 = pd.Series(rng.normal(size=3),index=labels)

[7]:

obj2

[7]:

0 0.515353
1 1.153708
2 -1.776476
dtype: float64

[8]:

obj2.index is labels

[8]:

True

To be similar to an array, an index also behaves like a fixed-size set:

[9]:

data1 = {
 "Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
 "Decimal": [0, 1, 2, 3, 4, 5],
 "Octal": ["001", "002", "003", "004", "004", "005"],
}
df1 = pd.DataFrame(data1)

[10]:

df1

[10]:

 Date and Time

Date and Time

With pandas you can create Series with date and time information. In the following we will show common operations with date data.

Note:

pandas supports dates stored in UTC [https://en.wikipedia.org/wiki/Coordinated_Universal_Time] values using the datetime64[ns] datatype. Local times from a single time zone are also supported. Multiple time zones are supported by a pandas.Timestamp [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html] object. If you need to handle times from multiple time zones, I would probably split the data by time zone and use a separate DataFrame or Series for each
time zone.

See also:

	Time series / date functionality [https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html]

Loading UTC time data

[1]:

import pandas as pd

dt = pd.date_range("2022-03-27", periods=6, freq="H")

dt

[1]:

DatetimeIndex(['2022-03-27 00:00:00', '2022-03-27 01:00:00',
 '2022-03-27 02:00:00', '2022-03-27 03:00:00',
 '2022-03-27 04:00:00', '2022-03-27 05:00:00'],
 dtype='datetime64[ns]', freq='H')

[2]:

utc = pd.to_datetime(dt, utc=True)

utc

[2]:

DatetimeIndex(['2022-03-27 00:00:00+00:00', '2022-03-27 01:00:00+00:00',
 '2022-03-27 02:00:00+00:00', '2022-03-27 03:00:00+00:00',
 '2022-03-27 04:00:00+00:00', '2022-03-27 05:00:00+00:00'],
 dtype='datetime64[ns, UTC]', freq='H')

Note:

The type of the result dtype='datetime64[ns, UTC]' indicates that the data is stored as UTC.

Let’s convert this series to the time zone Europe/Berlin:

[3]:

utc.tz_convert("Europe/Berlin")

[3]:

DatetimeIndex(['2022-03-27 01:00:00+01:00', '2022-03-27 03:00:00+02:00',
 '2022-03-27 04:00:00+02:00', '2022-03-27 05:00:00+02:00',
 '2022-03-27 06:00:00+02:00', '2022-03-27 07:00:00+02:00'],
 dtype='datetime64[ns, Europe/Berlin]', freq='H')

Conversion of local time to UTC

[4]:

local = utc.tz_convert("Europe/Berlin")

local.tz_convert("UTC")

[4]:

DatetimeIndex(['2022-03-27 00:00:00+00:00', '2022-03-27 01:00:00+00:00',
 '2022-03-27 02:00:00+00:00', '2022-03-27 03:00:00+00:00',
 '2022-03-27 04:00:00+00:00', '2022-03-27 05:00:00+00:00'],
 dtype='datetime64[ns, UTC]', freq='H')

Conversion to Unix time

If you have a Series with UTC or local time information, you can use this code to determine the seconds according to Unix time:

[5]:

uts = pd.to_datetime(dt).view(int) / 10**9

uts

[5]:

array([1.6483392e+09, 1.6483428e+09, 1.6483464e+09, 1.6483500e+09,
 1.6483536e+09, 1.6483572e+09])

To load the Unix time in UTC, you can proceed as follows:

[6]:

(pd.to_datetime(uts, unit="s").tz_localize("UTC"))

[6]:

DatetimeIndex(['2022-03-27 00:00:00+00:00', '2022-03-27 01:00:00+00:00',
 '2022-03-27 02:00:00+00:00', '2022-03-27 03:00:00+00:00',
 '2022-03-27 04:00:00+00:00', '2022-03-27 05:00:00+00:00'],
 dtype='datetime64[ns, UTC]', freq=None)

Manipulation of dates

Convert to strings

With pandas.DatetimeIndex [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html] you have some possibilities to convert date and time into strings, for example into the name of the weekday:

