
Git cheat sheet
Git installation
For GNU/Linux distributions, Git should be available in
the standard system repository. For example, in Debian/
Ubuntu please type

 $ sudo apt-get install git 

Git config
 $ git config --global user.name "My Name" 
 $ git config --global user.email "me@cusy.io" 

Set name and email address that will be attached to your
commits and tags.

 $ git config --global color.ui auto 

Set colorisation of Git output

.gitignore
Some files usually shouldn’t be tracked by git. They are
written to a special file named  .gitignore . You can find
helpful templates at  github.com/veit/dotfiles/ .

Start a project
 $ git init [my_project] 

Create a new local repository.

If  [my_project]  is provided, Git will create a new di-
rectory and initialise it as a repository.

If  [my_project]  is not provided, the new repository is
initialised in the current directory.

 $ git clone [project_url] 

Downloads a project with all branches and the entire
history from the remote repository.

Work on a project

 $ git status 

Display the status of the working directory with new,
staged and modified files for the current branch.

 $ git add [file] 

Add a file to the staging area.

 $ git add -p [file] 

Add only parts of a file to the staging area.

 $ git diff [file] 

Show changes between working and staging area.

 $ git diff --staged [file] 

Show changes between staging area and repository.

 $ git checkout -- [file] 

Irrevocably discard changes in the working directory.

 $ git commit -m 'Commit message' 

Create a new commit from added changes.

 $ git reset [file] 

Revert the file to the last commited version.

 $ git rm [file] 

Remove the file from working directory and staging area.

 $ git stash 

Put current changes from your working directory into
stash for later use.

 $ git stash list 

List the modifications stashed away with  git stash .

 $ git stash show  [<stash>]

List the modifications stashed away with  git stash .

re
m

ot
e

gi
t

re
po

si
to

ry

lo
ca

l g
it

st
ag

in
g

ar
ea

lo
ca

l
gi

t
re

po
si

to
ry

gi
t

st
as

h
lo

ca
l

w
or

ki
ng

ar

ea

MD

README.md

git commit

MD

README.md

MD

README.md

MD

README.md

git add README.md

git reset HEAD

git stash pop

git stash

MD

README.md

git push

github.com/veit/dotfiles/

 $ git stash pop  [<stash>] 

Inspect the modifications stashed away.

 $ git stash drop [<stash>] 

Delete a specific stash from all your previous stashes.

Git branching
 $ git branch [-a] 

List all local branches in the repository.

 [-a]  shows also the remote branches.

 $ git branch [branch_name] 

Creates a new branch, referencing to the current  HEAD .

 $ git checkout [-b] [branch_name] 

Switch the working directory to the specified branch.

 -b  will create the specified branch if it does not exist.

 $ git merge [from name] 

Join specified  [from name]  branch into your current branch
(the one you are on currently).

 $ git branch -d [name] 

Remove selected branch, if it is already merged into any
other.

 -D  instead of  -d  forces deletion.

Review
 $ git log [-n count] 

List the commit history of the current branch.

 -n  limits the list to the last n commits.

 $ git log --oneline --graph --decorate 

An overview with reference labels and history graph – one
commit per line.

 $ git log ref.. 

List commits that are present on the current branch and
not merged into  ref .  ref  can be a branch name or a tag.
name.

 $ git log ..ref 

List commits that are present on  ref  and not merged into
the current branch.

 $ git reflog 

List operations (e. g. checkouts or commits) made on the
local repository.

Tagging
 $ git tag 

List all tags.

 $ git tag [name] [commit sha] 

Create a tag reference named  name  for current commit.

With  sha  the specific commit is tagged instead of the
current one.

 $ git tag -a [name] [commit sha] 

Create a tag named  name  for current commit.

Reverting
 $ git reset [--hard] [target reference] 

Switches the current branch to the target reference, leav-
ing a difference as an uncommitted change.

When  --hard  is used, all changes are discarded.

 $ git revert [commit sha] 

Create a new commit, reverting the changes from the spec-
ified commit. It generates an inversion of changes.

 $ git fetch [remote] 

Fetch changes from the remote, but not update tracking
branches.

 $ git fetch --prune [remote] 

Delete remote Refs that were removed from the remote
repository.

 $ git push --prune [remote] 

Remove remote branches that don’t have a local counter-
part.

Synchronising repositories
 $ git pull [remote] 

Fetch changes from the remote and merge the current
branch with its upstream.

 $ git push [--tags] [remote] 

Push local changes to the remote. Use  --tags  to push
tags.

 $ git push -u [remote] [branch] 

Push the local branch to a remote repository. Set its
copy as an upstream.

Text and design by Cusy GmbH (CC BY-SA 4.0)

https://cusy.io/en/seminars
https://cusy.io/de/seminare

https://creativecommons.org/licenses/by-sa/4.0/
https://cusy.io/en/seminars
https://cusy.io/de/seminare