[7]:

local.day_name(locale="en_GB.UTF-8")

[7]:

Index(['Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday', 'Sunday'], dtype='object')

You can find out which locale is available to you with locale -a:

[8]:

!locale -a

en_NZ
nl_NL.UTF-8
pt_BR.UTF-8
fr_CH.ISO8859-15
eu_ES.ISO8859-15
en_US.US-ASCII
af_ZA
bg_BG
cs_CZ.UTF-8
fi_FI
zh_CN.UTF-8
eu_ES
sk_SK.ISO8859-2
nl_BE
fr_BE
sk_SK
en_US.UTF-8
en_NZ.ISO8859-1
de_CH
sk_SK.UTF-8
de_DE.UTF-8
am_ET.UTF-8
zh_HK
be_BY.UTF-8
uk_UA
pt_PT.ISO8859-1
en_AU.US-ASCII
kk_KZ.PT154
en_US
nl_BE.ISO8859-15
de_AT.ISO8859-1
hr_HR.ISO8859-2
fr_FR.ISO8859-1
af_ZA.UTF-8
am_ET
fi_FI.ISO8859-1
ro_RO.UTF-8
af_ZA.ISO8859-15
en_NZ.UTF-8
fi_FI.UTF-8
hr_HR.UTF-8
da_DK.UTF-8
ca_ES.ISO8859-1
en_AU.ISO8859-15
ro_RO.ISO8859-2
de_AT.UTF-8
pt_PT.ISO8859-15
sv_SE
fr_CA.ISO8859-1
fr_BE.ISO8859-1
en_US.ISO8859-15
it_CH.ISO8859-1
en_NZ.ISO8859-15
en_AU.UTF-8
de_AT.ISO8859-15
af_ZA.ISO8859-1
hu_HU.UTF-8
et_EE.UTF-8
he_IL.UTF-8
uk_UA.KOI8-U
be_BY
kk_KZ
hu_HU.ISO8859-2
it_CH
pt_BR
ko_KR
it_IT
fr_BE.UTF-8
ru_RU.ISO8859-5
zh_TW
zh_CN.GB2312
no_NO.ISO8859-15
de_DE.ISO8859-15
en_CA
fr_CH.UTF-8
sl_SI.UTF-8
uk_UA.ISO8859-5
pt_PT
hr_HR
cs_CZ
fr_CH
he_IL
zh_CN.GBK
zh_CN.GB18030
fr_CA
pl_PL.UTF-8
ja_JP.SJIS
sr_YU.ISO8859-5
be_BY.CP1251
sr_YU.ISO8859-2
sv_SE.UTF-8
sr_YU.UTF-8
de_CH.UTF-8
sl_SI
pt_PT.UTF-8
ro_RO
en_NZ.US-ASCII
ja_JP
zh_CN
fr_CH.ISO8859-1
ko_KR.eucKR
be_BY.ISO8859-5
nl_NL.ISO8859-15
en_GB.ISO8859-1
en_CA.US-ASCII
is_IS.ISO8859-1
ru_RU.CP866
nl_NL
fr_CA.ISO8859-15
sv_SE.ISO8859-15
hy_AM
en_CA.ISO8859-15
en_US.ISO8859-1
zh_TW.Big5
ca_ES.UTF-8
ru_RU.CP1251
en_GB.UTF-8
en_GB.US-ASCII
ru_RU.UTF-8
eu_ES.UTF-8
es_ES.ISO8859-1
hu_HU
el_GR.ISO8859-7
en_AU
it_CH.UTF-8
en_GB
sl_SI.ISO8859-2
ru_RU.KOI8-R
nl_BE.UTF-8
et_EE
fr_FR.ISO8859-15
cs_CZ.ISO8859-2
lt_LT.UTF-8
pl_PL.ISO8859-2
fr_BE.ISO8859-15
is_IS.UTF-8
tr_TR.ISO8859-9
da_DK.ISO8859-1
lt_LT.ISO8859-4
lt_LT.ISO8859-13
zh_TW.UTF-8
bg_BG.CP1251
el_GR.UTF-8
be_BY.CP1131
da_DK.ISO8859-15
is_IS.ISO8859-15
no_NO.ISO8859-1
nl_NL.ISO8859-1
nl_BE.ISO8859-1
sv_SE.ISO8859-1
pt_BR.ISO8859-1
zh_CN.eucCN
it_IT.UTF-8
en_CA.UTF-8
uk_UA.UTF-8
de_CH.ISO8859-15
de_DE.ISO8859-1
ca_ES
sr_YU
hy_AM.ARMSCII-8
ru_RU
zh_HK.UTF-8
eu_ES.ISO8859-1
is_IS
bg_BG.UTF-8
ja_JP.UTF-8
it_CH.ISO8859-15
fr_FR.UTF-8
ko_KR.UTF-8
et_EE.ISO8859-15
kk_KZ.UTF-8
ca_ES.ISO8859-15
en_IE.UTF-8
es_ES
de_CH.ISO8859-1
en_CA.ISO8859-1
es_ES.ISO8859-15
en_AU.ISO8859-1
el_GR
da_DK
no_NO
it_IT.ISO8859-1
en_IE
zh_HK.Big5HKSCS
hi_IN.ISCII-DEV
ja_JP.eucJP
it_IT.ISO8859-15
pl_PL
ko_KR.CP949
fr_CA.UTF-8
fi_FI.ISO8859-15
en_GB.ISO8859-15
fr_FR
hy_AM.UTF-8
no_NO.UTF-8
es_ES.UTF-8
de_AT
tr_TR.UTF-8
de_DE
lt_LT
tr_TR
C
POSIX

Other attributes of DatetimeIndex that can be used to convert date and time into strings are:

	Attribute

	Description

	year

	the year as datetime.

	month

	the month as January 1 and December 12

	day

	the day of the datetime

	hour

	the hours of the datetime

	minute

	the minutes of the datetime

	seconds

	the seconds of the ‘datetime

	microsecond

	the microseconds of the datetime.

	nanosecond

	the nanoseconds of datetime

	date

	returns a NumPy array of Python datetime.date objects

	time

	returns a NumPy array of datetime.time objects

	timetz

	returns a NumPy array of datetime.time objects with timezone information

	dayofyear, day_of_year

	the ordinal day of the year

	dayofweek

	the day of the week with Monday (0) and Sunday (6)

	day_of_week

	the day of the week with Monday (0) and Sunday (6)

	weekday

	the day of the week with Monday (0) and Sunday (6)

	quarter

	returns the quarter of the year

	tz

	returns the time zone

	freq

	returns the frequency object if it is set, otherwise None

	freqstr

	returns the frequency object as a string if it is set, otherwise None

	is_month_start

	indicates if the date is the first day of the month

	is_month_end

	indicates whether the date is the last day of the month

	is_quarter_start

	indicates whether the date is the first day of a quarter

	is_quarter_end

	shows if the date is the last day of a quarter

	is_year_start

	indicates whether the date is the first day of a year

	is_year_end

	indicates whether the date is the last day of a year

	is_leap_year

	Boolean indicator if the date falls in a leap year

	inferred_freq

	tries to return a string representing a frequency determined by infer_freq

However, there are also some methods with which you can convert the DatetimeIndex into strings, for example strftime:

[9]:

local.strftime("%d.%m.%Y")

[9]:

Index(['27.03.2022', '27.03.2022', '27.03.2022', '27.03.2022', '27.03.2022',
 '27.03.2022'],
 dtype='object')

Note:

In strftime() and strptime() Format Codes [https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes] you get an overview of the different formatting possibilities of strftime.

Other methods are:

	Method

	Description

	normalize

	converts times to midnight

	strftime

	converts to index using the specified date format

	snap

	snaps the timestamp to the next occurring frequency

	tz_convert

	convert a tz capable datetime array/index from one time zone to another

	tz_localize

	localises tz-naive datetime array/index into tz-compatible datetime array/index

	round

	rounds the data up to the nearest specified frequency

	floor

	rounds the data sown to the specified frequency

	ceil

	round the data to the specified frequency

	to_period

	converts the data to a PeriodArray/Index at a given frequency

	to_perioddelta

	calculates TimedeltaArray of the difference between the index values and the index converted to PeriodArray at the specified frequency

	to_pydatetime

	returns Datetime array/index as ndarray object of datetime.datetime objects

	to_series

	creates a series with index and values corresponding to index keys; useful with map for returning an indexer

	to_frame

	creates a DataFrame with a column containing the index

	month_name

	returns the month names of the DateTimeIndex with the specified locale

	day_name

	returns the day names of the DateTimeIndex with the specified locale

	mean

	returns the mean value of the array

	std

	returns the standard deviation of the sample across the requested axis

 Select and filter data

Select and filter data

Indexing series (obj[...]) works analogously to indexing NumPy arrays, except that you can use index values of the series instead of just integers. Here are some examples:

[1]:

import numpy as np
import pandas as pd

[2]:

idx = pd.date_range("2022-02-02", periods=7)
rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7), index=idx)

[3]:

s

[3]:

2022-02-02 0.002127
2022-02-03 1.655759
2022-02-04 -1.552128
2022-02-05 -1.581026
2022-02-06 -0.992316
2022-02-07 1.490786
2022-02-08 -1.542455
Freq: D, dtype: float64

[4]:

s["2022-02-03"]

[4]:

1.655759430268265

[5]:

s[1]

[5]:

1.655759430268265

[6]:

 s[2:4]

[6]:

2022-02-04 -1.552128
2022-02-05 -1.581026
Freq: D, dtype: float64

[7]:

s[["2022-02-04", "2022-02-03", "2022-02-02"]]

[7]:

2022-02-04 -1.552128
2022-02-03 1.655759
2022-02-02 0.002127
dtype: float64

[8]:

s[[1, 3]]

[8]:

2022-02-03 1.655759
2022-02-05 -1.581026
Freq: 2D, dtype: float64

[9]:

s[s > 0]

[9]:

2022-02-02 0.002127
2022-02-03 1.655759
2022-02-07 1.490786
dtype: float64

While you can select data by label in this way, the preferred method for selecting index values is the loc operator:

[10]:

s.loc[["2022-02-04", "2022-02-03", "2022-02-02"]]

[10]:

2022-02-04 -1.552128
2022-02-03 1.655759
2022-02-02 0.002127
dtype: float64

The reason for the preference for loc is the different treatment of integers when indexing with []. In regular []-based indexing, integers are treated as labels if the index contains integers, so the behaviour varies depending on the data type of the index. In our example, the expression s.loc[[3, 2, 1]] will fail because the index does not contain integers:

[11]:

s.loc[[3, 2, 1]]

KeyError Traceback (most recent call last)
Cell In[11], line 1
----> 1 s.loc[[3, 2, 1]]

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1103, in _LocationIndexer.__getitem__(self, key)
 1100 axis = self.axis or 0
 1102 maybe_callable = com.apply_if_callable(key, self.obj)
-> 1103 return self._getitem_axis(maybe_callable, axis=axis)

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1332, in _LocIndexer._getitem_axis(self, key, axis)
 1329 if hasattr(key, "ndim") and key.ndim > 1:
 1330 raise ValueError("Cannot index with multidimensional key")
-> 1332 return self._getitem_iterable(key, axis=axis)
 1334 # nested tuple slicing
 1335 if is_nested_tuple(key, labels):

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1272, in _LocIndexer._getitem_iterable(self, key, axis)
 1269 self._validate_key(key, axis)
 1271 # A collection of keys
-> 1272 keyarr, indexer = self._get_listlike_indexer(key, axis)
 1273 return self.obj._reindex_with_indexers(
 1274 {axis: [keyarr, indexer]}, copy=True, allow_dups=True
 1275)

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexing.py:1462, in _LocIndexer._get_listlike_indexer(self, key, axis)
 1459 ax = self.obj._get_axis(axis)
 1460 axis_name = self.obj._get_axis_name(axis)
-> 1462 keyarr, indexer = ax._get_indexer_strict(key, axis_name)
 1464 return keyarr, indexer

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexes/base.py:5877, in Index._get_indexer_strict(self, key, axis_name)
 5874 else:
 5875 keyarr, indexer, new_indexer = self._reindex_non_unique(keyarr)
-> 5877 self._raise_if_missing(keyarr, indexer, axis_name)
 5879 keyarr = self.take(indexer)
 5880 if isinstance(key, Index):
 5881 # GH 42790 - Preserve name from an Index

File ~/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/pandas/core/indexes/base.py:5938, in Index._raise_if_missing(self, key, indexer, axis_name)
 5936 if use_interval_msg:
 5937 key = list(key)
-> 5938 raise KeyError(f"None of [{key}] are in the [{axis_name}]")
 5940 not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique())
 5941 raise KeyError(f"{not_found} not in index")

KeyError: "None of [Index([3, 2, 1], dtype='int64')] are in the [index]"

While the loc operator exclusively indexes labels, the iloc operator exclusively indexes with integers:

[12]:

s.iloc[[3, 2, 1]]

[12]:

2022-02-05 -1.581026
2022-02-04 -1.552128
2022-02-03 1.655759
Freq: -1D, dtype: float64

You can also slice with labels, but this works differently from normal Python slicing because the endpoint is included:

[13]:

s.loc["2022-02-03":"2022-02-04"]

[13]:

2022-02-03 1.655759
2022-02-04 -1.552128
Freq: D, dtype: float64

Setting with these methods changes the corresponding section of the row:

[14]:

s.loc["2022-02-03":"2022-02-04"] = 0

s

[14]:

2022-02-02 0.002127
2022-02-03 0.000000
2022-02-04 0.000000
2022-02-05 -1.581026
2022-02-06 -0.992316
2022-02-07 1.490786
2022-02-08 -1.542455
Freq: D, dtype: float64

Indexing in a DataFrame is used to retrieve one or more columns with either a single value or a sequence:

[15]:

data = {
 "Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
 "Decimal": [0, 1, 2, 3, 4, 5],
 "Octal": ["001", "002", "003", "004", "004", "005"],
 "Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],
}

df = pd.DataFrame(data)
df = pd.DataFrame(data, columns=["Decimal", "Octal", "Key"], index=df["Code"])

df

[15]:

 Add, change and delete data

Add, change and delete data

For many data sets, you may want to perform a transformation based on the values in an array, series or column in a DataFrame. For this, we look at the first Unicode characters:

[1]:

import numpy as np
import pandas as pd

[2]:

df = pd.DataFrame(
 {
 "Code": ["U+0000", "U+0001", "U+0002", "U+0003", "U+0004", "U+0005"],
 "Decimal": [0, 1, 2, 3, 4, 5],
 "Octal": ["001", "002", "003", "004", "004", "005"],
 "Key": ["NUL", "Ctrl-A", "Ctrl-B", "Ctrl-C", "Ctrl-D", "Ctrl-E"],
 }
)

df

[2]:

 Manipulation of strings

Manipulation of strings

pandas offers the possibility to concisely apply Python’s string methods and regular expressions to whole arrays of data.

See also:

	string [https://python-basics-tutorial.readthedocs.io/en/latest/types/strings.html#string]

	re [https://python-basics-tutorial.readthedocs.io/en/latest/types/strings.html#re]

Vectorised string functions in pandas

Cleaning up a cluttered dataset for analysis often requires a lot of string manipulation. To make matters worse, a column containing strings sometimes has missing data:

[1]:

import numpy as np
import pandas as pd

addresses = {
 "Veit": np.nan,
 "Veit Schiele": "veit.schiele@cusy.io",
 "cusy GmbH": "info@cusy.io",
}
addresses = pd.Series(addresses)

addresses

[1]:

Veit NaN
Veit Schiele veit.schiele@cusy.io
cusy GmbH info@cusy.io
dtype: object

[2]:

addresses.isna()

[2]:

Veit True
Veit Schiele False
cusy GmbH False
dtype: bool

You can apply string and regular expression methods to any value (by passing a lambda or other function) using data.map, but this fails for NA values. To deal with this, Series has array-oriented methods for string operations that skip and pass NA values. These are accessed via Series’ str attribute; for example, we could use str.contains to check whether each email address contains veit:

[3]:

addresses.str.contains("veit")

[3]:

Veit NaN
Veit Schiele True
cusy GmbH False
dtype: object

Regular expressions can also be used, along with options such as IGNORECASE:

[4]:

import re

pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
matches = addresses.str.findall(pattern, flags=re.IGNORECASE).str[0]

matches

[4]:

Veit NaN
Veit Schiele (veit.schiele, cusy, io)
cusy GmbH (info, cusy, io)
dtype: object

There are several ways to retrieve a vectorised element. Either use str.get or the index of str:

[5]:

matches.str.get(1)

[5]:

Veit NaN
Veit Schiele cusy
cusy GmbH cusy
dtype: object

Similarly, you can also cut strings with this syntax:

[6]:

addresses.str[:5]

[6]:

Veit NaN
Veit Schiele veit.
cusy GmbH info@
dtype: object

The pandas.Series.str.extract [https://pandas.pydata.org/docs/reference/api/pandas.Series.str.extract.html] method returns the captured groups of a regular expression as a DataFrame:

[7]:

addresses.str.extract(pattern, flags=re.IGNORECASE)

[7]:

 Arithmetic

Arithmetic

An important function of pandas is the arithmetic behaviour for objects with different indices. When adding objects, if the index pairs are not equal, the corresponding index in the result will be the union of the index pairs. For users with database experience, this is comparable to an automatic outer join [https://en.wikipedia.org/wiki/Join_(SQL)#Outer_join] on the index labels. Let’s look at an example:

[1]:

import numpy as np
import pandas as pd

rng = np.random.default_rng()
s1 = pd.Series(rng.normal(size=5))
s2 = pd.Series(rng.normal(size=7))

If you add these values, you get:

[2]:

s1 + s2

[2]:

0 2.596929
1 -2.795545
2 -0.119064
3 0.849508
4 -0.061194
5 NaN
6 NaN
dtype: float64

The internal data matching leads to missing values at the points of the labels that do not overlap. Missing values are then passed on in further arithmetic calculations.

For DataFrames, alignment is performed for both rows and columns:

[3]:

df1 = pd.DataFrame(rng.normal(size=(5,3)))
df2 = pd.DataFrame(rng.normal(size=(7,2)))

When the two DataFrames are added together, the result is a DataFrame whose index and columns are the unions of those in each of the DataFrames above:

[4]:

df1 + df2

[4]:

 Descriptive statistics

Descriptive statistics

pandas objects are equipped with a number of common mathematical and statistical methods. Most of them fall into the category of reductions or summary statistics, methods that extract a single value (such as the sum or mean) from a series or set of values from the rows or columns of a DataFrame. Compared to similar methods found in NumPy arrays, they also handle missing data.

[1]:

import numpy as np
import pandas as pd

rng = np.random.default_rng()
df = pd.DataFrame(
 rng.normal(size=(7, 3)), index=pd.date_range("2022-02-02", periods=7)
)
new_index = pd.date_range("2022-02-03", periods=7)
df2 = df.reindex(new_index)

df2

[1]:

 Sorting and ranking

Sorting and ranking

Sorting a record by a criterion is another important built-in function. Sorting lexicographically by row or column index is already described in the section Reordering and sorting from levels. In the following we look at sorting the values with DataFrame.sort_values [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html] and
Series.sort_values [https://pandas.pydata.org/docs/reference/api/pandas.Series.sort_values.html]:

[1]:

import numpy as np
import pandas as pd

rng = np.random.default_rng()
s = pd.Series(rng.normal(size=7))

s.sort_index(ascending=False)

[1]:

6 -0.521271
5 -0.228255
4 -1.131139
3 -0.531495
2 0.783785
1 -0.311396
0 0.088381
dtype: float64

All missing values are sorted to the end of the row by default:

[2]:

s = pd.Series(rng.normal(size=7))
s[s < 0] = np.nan

s.sort_values()

[2]:

6 0.303859
4 0.435222
5 0.936456
3 1.312848
2 1.840338
0 NaN
1 NaN
dtype: float64

